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Abstract

Most recently, IC3 was integrated into the SMT solver iSAT3. Thus, iSAT3+IC3 introduces the first IC3 variant based
on interval abstraction and Interval Constraint Propagation (ICP). As strong generalization is one of the key aspects for
the IC3 algorithm to be successful, we integrate two additional generalization schemes from literature into iSAT3+IC3:
Inductive Generalization and Counterexamples To Generalization (CTG). Furthermore, we evaluate the benefits and the
drawbacks of different variants of these methods in the context of interval abstraction and ICP.

1 Introduction

Without doubt, IC3 [5, 16] is currently the most efficient
engine for checking safety properties in sequential Hard-
ware Verification. During the last years IC3 has been lifted
to various domains [12, 25, 27, 4] and is also successfully
applied to Software Verification with powerful underlying
SAT Modulo Theories (SMT) solvers like Mathsat, Z3, or
SMTInterpol [13, 15, 11] to just name a few. Most recently
we presented the first incarnation of IC3 based on inter-
val abstraction and Interval Constraint Propagation (ICP)
[1]. We called our approach iSAT3+IC3 as IC3 was inte-
grated into the SMT solver iSAT3 [33], which bases on
interval arithmetic reasoning. Additionally, iSAT3+IC3
provides native support for floating point arithmetic mak-
ing it a good fit for software verification [2]. Besides its
core SMT solver component, iSAT3 provides a portfolio
of model checkers using Bounded Model Checking (BMC)
[3], Craig Interpolation [29] and k-Induction [18]. Besides
CBMC [14, 37], it is part of the BTC EmbeddedPlatform R©

(EP) and is successfully used for Dead Code Detection [31]
in an industrial setting.
iSAT3 can be seen as the first incarnation of Abstract
Conflict-Driven Clause Learning (ACDCL [7]) based on
interval abstraction as the iSAT algorithm [20] was pro-
posed several years before [7]. Supporting a theory
in iSAT3 is only a matter of ICP-contractors for its
operations.
In [36] we gave an outline of the features of iSAT3+IC3
with contributions on bit-level IC3 as well as new meth-
ods which specifically apply to interval arithmetic reason-
ing and ICP. Especially when it comes to the generaliza-
tion of learned clauses – which represent the overapproxi-
mations of reachable states computed and strengthened by
IC3 – iSAT3+IC3 extends known bit-level approaches and
introduces a new theory-aware technique of relaxing in-
terval bounds, so called Bound Generalization. However,
there are well-tried techniques which naturally integrate

with bound generalization and allow for even stronger gen-
eralization, that have not been implemented in iSAT3+IC3
so far [36].
Here, we implement Inductive Generalization [5, 16] as
well as Down() [6] and its extension to Counterexam-
ples to Generalization (CTG) [23] in the context of ICP
and also general transition relations (which do not nec-
essarily behave like functions). We show that we can
further improve the powerful iSAT3+IC3 implementation
with stronger generalization and give a thorough analysis
of different variants of Inductive Generalization and CTG
in the context of dead code detection. Further we analyze
their interplay with ICP and bound generalization.

Related Work. Inductive Generalization as well as Coun-
terexamples To Generalization are popular techniques
which are used by a wide range of hardware verification
tools implementing IC3 [22, 8, 9]. Furthermore, in [21] a
survey is presented for different IC3 variants on bit-level,
also including some configurations of inductive generaliza-
tion, Down() and CTG.
These techniques have also successfully been lifted to the
SMT domain and are used in software verification ap-
proaches like [4].
However, to the best of our knowledge, there is no imple-
mentation yet which is based on interval abstraction and
ICP with native support for floating point arithmetic. In
most approaches (e.g. [12, 25, 27, 4, 26]) floating point
arithmetic is usually approximated over the reals which is
not suitable for directly detecting dead code in floating-
point programs1.
Furthermore, it still remains unclear, how these techniques
for stronger generalization apply to interval abstraction and
especially the iSAT algorithm.

1For example, when comparing two large numbers like 1020 and
1020 + 1 in an if condition, they would be considered as equal under
64 bit floating-point arithmetic (with round-to-nearest). In contrast, using
real-valued arithmetic, they are not equal – leading to spuriously detected
dead code [36].
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Structure of the paper. In Section 2 we provide some
preliminaries including information about the SMT solver
iSAT3 and its already existing IC3 extension. The methods
newly integrated into iSAT3+IC3 for stronger generaliza-
tion are presented in Section 3 and experimentally evalu-
ated in Section 4. Finally, the paper is concluded in Sec-
tion 5.

2 Preliminaries

As this paper is an extension of [36], it uses the same no-
tations and bases on the same preliminaries as well as its
contributions. To make this paper stand on its own, we will
revisit most of the aspects here.

2.1 SAT and Notations
The Boolean satisfiability problem (SAT) is the problem
of deciding whether a Boolean formula F is satisfiable or
not. The Boolean formula F is satisfied iff there exists
an assignment for its Boolean variables such that F eval-
uates to true. State-of-the-art solvers of the SAT problem
build on Conflict-Driven Clause Learning (CDCL) [40]
and require the formula to be in conjunctive normal form
(CNF). A Boolean formula in CNF is a conjunction of
clauses. Clauses are disjunctions of literals, literals repre-
sent a Boolean variable or its negation. Any Boolean for-
mula may be transformed to CNF by applying the Tseitin-
transformation [42].
In this paper we use upper case letters to denote formu-
las. For literals, we use lower case letters – except i, j, k,
m and n which we use for indices and x which we use for
non-Boolean variables. We also use lower case letters for
sets of Boolean variables, e.g. ~r. Furthermore, we denote
clauses by a tilde-decorated lower case letter, e.g. c̃. Simi-
larly, we denote a cube (which is a conjunction of literals)
by ĉ. A negated clause is a cube and vice versa. Hence,
for simplification, we consider a negated clause ¬c̃ as a
cube containing the negated literals of c̃ and the other way
around. Additionally, when writing F(~s) we indicate that
the formula F depends on the Boolean variables from the
set ~s. If the literals of clause c̃ and cube ĉ belong to the
Boolean variables in~q, we write c̃(~q) and ĉ(~q).

2.2 IC3
We consider the verification of safety properties. Thus, we
have to prove that a certain safety property holds on all
possible execution paths. This can be reduced to a simple
reachability problem. We ask the question: if the system
starts in a safe or good state, is it possible to reach an unsafe
or bad state in a finite number of transition steps?
IC3 [5] is a way to check whether a system can reach a bad
state. To achieve this, we encode the states with a set of
Boolean variables (denoted by~s). Furthermore, we identify
the initial states as well as the transition relation with the
predicates I(~s) and T (~si,~si+1) while we represent the set of
good safe states with the property P(~s). For brevity, we ne-
glect that the transition relation usually considers variables
representing inputs as well. Thus, P is violated if a bad

unsafe state is reached.
To conclude that the bad states are generally unreachable
resp. that P is proven, we need to find a formula F which
is a safe inductive invariant, i.e. I =⇒ F , F =⇒ P, and
F(~s0)∧T (~s0,~s1)∧¬F(~s1) is unsatisfiable.
In order to obtain such an F , IC3 [5] builds a sequence of
frame formulas Fi with F0(~s) = I(~s) and Fi(~s) =⇒ Fi+1(~s).
Each Fi is an overapproximation of the good states reach-
able in up to i transition steps. While other SAT-based
model checking approaches, like Bounded Model Check-
ing (BMC) [3] or its unbounded extensions (k-Induction
[18] and Craig Interpolation [29]), unroll the transition re-
lation, IC3 considers only one transition relation at a time.
IC3 explicitly enumerates predecessor states of the unsafe
states in a depth-first search manner, and incrementally
strengthens the Fi. Thus, compared to BMC, k-induction,
or Craig Interpolation, IC3 requires much more but less
complex solver calls.
Before IC3 starts, the formulas I(~s0)∧¬P(~s0) and I(~s0)∧
T (~s0,~s1)∧¬P(~s1) have to be solved to ensure that P is
not violated in up to one transition step. We present the
pseudo-code formulation of IC3 from [36], see also [5].

Procedure MAIN():

1. F0(~s) := I(~s), F1(~s) := P(~s), i := 1

2. Solve Fi(~s0)∧T (~s0,~s1)∧¬P(~s1)

(a) If satisfiable: extract ĉ(~s0), DFS(ĉ, i−1)

(b) If unsatisfiable:
Fi+1(~s) := P(~s), PUSH(i), i := i+1

3. goto 2.

Procedure DFS(ĉ, i):

1. Solve Fi(~s0)∧¬ĉ(~s0)∧T (~s0,~s1)∧ ĉ(~s1)

(a) If satisfiable and i = 0: P violated, exit
(b) If satisfiable and i > 0: extract ê(~s0), DFS(ê,

i−1)

(c) If unsatisfiable:
for all j ∈ {1, . . . , i+1} : Fj(~s) := Fj(~s)∧¬ĉ(~s)

2. Return

Procedure PUSH(i):

1. j := 1

2. f := true

3. For each clause c̃(~s) in Fj(~s) which is not in Fj+1(~s)
solve Fj(~s0)∧T (~s0,~s1)∧¬c̃(~s1)

(a) If satisfiable: f := false

(b) If unsatisfiable: Fj+1(~s) := Fj+1(~s)∧ c̃(~s)

4. If f = true: P proven, exit

5. If j < i: j := j+1, goto 2.

6. Return



IC3 starts in MAIN() with i = 1 and searches Fi(~s) for a
state ĉ(~s) which is able to reach a bad state in one tran-
sition step. Such a state is called a proof obligation, be-
cause we have to prove its unreachability in order to rule
out a counterexample. If such a state exists, IC3 performs
a depth-first search and recursively checks whether ĉ(~s)
has itself a predecessor that is reachable from the initial
states F0. If this is the case, a counterexample is found
and IC3 concludes that the system is unsafe. Otherwise,
one or more Fi are strengthened by adding a clause corre-
sponding to a blocked cube which represents a state being
unreachable in up to i transition steps. In case MAIN()
does not find a predecessor, IC3 adds a new frame for-
mula and calls PUSH() in order to push all blocked cubes
to higher frames. Furthermore, PUSH() checks whether
Fj(~s0)∧T (~s0,~s1)∧¬Fj(~s1) is unsatisfiable2 to prove that
P can never be violated and the system is safe.
We remark that this is just the basic workflow of IC3.
Thus, we neglect details like remembering previously gen-
erated proof obligations3, pushing blocked cubes already
in DFS(), and generalizing states.
Generalization however, is very important for the effi-
ciency of IC3. Instead of enumerating complete assign-
ments to the state variables resp. individual states, IC3 op-
erates on minimal assignments resp. preferably expressive
sets of states. This is achieved by generalizing proof obli-
gations as well as blocked cubes. Generalizing blocked
cubes is done by removing literals from ĉ(~s) such that
Fi(~s0)∧¬ĉ(~s0)∧T (~s0,~s1)∧ ĉ(~s1) stays unsatisfiable4.
Regarding the generalization of proof obligations, com-
mon bit-level IC3 implementations apply lifting from [32]
here. It was first used in the IC3 context by [10]. After the
extraction of the state ĉ and its predecessor ê, it is checked
whether ê(~s0)∧T (~s0,~s1)∧¬ĉ(~s1) stays unsatisfiable while
removing literals from ê(~s0). If the transition relation be-
haves like a function (or more precisely, is left-total), there
exists a successor state for all states. Hence, the formula
remaining unsatisfiable implies that each state in ê(~s0) has
a successor in ĉ(~s1) – therefore, ê(~s0) remains a valid proof
obligation after removing literals.

2.3 iSAT3
iSAT3 is based on modern CDCL-style solvers [40].
Hence it incorporates its standard components, which are
(1) a decision heuristics, (2) Boolean Constraint Propaga-
tion (BCP) – used to deduce consequences triggered by a
current partial assignment to the Boolean variables – and
(3) a conflict analysis which derives and learns conflict
clauses from assignments unsatisfying at least one clause.
The iSAT algorithm [20, 24, 41, 28, 19] lifts this scheme to
SAT Modulo Theories (SMT). It does so by implementing

2This check exploits that it is possible to rewrite ¬Fj(~s1) to a disjunc-
tion of negated clauses. Hence, Fj(~s0)∧T (~s0,~s1)∧¬c̃(~s1) can be solved
for each negated clause to check it individually. If all these solver calls
are unsatisfiable, Fj(~s0)∧T (~s0,~s1)∧¬Fj(~s1) is unsatisfiable as well.

3This allows counterexamples with more transition steps than the cur-
rent number of frame formulas to be found.

4In IC3, F0(~s) = I(~s) and Fi(~s) =⇒ Fi+1(~s) have to be maintained.
Thus, to avoid excluding states contained in I(~s), an ungeneralization
might be required.

Interval Constraint Propagation (ICP) [1] which allows for
handling Boolean combinations of theory atoms.
Besides Boolean variables, arithmetic reasoning requires
additional variable types. iSAT3 supports bounded integer-
and real-valued variables as well as integers with a fixed bit
width [35] and floating-point variables [34].
During the search process the set of possible solu-
tions for these variable types is overapproximated with
intervals – i.e. iSAT3 dynamically introduces literals rep-
resenting the lower and upper bounds of these intervals
per variable. These literals are called simple bound liter-
als. For example, when introducing the literals l1 and ¬l2
with l1⇔ (x≥ 5) and l2⇔ (x > 7), this restricts the value
range of variable x to the interval [5,7].
Therefore, the solver core of iSAT3 still operates on lit-
erals as a CDCL-style SAT solver, but additionally keeps
a connection between simple bound literals and their the-
ory variables. Hence, clauses containing such literals ex-
clude hyper-boxes from the search space. Furthermore, the
theory atoms are decomposed using a Tseitin-like transfor-
mation of arithmetic operations. The transformation intro-
duces an auxiliary variable and assigns it to the result of
each arithmetic operation.
Deduction of the consequences for each supported op-
eration is conducted by the so called ICP-contractor.
It generates new clauses and simple bound literals by
overapproximating the behavior of an operator in interval
arithmetic. For example, for x1 ∈ [0,9], x2 ∈ [5,7],
x3 ∈ [1,3] and the primitive constraint x1 = x2 + x3 the
deduction ((x2 ≥ 5)∧ (x3 ≥ 1)) =⇒ (x1 ≥ 6) can be
performed [36]. Support for new operations is just a
matter of adding new ICP-contractors to iSAT3.

Therefore iSAT3 differs from standard CDCL-style solvers
by adding the following modifications to the basic building
blocks [36]:

1. The decision heuristics is adapted to – besides decid-
ing existing literals – perform interval splits by dy-
namically generating new simple bound literals and
deciding them. For instance, having x ∈ [0,9], iSAT3
can introduce a literal l with l ⇔ (x > 5). If iSAT3
decides ¬l, we have x ∈ [0,5].

2. ICP supplements BCP as an additional deduction
mechanism to provide currently necessary clauses and
simple bound literals. Once these are determined,
BCP is able to carry on. Furthermore, so called
bound-implication clauses are generated lazily. These
clauses encode implications between simple bound
literals belonging to the same theory variable, e.g.
(¬(x > 7)∨ (x≥ 5)).

3. Similar to CDCL-style solvers a 1UIP [43] conflict
analysis is performed by analyzing the implication
graph.

2.4 iSAT3+IC3
iSAT3 maps the interval bounds of each theory variable
to simple bound literals. Thus, it encodes the values of



the theory state variables by a set of literals. This enables
iSAT3 to perform literal-based IC3 in the same manner as
described in Section 2.2.
Therefore iSAT3+IC3 [36] effectively incorporates known
aspects of IC3 from SAT-based bit-level model checking
with new elements which adapt IC3 to interval arithmetic
and ICP.

2.4.1 Literal Rotation and Literal Dropping
For the generalization of blocked cubes we
consider the following unsatisfiable formula:
Fi(~s0)∧¬ĉ(~s0)∧T (~s0,~s1)∧ ĉ(~s1). The inclusion of
¬ĉ(~s0) in the formula can be interpreted as bounded
inductive reasoning [16] which even allows non-monotone
reductions. This means that if a solver call with a cube
ĉ having n literals is satisfiable, it might become un-
satisfiable again with n− 1 literals (see Section 3.1 for
further discussion). The original iSAT3+IC3 leaves ¬ĉ(~s0)
unchanged performing only monotone reductions [36].
Bit-level approaches like [16, 38] exploit the fact that their
underlying SAT-solver provides them with a so called final
conflict clause resp. some kind of unsatisfiable core under
the assumption ĉ(~s1). However, this core is only minimal
wrt. the order by which the assumption literals from ĉ(~s1)
are assigned before applying BCP.
In [16] for instance, the SAT solver MiniSat [17] is
used which assigns all assumption literals before applying
BCP. In contrast, iSAT3+IC3 performs so-called pseudo-
decisions for each unassigned assumptions literal individ-
ually executing BCP after each such decision. Thus, it
might happen that MiniSat is not able to detect as many
redundant literals as the pseudo-decision based approach
of iSAT3+IC3.
We revisit the motivational example from [36]. We con-
sider the list of assumption literals (l1, l2) and the following
formula (with clause numbers in superscripts):

(¬l1∨ l3)(1)∧ (¬l1∨ l4)(2)∧ (¬l1∨ l5)(3)∧ (¬l5∨¬l6)(4)

∧(¬l2∨ l6)(5)∧ (¬l3∨¬l4∨ l6)(6)

We first consider the case that l1 and l2 are assigned to-
gether. Thus, the clauses (1), (2), (3) and (5) become unit.
Using BCP, the literals l3, l4, l5 and l6 are deduced lead-
ing to a conflict in clause (4). Analyzing the implication
graph would reveal l1 and l2 to be responsible for the con-
flict while in fact l2 is redundant. However, if only l1 is
assigned and BCP is applied directly afterwards, clause (6)
is involved to provoke a conflict in (4) which reveals l2 to
be redundant using pseudo-decisions. But the success of
this approach depends on the order of the assumption liter-
als. When using the order (l2, l1) it again seems that l2 is
essential for the conflict. Thus, to exploit this advantage,
iSAT3+IC3 rotates the (initially pseudo-randomly shuf-
fled) order of the assumption literals and performs multiple
checks.
We present the details of literal rotation regarding an
unsatisfiable formula G – with G = Fi(~s0) ∧ ¬ĉ(~s0) ∧
T (~s0,~s1)∧ ĉ(~s1) and ĉ(~s1) as the initial assumption liter-
als – using the algorithm introduced in [36]:

1. k := 0

2. G was already solved and is known to be unsatisfiable
under the assumption literals (l1, . . . , ln). Thus, there
exists an unsatisfied li being assigned by BCP, i.e. the
pseudo-decision of li failed.

3. As there might be more than one unsatisfied assump-
tion literal, consider the decision levels of these unsat-
isfied literals and select a literal l j which was assigned
on the lowest decision level.

4. Traverse the implication graph backwards to deter-
mine all pseudo-decisions (l′1, . . . , l

′
m) which are re-

sponsible for l j being unsatisfied (this is similar to
determining the final conflict-clause).

5. Use (l j, l′1, . . . , l
′
m) as new list of assumption literals.

6. k := k+1, if k < m+1: solve G, goto 2.

7. Return (l j, l′1, . . . , l
′
m)

Determining whether formula G is unsatisfiable (first
solver call) might be quite expensive. In contrast, the fol-
lowing solver calls performed during literal rotation are
much cheaper in general because no regular decisions but
only up to m+ 1 pseudo-decisions are performed in each
iteration [36].
Literal rotation does not necessarily find a minimum num-
ber of required assumption literals. Firstly, it leaves ¬ĉ(~s0)
untouched (see Section 3.1 for further explanations) and
secondly there might remain constellations which require
literal dropping in order to gain further knowledge to detect
an assumption literal as redundant [36].
Literal dropping – in opposition to literal rotation – means
that we remove a literal l from cube ĉ(~s) in the assumptions
and check whether the solver call is still unsatisfiable. If
this is the case, we remove the literal, if not, we keep it and
undo its removal. We remark, that the original iSAT3+IC3
implementation always operates on the same formula, i.e.
during literal dropping, it only alters the assumptions with
cube ĉ(~s) and not its clause ¬ĉ(~s).

2.4.2 Literal Rotation with Bound Generalization
While the techniques from above also apply to the Boolean
case, iSAT3+IC3 is still theory-aware and is able to com-
plement bit-level generalization techniques by so called
Bound Generalization [36]. If it is not possible to simply
remove a simple bound literal l from a cube ĉ, iSAT3+IC3
tries to replace l by a simple bound literal l′ which repre-
sents a weaker bound, e.g. replacing (x≤ 5) with (x≤ 9).
In this case, the number of assumption literals does not
change. Nevertheless, the hyper-box represented by the
cube of assumption literals was still enlarged by bound
generalization.
iSAT3+IC3 integrates bound generalization into literal ro-
tation as the rotation offers the chance to generalize ev-
ery essential simple bound literal. When an unsatisfied as-
sumption literal l j is considered and it happens to be a sim-
ple bound literal, it is checked if l j was assigned because
of a bound-implication clause (cf. Section 2.3). If this is
the case and (b∨¬l j) is such a clause, then b represents
a weaker upper (lower) bound than l j due to the nature



of bound implications. The assumption literals (l′1, . . . , l
′
m)

imply ¬b which is why the assumption literal l j can be re-
placed with b, the weakest possible bound still causing a
conflicting pseudo-decision.

2.4.3 Ungeneralizing Blocked Cubes
Because of F0(~s) = I(~s) and Fi(~s) =⇒ Fi+1(~s) it is not
allowed to strengthen an Fi with a blocked cube which ex-
cludes an initial state.
iSAT3+IC3 does not prevent generalization which ex-
cludes initial states5 beforehand, but much rather
„repairs“ generalized cubes which intersect with the initial
states.
If ĉ(~s) is the original blocked cube and ĉ′(~s) the gener-
alized version of it, then by construction ĉ(~s) never con-
tains an initial state. Therefore, I(~s)∧ ĉ(~s) is always unsat-
isfiable. By applying the generalization techniques from
above, iSAT3+IC3 extracts a minimal set of literals from
ĉ(~s) which are responsible for making it disjoint from I(~s),
appends them to ĉ′(~s) and therefore ungeneralizes it just as
much such that it doesn’t violate initiation anymore.

2.4.4 Generalizing Blocked Cubes
Here, we refine step 1c) of procedure DFS from Sec-
tion 2.2. The iSAT3+IC3 approach applies the following
algorithm, when attempting to generalize a blocked cube ĉ
for which Fi(~s0)∧¬ĉ(~s0)∧T (~s0,~s1)∧ ĉ(~s1) has been unsat-
isfiable beforehand. The procedure tries to propagate ĉ into
the highest frame (with the maximum index) in which it
still can be proven unreachable. After each UNSAT call to
the solver, we call ANALYZE to extract a minimal conflict-
ing set of ĉ(~s1) literals by using literal rotation with bound
generalization (see Section 2.4.2). Optionally, iSAT3+IC3
is able to do further literal dropping (without inductive gen-
eralization).
Furthermore, ĉ(~s1) = l1∧ . . .∧ ln and we assume that cube
ĉ(~s1) is passed by assumptions to the iSAT3 solver core:

Procedure GENERALIZE(ĉ, i):

1. ĉold(~s) = ĉ(~s)

2. While (Fi(~s0)∧¬ĉold(~s0)∧ T (~s0,~s1)∧ ĉ(~s1) UNSAT
and i smaller than the number of frames)

(a) ANALYZE(ĉ);

(b) If (performLiteralDropping)
For each literal l in ĉ(~s1):

ĉ′(~s1) := ĉ(~s1)\{l};
If (Fi(~s0)∧¬ĉold(~s0)∧T (~s0,~s1)∧ ĉ′(~s1)) is
UNSAT):

ĉ(~s) := ĉ′(~s);

(c) i := i+1;

Procedure ANALYZE(ĉ (reference)):

1. Rotate and minimize assumption literals ĉ iteratively
according to Section 2.4.1 wrt. an unsatisfied assump-
tion literal l j on the lowest decision level;

5For all blocked cubes ĉ(~s) it has to hold that I(~s) =⇒ ¬ĉ(~s).

2. If (l j is a simple bound literal): Replace l j by the
weakest bound b which still causes a conflicting
pseudo-decision (see Section 2.4.2);

3. If (ĉ∧ I): Ungeneralize ĉ according to Section 2.4.3;

We remark, that cube ĉ is passed to ANALYZE by refer-
ence. The Boolean flag performLiteralDropping indicates
whether literal dropping is used.

2.4.5 Generalizing Proof Obligations with GeNTR
Since iSAT3+IC3 operates on general transition relations
and not exclusively on functions, it is not possible to use
a lifting call ê(~s0)∧T (~s0,~s1)∧¬ĉ(~s1) to generalize proof
obligation cube ê(~s0). Therefore, iSAT3+IC3 uses Gener-
alization with a Negated Transition Relation (GeNTR).
It is obvious that, if a satisfying assignment for a for-
mula G is conjoined to ¬G, the resulting formula is un-
satisfiable. Therefore, since ê(~s0) ∧ ĉ(~s1) is a satisfy-
ing assignment for ê(~s0)∧T (~s0,~s1)∧ ĉ(~s1), the formula
ê(~s0)∧¬T (~s0,~s1)∧ ĉ(~s1) is unsatisfied.
Via literal rotation iSAT3+IC3 extracts from ê(~s0) a re-
duced proof obligation cube based on this unsatisfiable
call.

2.4.6 A Symbiosis of k-Induction and IC3
Another specialty of iSAT3+IC3 is an extension built to
counteract state enumeration in the strengthening phase of
IC3.
iSAT3+IC3 uses a dynamic suffix length, which means that
if the IC3 algorithm gets „stuck“ while enumerating states,
iSAT3+IC3 employs a target enlargement and searches bad
states with more than just a single unrolling of the transi-
tion relation [36].
iSAT3+IC3 decides the suffix length based on a heuristic
approach. If too many proof obligations are encountered
without any progress, i.e. the number of open time frames
remains at some value k, iSAT3+IC3 aborts, starts over
from scratch, and searches bad states with an unrolling of
k instances of the transition relation.

3 iSAT3+IC3 with Stronger Gener-
alization

As stated in Section 2.2 the generalization of clauses
resp. blocked cubes in IC3 is of utmost importance. The
approach of iSAT3+IC3 maps interval bounds of non-
Boolean theory variables to simple bound literals and
therefore iSAT3+IC3 can use all generalization techniques
which apply to the original bit-level IC3 algorithm [5].
However, iSAT3+IC3 is still theory-aware and is able
to complement bit-level generalization techniques by so
called Bound Generalization (see Section 2.4.2).
In [36] common and well-tried bit-level generalization
techniques for IC3 have not been implemented yet. In
the following we briefly describe the most successful tech-
niques being Inductive Generalization [16, 5] which can
be further extended by the Down() algorithm [6] as well as
the notion of Counterexamples To Generalization (CTG).



We extend iSAT3+IC3 by integrating these into its exist-
ing generalization procedure for blocked cubes (see Sec-
tion 2.4.4).

3.1 Inductive Generalization
As discussed in Section 2.2 IC3 tries to prove that the
clause ¬ĉ(~s) is inductive relative to some Fi by calling the
solver with

Fi(~s0)∧¬ĉ(~s0)∧T (~s0,~s1)∧ ĉ(~s1) (1)

The term inductive relative to Fi means, that ¬ĉ(~s0) ∧
Fi(~s0)∧T (~s0,~s1) =⇒ ¬ĉ(~s1) which is exactly the case if
the Formula 1 is unsatisfiable. Note that for inductiveness,
F0 =⇒ ¬ĉ has to hold. However, it holds by construc-
tion and has to be respected when generalizing ĉ further.
F0 =⇒ Fi is an invariant of IC3.
For the correctness of IC3 it is sufficient to just call

Fi(~s0)∧T (~s0,~s1)∧ ĉ(~s1) (2)

because if there is no transition from Fi to ĉ(~s1) there is also
none from Fi∧¬ĉ(~s0). Confining Fi to just the¬ĉ(~s0) states
though has the advantage, that the query from Formula 1 is
more likely to be UNSAT than Formula 2.
More importantly if we drop literals from cube ĉ(~s) and
therefore make it weaker, the clause ¬ĉ(~s) gets stronger.
If the call remains UNSAT, the literal can be removed and
the cube is generalized. The formula has non-monotone
behavior in terms of UNSAT resp. SAT results of the
solver. If Formula 1 is SAT, it is not necessarily true that
it will remain SAT if we remove further literals. However,
¬ĉ(~s)∧Fi(~s) will always remain stronger than just Fi(~s).
Thus, we can conclude that it is beneficial to use Formula
1 when generalizing ĉ(~s).

3.1.1 Inductive Generalization with Literal Dropping
Of course if inductive generalization is combined with iter-
ative literal dropping (as we do here), the resulting cube is
not necessarily minimum but only minimal wrt. to the cho-
sen literal order. Literal dropping means that we remove a
literal l from cube ĉ(~s1), i.e. ĉ′(~s1) = ĉ(~s1) \ {l}, and call
the solver on

Fi(~s0)∧¬ĉ′(~s0)∧T (~s0,~s1)∧ ĉ′(~s1) (3)

We remark that we also remove the literal from the clause,
meaning that – in opposition to prior literal dropping in
iSAT3+IC3 – we use ¬ĉ′(~s0) instead of ¬ĉ(~s0) as in Sec-
tion 2.4.4. If the solver call is still unsatisfiable, we are
allowed to remove l, if not, we have to undo its removal.
Furthermore, when we also remove literals from the clause
¬ĉ(~s), there are exponentially many possible literal orders,
because due to the aforementioned non-monotonicity, we
may probe subsets of literals of ĉ(~s) in a row in order to
turn SAT results to UNSAT.
It is easy to see, that the properties from above directly
apply to the idea of Bound Generalization, i.e. replacing
simple bound literals by one of their weaker counterparts.

3.1.2 The Down() Algorithm
The authors of [6] propose an extension to standard lit-
eral dropping which is called Down(). As in standard lit-
eral dropping from Section 3.1.1, the Down() algorithm
removes a literal ĉ′(~s1) = ĉ(~s1) \ {l} and checks for pre-
decessors by solving Formula 3. However, if the result is
satisfiable, it does not just conclude that we can not re-
move the literal and moves on, but much rather extracts a
satisfying assignment d̂(~s0) from Formula 3 and applies
ĉ′(~s1) = ĉ′(~s1) t d̂(~s1). The t-operator computes a so
called join which is an overapproximation of the union by
leaving only the literals in ĉ(~s1) which also occur in d̂(~s1).
Again Formula 3 is solved until the result is unsatisfiable
or the result of the join intersects with the initial states. In
the unsatisfiable case, the joined cube ĉ′(~s1) is unreachable
from Fi(~s0)∧¬ĉ′(~s0) and we can proceed with literal drop-
ping. In the case that ĉ′(~s) intersects with the initial states,
we discard ĉ′(~s) and proceed with the removal of another
literal from ĉ(~s).
Thus, the Down() algorithm aggressively tries to make a
non-inductive clause inductive. It does so by excluding
at least one reason (here d̂(~s)) for non-inductiveness from
the clause ¬ĉ′(~s) resp. including it into the reachable cube
ĉ′(~s). When we check for inductiveness again, we may
succeed or eventually have increased ĉ′(~s) too much, such
that it intersects with the initial states – in this case, our at-
tempt failed and we have to roll back. An algorithmic and
more detailed description of the approach is presented in
Section 3.4.
We remark, that joining, i.e. creating an overapproxima-
tion of the union of ĉ(~s) and d̂(~s) within bit-level IC3 is
done by taking all common literals. Interval arithmetic
complicates things here a bit: To „join“ we take all com-
mon literals. However, to achieve a preferably precise
theory-aware approximation, we consider the theory vari-
ables as well. For all theory variables for which both cubes
share simple bound literals with the same polarity, we al-
ways take the weaker bound. We remark that for sim-
ple bounds it is determined by the polarity of the literal
whether we have an upper bound or a lower bound. Thus,
if both cubes contain an upper bound for variable x, we take
the weaker upper bound and vice versa for lower bounds.

3.2 Counterexamples To Generalization
(CTG)

A major insight from [23] was to put even more ef-
fort into the generalization of learned clauses (blocked
cubes). We again consider the solver call with formula
Fi(~s0)∧¬ĉ(~s0)∧ T (~s0,~s1)∧ ĉ(~s1) which resolves to UN-
SAT iff. cube ĉ(~s1) is unreachable from Fi(~s0)∧¬ĉ(~s0)
within one step.
As before, we assume that we have arrived at a cube ĉ′(~s1)
by removing literal l from ĉ(~s1), i.e. ĉ′(~s1) = ĉ(~s1) \
{l}. We further assume that now ĉ′(~s1) is reachable from
Fi(~s0)∧¬ĉ′(~s0), i.e. Formula 3 is SAT. This means, that
either the overapproximation Fi(~s) is to weak to prove that
ĉ′(~s) is unreachable in up to i+ 1 steps or that it really is
reachable from the initial states.
[23] test whether the former is the case by applying the



following algorithm which builds on the Down() algo-
rithm described in Section 3.1.2. We extract the Fi(~s0)-
predecessor, and thus the CTG, of ĉ′(~s1) from the solver
and call it d̂(~s). We try to block d̂(~s) from the state space
by calling Fi−1(~s0)∧¬d̂(~s0)∧T (~s0,~s1)∧ d̂(~s1). If this suc-
ceeds, Formula 3 is checked again and so on, until all CTGs
are ruled out – then we stop and cube ĉ′(~s) may be blocked.
If not, similar to Down(), we enlarge ĉ′(~s) by joining (con-
vex overapproximation of the union) ĉ′(~s) with its CTG
d̂(~s) and check Formula 3 again. As in Down() we stop
and roll back, if the joined cube ĉ′(~s) intersects with the
initial states. An algorithmic and more detailed description
of the approach is presented in Section 3.4.
It is also possible to skip the join after a CTG has been
discovered and has not been proven unreachable. We can
either conclude that l can not be removed from ĉ(~s) or try
to recursively block the CTG in the depth first search (DFS,
see Section 2.2) manner of the standard IC3 algorithm.

Generalizing CTGs
All CTG cubes d̂(~s) result from a satisfying assignment of
a formula Fi(~s0)∧¬ĉ′(~s0)∧T (~s0,~s1)∧ ĉ′(~s1). Thus gener-
alizing CTGs can be done with the same methods as gener-
alizing proof obligations, specifically it is possible to apply
GeNTR (see Section 2.4.5). There is a subtle difference
though: Assuming cube d̂(~s) were a proof obligation, it
is most crucial to preserve that for every d̂(~s)-state there
is a sequence which leads the system into an unsafe ¬P(~s)
state. Otherwise, we could encounter a spurious counterex-
ample. However, since T does not necessarily represent a
function, we cannot apply Lifting [32, 10] to proof obliga-
tions but have to stick to less aggressive GeNTR.
For CTGs though, it is not as important to only include
states into d̂(~s) which really are predecessors of ĉ′(~s).
Having a non-predecessor state in d̂(~s) can only result
in wrongfully disallowing the removal of a literal l from
cube6 ĉ(~s). This means that we still overapproximate the
reachable states and do not violate any IC3 invariant. Also,
joins could lead to larger state sets which are however inde-
pendently checked for reachability from Fi afterwards and
their respective clause is only learned if this check suc-
ceeds.
Hence, for generalization of CTGs we are allowed to use
(more aggressive) Lifting as well as (predecessor-relation
preserving) GeNTR. In Section 4 we compare both ver-
sions.

3.3 Including Bound Generalization
As discussed in Section 2.4.2, iSAT3+IC3 is able to re-
lax interval bounds if it is not able to remove an entire
literal. This technique goes hand in hand with the bit-
level generalization techniques from above. At any place,
where we remove a literal and check for inductiveness, it is
also sound to replace a simple bound literal with a weaker
bound.
Furthermore, bound generalization also integrates with
literal rotation and can therefore be applied during the

6We recall that ĉ′(~s) = ĉ(~s)\{l}.

search for a minimal unsatisfiable core after an unsatisfi-
able solver call.

3.4 Overall Approach
Here we present our overall approach which integrates
all techniques from above to generalize an unreachable
blocked cube ĉ(~s) in time frame i+1.
We call GENERALIZE to generalize a cube ĉ for which
Fi(~s0) ∧ ¬ĉ(~s0) ∧ T (~s0,~s1) ∧ ĉ(~s1) has been unsatisfiable
(UNSAT) beforehand. The procedure tries to propagate ĉ
into the highest frame (with the maximum index) in which
it still can be proven unreachable. After each UNSAT call
to the solver, we call ANALYZE (which remains the same
as in Section 2.4.4 to extract a minimal conflicting set of ĉ
literals by using literal rotation and optionally bound gen-
eralization). After we found the highest frame and ex-
tracted the minimal conflicting set of ĉ literals, we further
generalize ĉ in the literal dropping loop 2. After dropping
a literal l, it is possible to just check for reachability of
the reduced cube or to additionally apply Down() or even
a CTG analysis if the check states that ĉ\{l} is reachable.
All of this can be controlled via flags inside of the CTG
procedure.
Furthermore, ĉ(s1) = l1∧ . . .∧ ln and we assume that cube
ĉ(~s1) is passed by assumptions to iSAT3:

Procedure
GENERALIZE(ĉ, i, recDepth)

1. While (Fi(~s0)∧¬ĉ(~s0)∧T (~s0,~s1)∧ ĉ(~s1) UNSAT and
i smaller than the number of frames)

ANALYZE(ĉ);

i := i+1;

2. For each literal l in ĉ:

(a) ĉ′ := ĉ\{l};
If (CTG(i−1, ĉ′, recDepth)):

ANALYZE(ĉ′);
ĉ := ĉ′;

Procedure
ANALYZE(ĉ (reference))

1. Rotate and minimize assumption literals ĉ iteratively
according to Section 2.4.1 wrt. an unsatisfied assump-
tion literal l j on the lowest decision level;

2. If (l j is a simple bound literal): Replace l j by the
weakest bound b which still causes a conflicting
pseudo-decision (see Section 2.4.2);

3. If (ĉ∧ I): Ungeneralize ĉ according to Section 2.4.3;

Procedure
CTG(i, ĉ (reference), recDepth) : bool

1. ctgs := 0;

2. if (ĉ(~s)∧ I(~s)): return FALSE;



3. Call the solver on Fi(~s0)∧¬ĉ(~s0)∧T (~s0,~s1)∧ ĉ′(~s1);

Case SAT:

(a) Extract a Fi(~s)-predecessor cube d̂(~s);

(b) if (recDepth > maxRecDepth): return FALSE;

(c) check for a Fi−1(~s)-predecessor of d̂(~s);

if (there is a Fi−1(~s)-predecessor of d̂(~s) or
(d̂(~s)∧ I(~s)) or (ctgs > maxCTGs) or only-
Down):

ctgs := 0;
Join ĉ(~s) = ĉ(~s)t d̂(~s) and go to 2.;

else:
ctgs := ctgs + 1;
GENERALIZE(d̂, i - 1, recDepth + 1),
learn new clause d̂ and go to 2.;

Case UNSAT:

(a) return TRUE;

After every unsatisfiable solver call during inductive gen-
eralization, we always analyze the conflict for further gen-
eralization potential using literal rotation and bound gen-
eralization. For simplicity of the presentation we do not
explicitly state but assume that every extracted predeces-
sor state for Down() or CTG is generalized via GeNTR (see
Section 2.4.5) or Lifting (see Section 3.2) depending on the
configuration.
The global parameters onlyDown, maxRecDepth, as well
as maxCTGs allow us to individually control the different
modules. Hereby, the Boolean variable onlyDown decides
whether only the Down() algorithm is used or it is comple-
mented by CTG analysis. The counters maxRecDepth and
maxCTGs control the recursion depth during CTG analysis
resp. the number of CTGs that we are allowed to enumer-
ate and to discharge.
The algorithm differs from the prior approach in
iSAT3+IC3 (see Section 2.4.4) by the fact, that literal drop-
ping is done only after the highest frame in which the cube
can be proven unreachable has been identified (see step 1.
of generalize). Thus, it is not done after each propagation
of ĉ to a higher frame.
It also incorporates inductive generalization, i.e. for check-
ing whether cube ĉ can be generalized to cube ĉ′′ in frame
i+1 we always check Fi(~s0)∧¬ĉ′′(~s0)∧T (~s0,~s1)∧ ĉ′′(~s1)
instead of Fi(~s0) ∧ ¬ĉ(~s0) ∧ T (~s0,~s1) ∧ ĉ′′(~s1) as in Sec-
tion 2.4.4. Furthermore, we additionally implemented
Down() and CTG analysis for even stronger generaliza-
tion.

4 Experimental Results

For our experiments we use the same benchmarks
as [34], [36] and [30]. The benchmark set contains 8778
instances originating from TargetLink-generated produc-
tion C code from the automotive domain containing a fair
amount of floating-point arithmetic. Each benchmark de-
scribes a goal defined by a structural code coverage metric

(e.g. MC/DC) which correlates to the reachability of a cer-
tain line of code. Thus, unreachable goals correspond to
dead code.
The experiments of iSAT3 were performed on a
cluster – with each cluster node having 64 GB RAM and
two 8-core CPUs @2.6 GHz. We applied a time limit of
300 seconds and a memory limit of 4 GB per benchmark.
The results for the EP-CBMC7 experiments were achieved
on a a similar CPU type (also @2.6 GHz) using the same
limits.

Configuration. To evaluate the effectiveness of the newly
integrated generalization methods into iSAT3+IC3, we per-
formed many experiments (de-)activating and combining
the different available generalization schemes. As using lit-
eral rotation, bound generalization and GeNTR has proven
to be effective [36], we activate them in the baseline config-
uration of iSAT3+IC3. Furthermore, to avoid blowing up
the parameter space, we fix the following parameter val-
ues (see Section 3.4) based on [23]: maxRecDepth = 1 and
maxCTGs = 3 when CTG analysis is activated, otherwise
maxRecDepth = 0.
In addition to iSAT3 using BMC, k-induction and
Craig Interpolation (CI), we provide different settings of
iSAT3+IC3: indi8 corresponds to initial suffix length of i
(see Section 2.4.6), +abort performs restarts with longer
suffixes which is also discussed in Section 2.4.6, +ld per-
forms literal dropping in GeNTR, during ungeneralization
of initial cubes (see Section 2.4.3), and in each propaga-
tion step during generalization of a blocked cube (as in
Section 2.4.4), +ldonce performs literal dropping only once
after the propagation of a blocked cube is finished (as in
Section 3) and not in GeNTR or ungeneralization, the op-
tion +ig activates inductive generalization (as described in
Section 3.1) with basic literal dropping from Section 3.1.1,
+j applies the Down() algorithm from Section 3.1.2, +ctg
applies CTG analysis from Section 3.2, and finally, +lf re-
places GeNTR by Lifting for generalizing CTGs as dis-
cussed in Section 3.2. Additionally, we evaluated EP-
CBMC, which bases on CBMC and uses the EP tool chain
to perform an additional k-Induction check [31].

Presentation. The results for iSAT3 for all different con-
figurations can be found in Table 1. Column 2 and 3 show
the number of detected counterexamples (CEX) and un-
reachable goals (i.e. dead code (DC)), resp., while column
4 contains the number of unresolved instances within the
applied time or memory limit (T/M). The following col-
umn displays the number of uniquely detected dead code.
By unique, we address results which have been found by
neither a portfolio (PF) consisting of the first four solvers,
namely EP-CBMC and iSAT3 using BMC, k-Induction or
Craig Interpolation (we call this portfolio PF1) nor the
(currently) best model checker portfolio from [36] consist-
ing of all solvers from PF1 and iSAT3+IC31 (ind2 +abort)
(PF2).

7based on CBMC version 5.12.4 [14]
8We decided to perform experiments for i = 0 and i = 2 as the former

is the standard IC3 algorithm and the latter has proven to be the best suffix
configuration in [36].



uniq. DC ∅time ratio ∅red. rate ∅impr.
CEX DC T/M PF1 / PF2 addGen litDrop boundGen

iSAT3 BMC 7671 - 1107 - - - -
iSAT3 k-Induction 7620 614 544 - - - -
EP-CBMC k-Induction 7644 628 506 - - - -
iSAT3 Craig Interpolation 7653 977 148 - - - -
iSAT3+IC31 (ind2 +abort) 7533 997 248 23 / 0 - 0.92 0.05
iSAT3+IC32 (ind0 +abort +ig) 7264 1002 512 28 / 8 0.12 0.87 0.05

PF1 [Portfolio 1 (w/o iSAT3+IC3i)] 7672 995 111 - - - -
PF2 [PF1 ∪ iSAT+IC31] 7672 1018 88 - - - -
PF3 [PF1 ∪ iSAT+IC32] 7672 1023 83 - - - -
PF4 [PF2 ∪ iSAT+IC32] 7672 1026 80 - - - -
iSAT3+IC3 ind0 6977 973 828 14 / 2 - 0.87 0.04
iSAT3+IC3 ind0 +ld 6803 924 1051 19 / 6 - 0.87 0.03
iSAT3+IC3 ind0 +ldonce 7034 996 748 26 / 7 0.12 0.87 0.03
iSAT3+IC3 ind0 +ig 7090 1002 686 27 / 7 0.12 0.87 0.05
iSAT3+IC3 ind0 +ig +j 6918 983 877 16 / 4 0.18 0.87 0.05
iSAT3+IC3 ind0 +ig +ctg 6997 984 797 21 / 2 0.24 0.87 0.05
iSAT3+IC3 ind0 +ig +ctg +lf 7126 987 665 20 / 3 0.23 0.88 0.05
iSAT3+IC3 ind0 +ig +ctg +j 6996 983 799 21 / 2 0.24 0.87 0.05
iSAT3+IC3 ind0 +ig +ctg +j +lf 7125 987 666 20 / 3 0.23 0.88 0.05

iSAT3+IC3 ind0 +abort 7407 995 376 25 / 3 - 0.87 0.04
iSAT3+IC3 ind0 +abort +ig 7264 1002 512 28 / 8 0.12 0.87 0.05
iSAT3+IC3 ind0 +abort +ig +ctg + lf 7144 986 648 20 / 3 0.24 0.88 0.05

iSAT3+IC3 ind2 7480 991 307 19 / 1 - 0.92 0.05
iSAT3+IC3 ind2 +ig 7508 993 277 22 / 3 0.12 0.92 0.05
iSAT3+IC3 ind2 +ig +ctg + lf 7514 995 269 22 / 4 0.18 0.93 0.05

iSAT3+IC3 ind2 +abort 7533 997 248 23 / 0 - 0.92 0.05
iSAT3+IC3 ind2 +abort +ig 7549 996 233 22 / 3 0.12 0.92 0.05
iSAT3+IC3 ind2 +abort +ig +ctg + lf 7533 995 250 22 / 4 0.18 0.93 0.05

Table 1 Experimental results over 8778 benchmark instances (time limit 300s, memory limit 4 GB per instance)

The last three columns relate to the performance of the ad-
ditional generalization (addGen) techniques. Firstly, we
present the average time ratio which was consumed by
all activated additional generalization techniques (+ig, +j,
+ctg) followed by the average reduction rate wrt. the re-
moved literals (litDrop) achieved by the complete gener-
alization effort and the average fraction of simple bound
literals which could be relaxed via bound generalization
(boundGen).
We compute the average by taking all (not „trivially“)
solved instances of one variant. Trivially solved instances
may occur e.g. due to the initial BMC calls (with more
than a single unrolling of the transition relation) of IC3,
which may be quite a lot if the suffix has been prolonged –
in these cases no cubes are blocked and no generalization
takes place. We remark, that for ind2 and all +abort set-
tings, the number of trivially solved instances increases due
to significantly more and also more complex BMC calls.
Thus, these variants are able to solve benchmarks where
other variants get stuck which is often the case if the bench-
mark does not allow for strong generalization of cubes. As
a result, we can observe better average reduction rates for
ind2 configurations.

Discussion
We start our analysis in the second part of Table 1. Going
through the results step by step, we observe that perform-
ing literal dropping during cube propagation, GeNTR and
ungeneralization (setting +ld) as in Section 2.4.4 is infe-
rior – in terms of counterexamples as well as dead code
– to doing it only once after the propagation effort (setting
+ldonce). Furthermore, if we apply literal dropping with in-
ductive generalization (+ig) we can improve these results
even more (namely by 62 more solved instances). Appar-
ently the best configuration found in [36] – iSAT3+IC3
ind0 (generalization of blocked cubes only via literal ro-
tation with bound generalization) – for standard IC3 (no
suffix, no restarts) has a lot of potential for improvement
when applying a more efficient literal dropping with in-
ductive generalization.
Interestingly, the methods for further generalization (+j,
+ctg) of blocked cubes which achieve very strong results
on bit-level seem to be less capable in finding dead code.
However, in terms of solved instances in total (163 more
than stand-alone iSAT3+IC3 ind0), the best configuration
for iSAT3+IC3 ind0 applies inductive generalization (+ig)
and CTG analysis (+ctg) and it does not make much of a
difference whether or not we apply joins from Down() in
addition (+j). However, in this configuration it is necessary



to generalize CTGs more aggressively using Lifting (+lf )
instead of GeNTR to achieve best results.
For further experiments incorporating the symbiosis of
IC3 and k-Induction from Section 2.4.6 [36], we stick
to the best two configurations of standard iSAT3+IC3:
iSAT3+IC3 ind0 +ig regarding dead code detection (1002)
and iSAT3+IC3 ind0 +ig +ctg +lf regarding counterex-
amples (7126) and also overall solved instances. When
considering these configurations using longer suffixes and
aborts, the results paint a slightly different picture.
We start by focusing on the +abort configuration of
iSAT3+IC3 ind0. Again, it is beneficial to apply literal
dropping with inductive generalization (+ig) but only for
detecting dead code. Here, with 1002 detected instances
of dead code, we achieve the best result over all configura-
tions. iSAT3+IC3 ind0 +ig (without +abort) is also able to
find 1002 instances of dead code but the number of found
counterexamples benefits from aborting. On the other
hand, using plain iSAT3+IC3 ind0 +abort detects even
more counterexamples. When we look at +ig +ctg +lf
(which we found best for iSAT3+IC3 ind0) the results are
inferior to the other two +abort configurations. However
for iSAT3+IC3 ind2 without +abort, +ig +ctg +lf is again
the best configuration solving 38 more instances in total
than plain iSAT3+IC3 ind2.
The iSAT3+IC3 ind2 +abort configuration is a really close
call. Having the best overall result using inductive gener-
alization (+ig), the most dead code (by one) is still found
using the standard configuration.
Our results indicate, that the impact of more sophisti-
cated cube generalization techniques decreases the more
IC3 shifts from local reasoning to global reasoning with
more complex solver calls for searching ¬P predecessors
with longer suffixes, i.e. longer unrollings of T . This does
not necessarily come as a surprise, since this may result in
less local IC3-like cube blocking.

Additional Effort for Generalization. Applying additional
generalization techniques consumes additional time. With
12%, simple literal dropping with (also without) inductive
generalization (+ig) seems to be the cheapest of them. Us-
ing Down() (+j) in addition consumes 6% more of the run-
time while the most expensive technique is the CTG anal-
ysis (+ctg) with up to 24% consumption.

Reduction Rates. Throughout the configurations we ob-
serve very similar reduction and bound generalization
rates. It seems that the differences are not too significant
and exceed the expressiveness of an average value. Never-
theless, the number of solved instances indicate the benefit
of using (most of) the additional generalization techniques.
This is an interesting issue which should be investigated
further.
Another interesting result is, that – for most configurations
– bound generalization is able to relax approximately 5%
of the simple bound literals of a blocked cube on average.
This is a significant amount, when considering that it is
only applied to complement literal removal.

Portfolio Approach. In [36], we not only had a look at

the results of different iSAT3+IC3 configurations but also
used the best configuration to complement and improve a
portfolio of the existing four solvers. We want to achieve
the same here and thus consider the (until now) neglected
column 5 (uniquely solved dead code instances) as well
as the upper part of Table 1. PF1 is the portfolio of the
four existing solvers which was complemented and im-
proved by 23 solved DC instances by adding iSAT3+IC31
(ind2 +abort). This led to PF2 in [36]. Looking at the
left part of column 5 reveals that using additional gen-
eralization techniques lead to even more uniquely solved
DC instances compared to PF1 for some configurations.
We selected iSAT3+IC3 ind0 +abort +ig with 28 instances
as the best iSAT3+IC3 configuration for detecting dead
code (iSAT3+IC32). Adding iSAT3+IC32 to PF1 instead
of iSAT3+IC31 (which leads to PF3) reduces the number
of unresolved instances by additional 6% compared to PF2
(from 88 to 83) increasing the benefit of having iSAT3+IC3
in the portfolio from 21% to 25%.
Even when compared to PF2 which includes iSAT3+IC31,
the right part of column 5 shows that additional generaliza-
tion is still able to offer some improvements regarding dead
code detection. Our selected configuration iSAT3+IC32
still provides the best improvement by additional 8 solved
DC instances. Thus, adding iSAT3+IC32 to PF2 (see PF4)
reduces the number of unsolved instances even further, in-
creasing the reduction compared to PF2 to 9% and the
overall benefit to 28%.

5 Conclusion

We extended an interval abstraction and ICP based SMT-
implementation of IC3 (iSAT3+IC3) with different variants
of the most common bit-level techniques for generalizing
blocked cubes (learned clauses). We discussed the gen-
eralization of CTGs in the case of general transition rela-
tions and the applicability of more aggressive generaliza-
tion techniques than GeNTR. Furthermore, we gave an in-
tensive evaluation of their potential in the context of iSAT3.
By adding inductive generalization incorporating a more
efficient literal dropping approach, we could significantly
improve the best standard IC3 (without target enlargement)
variant from iSAT3+IC3 by reducing the number of un-
solved instances by 142 (828 to 686), including 29 more
solved dead code instances.
By bringing CTG analysis into the equation, we were able
to improve the capability of finding counterexamples in
standard IC3 significantly, although this approach was not
able to improve the amount of found dead code in compar-
ison to plain inductive generalization with literal dropping.
Generalizing CTGs more aggressively and taking the risk
of adding spurious CTGs (which does not affect the cor-
rectness) seems to pay off and is always slightly improving
the overall performance. Interestingly, we observed, that
the Down() algorithm has no significant impact on the ef-
ficiency of any of our tested iSAT3+IC3 variants. Addi-
tionally, our results indicate that iSAT3+IC3 variants with
longer suffixes (ind2 and abort versions) and therefore less
local reasoning benefit less from more sophisticated tech-



niques for blocked cube generalization than standard IC3.
Furthermore, we determined a iSAT3+IC3 configuration
– namely iSAT3+IC3 ind0 +abort, +ig – which is able to
improve the best solver portfolio from [36] even more,
both by complementing the portfolio as well as replacing
the currently used iSAT3+IC3 configuration.
It is fair to say, that results and insights from bit-level IC3
and its generalization techniques can not be directly trans-
ferred to iSAT3+IC3. We could not observe such a sig-
nificant increase in efficiency as [23, 21] did for instance
by using CTG and Down(). However, employing inductive
generalization paid off in general, definitely making its in-
tegration into iSAT3+IC3 worthwhile.
In the future we plan to integrate ReverseIC3 [39] into
iSAT3+IC3.
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