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Abstract

Using embedded systems in safety-critical environments requires a rigorous testing of the components these systems are
composed of. For example, the software running on such a system has to be evaluated regarding its code coverage – in
particular, unreachable code fragments have to be avoided according to the ISO 26262 standard. Software model checking
allows to detect such dead code automatically. While the recent case study [1] compares several academic software model
checkers with the commercial test and verification tool BTC EmbeddedPlatform R� (BTC EP), we want to focus on a lower
level – i.e. the back-end solvers within BTC EP. Therefore, we evaluate the performance of off-the-shelf SMT solvers
supporting the theory of floating-point as well as the theory of bitvectors on floating-point dominated benchmark instances
originating from the automotive domain. Furthermore, we compare these off-the-shelf SMT solvers with the back-end
solvers used by BTC EP.

1 Introduction

In safety-critical system development like in the automo-
tive and aviation industry there is the imperative for high-
quality embedded production code. This is also reflected
by several existing standards, e.g. the ISO 26262 stan-
dard [2] for the automotive domain which objects to dead
code – i.e. unreachable code fragments. A classic example
of dead code is defensive programming like catching po-
tentially non-existing null pointers. In such cases, a clear
and well comprehensible justification for the existence of
dead code is required to assure the code quality.
In order to prove the absence of dead code, the ISO 26262
recommends several code coverage metrics like statement
coverage, condition coverage, decision coverage, or modi-
fied condition/decision coverage (MC/DC) [3]. Such code
coverage metrics implement a measure to which degree the
source code was executed during the test stage by means
of test cases. If the coverage value is 100% then no dead
code is left according to the applied coverage metric. If,
however, the coverage value is below 100% then there is a
potential risk of dead code which requires a further analy-
sis.
In order to automatically detect dead code, software model
checking can be applied. One distinctive feature of the
commercial test and verification tool suite BTC Embed-
dedPlatform R�1 (BTC EP) is the fully automatic detection
of dead code [4] by employing several model checking
tools like CBMC [5, 6] and iSAT3 [7]. On account of these
model checkers, BTC EP also has a very strong support
for the automatic analysis of floating-point dominated pro-
duction code, which becomes more and more apparent in
industrial safety-critical software [8].
According to [9] there are four “schools of thought” when
it comes to SMT-based software verification: bounded
model checking, k-induction, predicate abstraction and
lazy abstraction with interpolants. In the recently pub-

1https://www.btc-es.de/en/products/btc-embeddedplatform/

lished case study [1] several academic state-of-the-art soft-
ware model checkers were evaluated and compared to BTC
EP. The considered C code was automatically generated
from two Simulink open-loop controller models provided
by Ford Motor Company. The diverse features of both
models (decision logic, floating-point arithmetic, rate lim-
iters and state-flow systems) and in particular the floating-
point dominated C code are a challenging task for software
model checkers. The authors of [1] address two questions
in their case study: (1) how do academic model checkers
perform on automotive code, and (2) how do these tools
compare to commercial tools that are tailored to such code.
This is the essence of the results: on the 179 software re-
quirements the academic model checkers were only able
to cover at most 20% while BTC EP succeeded on 80%.
Thus, there is a considerable gap between the performance
of the academic model checkers and BTC EP.
While in [1] the comparison was performed on the level of
software model checkers, we focus on a lower level – the
back-end solvers. This means, in this paper we com-
pare the two solvers CBMC and iSAT3 (being integrated
in BTC EP) with other SMT solvers supporting the the-
ory of bitvectors as well as the theory of floating-point.
It should be noted that both theories are required – as C
code with floating-point arithmetic usually contains integer
arithmetic as well. In our evaluation we consider models
being provided by BTC EP users from the industrial auto-
motive domain. The considered models are not identical
to the models of [1] but have similar characteristics. These
models are translated via TargetLink to C code which is
then passed to BTC EP in order to apply automatic test
case generation. The resulting instances are the basis of
our evaluation. In each instance the reachability of a code
fragment has to be determined. If a code fragment is reach-
able, the solver has to provide a test case. Furthermore, the
solver has to be able to prove that a code fragment is un-
reachable and is thus dead code. Hence, Bounded Model
Checking is not sufficent in this context. But the control-

Preprint from Proceedings of GI/ITG/GMM-Workshop "Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen", March 2021



flow structure in the instances allows a direct application of
k-induction – this comes due to the special characteristics
of the C code which encodes an open-loop controller. With
our evaluation we want to answer similar questions as [1]:

1. How do off-the-shelf SMT solvers perform on in-
stances originating from automotive code?

2. How do these solvers compare to the back-end solvers
used in the commercial tool BTC EP – in particular
when considering the default time limit of 60 seconds
of BTC EP?

The structure of the paper is as follows. While Section 2
introduces the considered solvers, Section 3 describes the
benchmark instances being solved by all solvers. The ex-
perimental results are evaluated in Section 4. Finally, Sec-
tion 5 concludes the paper.

2 Solvers

Before introducing the solvers, we give a brief overview
of the techniques used by the solvers – namely BMC, k-
induction and Craig Interpolation.
Informally, when perfoming model checking the system to
be verified is abstracted into a set of states and a relation
which represents allowed transitions from one state to an-
other. Thus, this transition relation restricts how the state of
the system evolves over time. Let I denote the set of initial
states of the system and let T denote the transition relation.
Usually, it is checked whether a certain set of states (de-
noted by P) is never left – or in other words: it is checked
whether it is possible to reach states outside of P, i.e. states
in ¬P.
Representing I, T and ¬P as SMT formulas allows the ap-
plication of Bounded Model Checking (BMC) [10] in order
to determine whether it is possible to reach states in ¬P.
This is achieved by solving a sequence of formulas – one
formula for each transition step 0,1, . . . ,k. The resulting
formulas are composed of instances of I, T and ¬P. The
subscript indicates in which time frame the formula is in-
stantiated.

BMC0 : I0 ∧¬P0
BMC1 : I0 ∧T0,1 ∧¬P1
BMC2 : I0 ∧T0,1 ∧T1,2 ∧¬P2

. . .

BMCk : I0 ∧
�

k−1�
i=0

Ti,i+1

�
∧¬Pk

The formulas are solved step-by-step as long as they are
unsatisfiable. If a BMCi formula becomes satisfiable, it is
proven that states contained in ¬P are reachable in i tran-
sition steps. On the other hand, if all formulas up to BMCk
are unsatisfiable, it is only proven that the states in ¬P are
unreachable in up to k transition steps – but it would be
more desirable to know that this is always the case, i.e. not
bounded by k but unbounded for all transition steps. Ob-
taining an unbounded result can be achieved by exploiting
the knowledge proven by the BMC formulas. If all for-
mulas up to BMCk−1 are unsatisfiable, it is known that the

reachable states in up to k−1 transition steps are within P.
Hence, this knowledge can be incorporated into BMCk:

BMCk : I0 ∧
�

k−1�
i=0

(Pi ∧Ti,i+1)

�
∧¬Pk

Let the suffix of BMCk be denoted by INDk:

INDk :
�

k−1�
i=0

(Pi ∧Ti,i+1)

�
∧¬Pk

Thus, if INDk is unsatisfiable, it is proven that all BMCi
with i > k will be unsatisfiable as well – as they contain
a similar suffix when neglecting variable renaming due to
different time frame instantiations. Basically, solving an
alternating sequence of BMC and IND formulas is the idea
of the k-induction approach presented in [11].
Craig Interpolation [12] is another approach in order to ob-
tain unbounded results. This approach also exploits knowl-
edge gained during the solving process of a BMC for-
mula – but in quite a different way. If a BMC formula
is unsatisfiable, the solver has internally built a proof tree.
Based on this proof tree an interpolant is created which rep-
resents an overapproximation of the reachable states. Af-
terwards, BMC-like formulas are solved – i.e.I is replaced
with an interpolant and further interpolants are created.
Additionally, it is checked whether the created interpolants
reach a fixed-point – in such a case it is proven that all
states in ¬P are unreachable. On the other hand, if a BMC-
like instance becomes satisfiable it is required to build the
according BMCi instance and solve it from scratch in order
to check whether there is indeed a solution.
While k-induction does not require special support from
the used solver, Craig Interpolation requires access to the
proof tree in order to create interpolants. Therefore, in our
evaluation most of the solvers rely on k-induction – only
iSAT3 uses Craig Interpolation.
With IC3 [13] and its extended variant PDR [14] there is
a third approach for unbounded results. Similar to Craig
Interpolation, IC3 requires solver support in order to per-
form an efficient generalization. Although IC3 is included
in a recent prototype of iSAT3 [15, 16], we do not consider
this prototype within this paper as we focus on the tech-
niques that are available in the current release version of
iSAT3 being included in BTC EP. Furthermore, we do not
consider the SMT solvers XSat [17] and goSAT [18]. Both
solvers support the theory of floating-point – but cannot
handle the theory of bitvectors. Thus, they are incapable
of solving the instances considered in this paper. Addition-
ally, both solvers are incomplete – i.e. they cannot prove
that a formula is unsatisfiable and are therefore unable to
detect dead code. We evalute the following solvers:

• Z3 [19] in version 4.8.92.

• CVC4 [20] in version 1.83.

• MathSAT5 [21] in version 5.6.54.

• Bitwuzla [22] in version 202012085. Bitwuzla is the
successor of Boolector [23].

2Taken from https://github.com/Z3Prover/z3/releases/
3Taken from https://github.com/CVC4/CVC4/releases/
4Taken from https://mathsat.fbk.eu/download.html
5Provided by the Bitwuzla authors via Email



• CBMC [5, 6] in version 5.12.46. We use CBMC
within our wrapper tool EP-CBMC which also imple-
ments k-induction.

• iSAT3 [7] in version 0.08.1-202011037.

; SMT2: Z3, CVC4, MathSAT5, Bitwuzla

(set-logic QF_BVFP)
(set-option :produce-models true)
(declare-fun x () Float64)
(declare-fun y () Float64)
(declare-fun z () Float64)
(define-fun const_1 () Float64

(fp #b0 #b01111111111 #x0000000000000))
(assert (fp.eq (fp.div RNE (fp.div RNE x y) z) const_1))
(check-sat)
(get-model)
(exit)

/* C: CBMC */

double nondet_double(void);

int main(void) {
double x = nondet_double();
double y = nondet_double();
double z = nondet_double();
int result = 0;

if ((x / y) / z == 1.0) result = 1;
__CPROVER_assert((result == 0), "result == 0");
return (0);

}

-- extended HYS: iSAT3

DECL
-- NaN is always allowed and not part of the interval
cl_double [cl_double_neginf,cl_double_posinf] x, y, z;

EXPR
define const_1 = cl_double_constant(1);
define div_1 = cl_double_div(x, y);
define div_2 = cl_double_div(div_1, z);
cl_double_equal(div_2, const_1);

Solver Runtime in seconds Memory in MB
CVC4 7051.36 12320
Z3 214.53 605
MathSAT5 2.13 149
Bitwuzla 0.33 65
CBMC 0.19 30
iSAT3 0.01 3

Figure 1 Small example benchmark with two floating-
point divisions in three different encodings:
SMT2, C and HYS. The runtime and memory
needed by each solver is shown as well.

The solvers Z3, CVC4, MathSAT5, Bitwuzla natively sup-
port the SMT2 format while CBMC requires a C program
as input – iSAT3 expects its input to be in HYS format.
This has historical reasons as iSAT3 and its predecessors
HySAT [24] and iSAT [25, 26, 27] were originally de-
veloped for the verification of hybrid systems. Although
all three solvers support linear and non-linear arithmetic
as well as transcendental functions, they expect that every
variable is bounded – which is a reasonable assumption
in the context of hybrid systems. With this restriction the

6Taken from https://github.com/diffblue/cbmc/releases/
7Not publicly available, included in BTC EP 2.8.

support for the SMT2 format did not made sense as SMT2
is not aware of explicit variable bounds. After adding the
support for accurate floating-point reasoning in iSAT3 [28]
there was no pressing need to add support for the SMT2
format – in particular, as the HYS input language provides
cast operations between floating-point and bitvector types
which are not directly available in SMT28.
The solvers Z3, CVC4, MathSAT5, Bitwuzla and CBMC
use bit-blasting to translate the given SMT formula into
a SAT formula. The translation of CVC4 and Bitwu-
zla can be seen as a two-stage process, because both
solvers natively support the theory of bitvectors and use
SymFPU [29] to encode floating-point operations at the
level of bitvectors. Furthermore, according to [30] and [22]
both solvers use CaDiCaL [31] as back-end SAT solver.
We use CBMC with the command line option --refine.
With this option CBMC starts with a coarser encoding of
the floating-point values and refines the encoding in case of
spurious solutions. In our experience this helps to improve
the overall performance.
Besides bit-blasting there exist interval based approaches
to solve SMT formulas with floating-point arithmetic. In
particular, iSAT3 [28, 7] builds on this technique. Further-
more, with the approach of [32] there is an interval-based
floating-point reasoning available for MathSAT5 – but to
the best of our knowledge this implementation is not en-
abled by default. We refer the reader to [28] for a compar-
ison with iSAT3.
Usually, interval-based techniques have advantages for op-
erations like addition, subtraction, multiplication and di-
vision in comparison to bit-blasting. Figure 1 shows a
small example with two floating-point divisions encoded
in SMT2, C and HYS to demonstrate this. In particular the
bit-blasting based solver CVC4 is unable to solve this in-
stance within one hour while iSAT3 solves it immediately.
Bitwuzla and CBMC perform quite well – probably due
to further optimizations, e.g. stochastic local search [22].
On the other hand, bitwise operations are usually handled
more efficiently by solvers based on bit-blasting compared
to interval-based solvers. Thus, depending on the charac-
teristics of the instance to be solved one technique might
outperform the other.
As CBMC has no built-in support for k-induction, the
tool chain within BTC EP prepares different input files for
CBMC in order to perform BMC and IND checks. Thus,
multiple CBMC calls are required for k-induction – for a
better distinguishability we call the resulting wrapper EP-
CBMC. In order to reduce the number of calls, only IND2
is considered in the default settings of EP-CBMC.
Regarding the SMT2 solvers Z3, CVC4, MathSAT5 and
Bitwuzla the instances are prepared differently. While
CBMC and iSAT3 create and solve the BMCi formulas in-
ternally, the SMT2 format does not provide a direct support
for BMC. On the other hand, it is possible to interact with
an SMT2 solver by redirecting the standard input and out-
put channels. Furthermore, the push and pop statements
within the SMT2 language allow to add and remove for-
mula parts. Thus, it is possible to solve an alternating se-
quence of BMC and IND formulas with an SMT2 solver.

8The cast operations in iSAT3 always have defined behavior.
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10-14 150 11 161
15-19 40 30 54 2 126
20-34 83 26 25 15 149
35-49 40 78 118
50-74 22 29 51
75-99 775 452 1227

100-149 1282 1562 2844
150-199 983 983

∑ 1155 7 1285 1355 465 32 1075 1764 1562 0 0 0 78 8778

Table 1 An overview of how many benchmark instances have a certain number of integer and floating-point variables.
For a compact representation the variable numbers are bucketized, i.e. each line relates to a range of integer
variables while each column relates to a range of floating-point variables. For example, there are 78 instances
containing between 200 and 249 floating-point variables as well as between 35 and 49 integer variables. Further-
more, there are 362 instances containing only Boolean variables – showing the effect of the cone-of-influence
reduction, i.e. not every instance derived from floating-point dominated C code is required to contain floating-
point or integer variables. Auxiliary variables for subexpressions are not counted here. Furthermore, the numbers
relate to one step – for a BMC instance with k steps the number of variables has to be multiplied by k.

3 Benchmarks

The 8778 benchmark instances considered in this paper en-
code code coverage goals – each instance corresponds to
one goal, i.e. a code fragment whose reachability has to be
determined. In the following we describe the goal deriva-
tion in more detail. Additionally, we provide some statis-
tics regarding the resulting benchmark instances – e.g. re-
garding the number of floating-point variables or the used
operations.
Starting from a set of Simulink models provided by BTC
EP users from the industrial automotive domain, Tar-
getLink was used to automatically generate production C
code for these models. Thus, the obtained C code obeys a
specific structure. It can be understood as a reactive pro-
gram with an unbounded feedback loop divided into three
parts: (1) all input values for the current step are received,
(2) the actual function is executed, and (3) the computed
output values are transmitted. Afterwards, the program
waits for the next loop iteration.
In order to analyze the coverage of the C code, the code
is automatically instrumented to collect coverage informa-
tion [4]. In a simple form of such an instrumentation each
basic block in the C code is accompanied with an aux-
iliary Boolean variable – also called a goal. This auxil-
iary variable is initialized with false and is set to true if
the basic block is entered. When considering more ad-
vanced coverage metrics like modified condition/decision
coverage (MC/DC) [3], the instrumentation decomposes an
if condition into its Boolean components in order to col-

lect which truth value combinations of the Boolean com-
ponents were responsible for entering a basic block.
In order to automatically generate test cases, BTC EP
translates the C code internally into an intermediate lan-
guage called SMI. At SMI level further transformations
are performed – in particular, inlining of function calls
and flattening of complex data structures. As each goal is
processed individually, it is beneficial to apply a cone-of-
influence reduction in order to remove all code fragments
being irrelevant for the goal under consideration. Further-
more, depending on the selected back-end solver additional
rewritings are performed on SMI level: (1) every loop is
unrolled, and (2) the resulting code is transformed into a
static single assignment (SSA) form. In the context of this
paper, both techniques are always applied.
It is easily possible to translate the SSA form into an SMT
formula. Basically, the resulting SMT formula represents
one iteration (i.e. one step) of the unbounded feedback
loop of the reactive program which encodes the originat-
ing Simulink model. Hence, in order to analyze up to k
iterations, BMC can be applied (cf. Section 2). Thus, if
an instance becomes satisfiable in BMC depth k the goal is
reachable in k steps. Furthermore, the obtained satisfying
assignment corresponds to a test case of the production C
code – certifying the coverage of the goal under consider-
ation. On the other hand, it is also very important to know
whether a goal is unreachable as this allows to adjust the
coverage information – which is very important in prac-
tice in order to conform to standards like ISO 26262 [2].
As explained in Section 2, the evaluated solvers use k-
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Nr. subexpr. 234 1269 1403 3734 2138

Table 2 The number of subexpressions used in the bench-
mark instances. Usually, a subexpression contains
between one and three operations. As listed, there
are 2138 instances with more than 10000 subex-
pressions. The numbers relate to one step – for a
BMC instance with k steps the number of subex-
pressions has to be multiplied by k.

induction or Craig Interpolation to detect unreachable code
fragments.
The resulting 8778 benchmark instances contain a mix of
Boolean variables, floating-point variables and fixed bit-
width integer variables. Table 1 gives an overview of the
number of floating-point and integer variables contained
in the instances. The shown numbers relate to one step,
i.e. if a BMC instance with 3 steps is considered the num-
bers have to be tripled. Furthermore, these variables either
represent input values or local state variables – auxiliary
variables representing the value of a subexpression are not
included. Table 2 shows the size of the instances when
considering the contained subexpressions. The CBMC en-
coding requires the declaration of an additional variable
for each subexpression while the SMT2 encoding uses
define-fun – iSAT3 uses a similar definition in its HYS
input language.
Table 3 shows the usage of different operations in the
benchmark instances. It should be noted that while C al-
lows different operand types for an operation (e.g. adding
an integer and a floating-point variable), this is not allowed
in SMI – i.e. explicit casts are required if the operands of
an operation have different types. The following operation
kinds are listed in Table 3:

• Casts operations: (1) between different floating-point
formats, i.e. float and double, (2) between integer
and floating-point formats, and (3) between different
integer bit-widths.

• Comparison operations regarding floating-point and
integer data types, respectively.

• Addition and subtraction operations involving
floating-point and integer types, respectively.

• Multiplication and division operations involving
floating-point and integer types, respectively.

• Bitwise integer operations.

It can be observed that the benchmark instances contain
fewer bitwise operations than arithmetic operations – in
particular floating-point arithmetic is used very frequently
within the instances.
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Add / sub fp 1488 3819 904
Mul / div fp 468 2578 452
Comparisons int 1526 1513 4780 959
Add / sub int 2651 2619 1843
Mul / div int 1542
Bitwise int 1095

Table 3 An overview of the operations used in the bench-
mark instances. For each kind of operation (e.g.
integer addition and subtraction) the occurrence
is divided into buckets. For example, there are
959 instances with more than 10000 integer com-
parison operations. The numbers relate to one
step – for a BMC instance with k steps the num-
ber of operations has to be multiplied by k.

4 Experimental Results

We used Z3, CVC4, MathSAT5 and Bitwuzla without any
additional command line options. CBMC and iSAT3 were
used with their BTC EP default settings. The experiments
for Z3, CVC4, MathSAT5, Bitwuzla and iSAT3 were per-
formed on a Linux cluster with Ubuntu 20.04. Each cluster
node had 64 GB RAM and two 8-core CPUs running at 2.6
GHz. Per benchmark instance we applied a time limit of
3600 seconds and a memory limit of 8 GB.
For technical reasons EP-CBMC could not be executed in
this environment – instead we executed it with the same
limits on a computer with a similar CPU also running at 2.6
GHz. Furthermore, the runtime of EP-CBMC also includes
the time to translate SMI to C while the runtime of all other
solvers does not include this overhead. In most cases the
translation time is negligable in comparison to the solving
time. Nonetheless, the effect is noticable for instances with
very low solving times, i.e. in the second diagram of Fig-
ure 2 the blue CBMC curve is slightly above the curves of
all other solvers for the first 2000 instances – this is due to
the translation overhead. Hence, the number of solved in-
stances of EP-CBMC might increase slightly in a perfect
comparison.
In practice, we observed that in most cases it suffices to
perform 2-induction – i.e. solving IND2. Applying k-
induction for every transition step just slows down the solv-
ing process without increasing the number of detected dead
code instances noticably9. Therefore, EP-CBMC applies
2-induction per default. Additionally, this allows to em-

9While EP-CBMC finds 628 dead code instances with 2-induction,
this number increases only slightly to 632 when applying k-induction in
every transition step.
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Figure 2 Comparison between Z3, CVC4, MathSAT5, Bitwuzla, CBMC and iSAT3 on a set of 8778 benchmark in-
stances originating from automotive code. While the first diagram is regarding a timeout of 3600 seconds, the
second diagram considers only instances solved within 60 seconds – as in practice this is usually the time limit
per instance for a solver within BTC EP.

ploy the incremental BMC support of CBMC [6] for BMCi
with i ≥ 2. In contrast, iSAT3 applies Craig Interpolation
in every transition step. Furthermore, in order to certify
a solution, iSAT3 needs to solve the BMCi instance from
scratch if the according BMC-like formula (which contains
an interpolant instead of I) becomes satisfiable in transition
step i (cf. Section 2).
All four SMT2 solvers get an input file per instance. Each
file employs incremental solving by using push and pop
statements in order to solve a sequence of BMC formulas
and one IND2 formula – similar to EP-CBMC we use 2-
induction.

4.1 Number of Solved Instances
Figure 2 gives an overview of the number of solved in-
stances for all six solvers. While the first diagram con-
siders a timeout of 3600 seconds, the second diagram
zooms into the number of instances being solved within 60

seconds – as in practice this is the time limit solvers have
to operate with when used within BTC EP.
With a timeout of 3600 seconds Z3 solves the fewest num-
ber of instances followed by CVC4 and MathSAT5. Bitwu-
zla and EP-CBMC seem to perform equally well – except a
small difference at the bottom of the diagram. The highest
number of instances is solved by iSAT3.
The picture changes when considering a timeout of 60 sec-
onds. This timeout is chosen deliberately as this is the de-
fault time limit per instance within BTC EP. Compared
to the timeout of 3600 seconds there are two changes:
(1) CVC4 solves the fewest instances followed by Z3 and
MathSAT5, and (2) there is a noticable gap between Bitwu-
zla and EP-CBMC, i.e. the small difference between both
solvers at the bottom of the first diagram now becomes
relevant as EP-CBMC solves considerably more instances
than Bitwuzla. As before, iSAT3 solves the highest number
of instances.



Table 4 gives a more detailed view to the solved instances.
It can be observed that EP-CBMC and iSAT3 perform
equally well regarding the number of test cases (TC) being
found – in absolute numbers EP-CBMC performs slightly
better. This can be attributed to the fact that EP-CBMC
uses incremental BMC starting from transition step 2 while
iSAT3 with Craig Interpolation has to solve an additional
complete BMC formula from scratch in order to certify the
solution. If Bitwuzla is given enough time, it finds two
TC instances more than EP-CBMC. Furthermore, with a
timeout of 3600 seconds Bitwuzla and EP-CBMC prove
628 instances to be dead code (DC) – with the 60 seconds
timeout Bitwuzla loses 15 instances while EP-CBMC stays
nearly constant with 627 instances. Due to Craig Interpo-
lation iSAT3 outperforms all other solvers concerning the
number of DC instances – regardless of the timeout. Addi-
tionally, the second diagram of Figure 2 reveals that with
even lower timeouts (e.g. 10 seconds) iSAT3 finds the high-
est number of TC instances – this is not surprising as the set
of instances contain few bitwise operations and many arith-
metic operations which is advantageous for iSAT3 with its
interval-based approach.

Timeout 60 sec. Timeout 3600 sec.
Solver TC DC T/M TC DC T/M
Z3 4123 537 4118 6359 577 1842
CVC4 3431 384 4963 7074 541 1163
MathSAT5 5624 423 2731 7434 626 718
Bitwuzla 7135 613 1030 7666 628 484
EP-CBMC 7642 627 509 7664 628 486
iSAT3 7624 970 184 7662 983 133

Table 4 The number of found test cases (TC) and in-
stances with dead code (DC) regarding a time-
out of 60 seconds and 3600 seconds, respectively.
Furthermore, the number of unsolved instances
due to timeout or memout (T/M) is shown as well.

Regarding the number of TC and DC instances Bitwuzla
outperforms the remaining three SMT2 solvers remark-
ably. When considering only the solved TC instances,
then MathSAT5 is closest to Bitwuzla. Regarding solved
DC instances, it depends on the timeout whether Z3 or
MathSAT5 perform better. In general, it seems Z3 per-
forms quite well on DC instances – in particular compared
to CVC4. Thus, when considering TC and DC instances
separately, Z3 outperforms CVC4 clearly for DC instances
while CVC4 solves more TC instances when given enough
time.
The BMC problems of the TC instances become satisfiable
in most cases in less than 10 transition steps – but there are
also a few instances which require BMC to be performed
until transition step 483 before the formula becomes satis-
fiable. Thus, another aspect is whether these instances are
solved as well. While EP-CBMC and iSAT3 solve some
of these TC instances already within 60 seconds, Bitwu-
zla requires 137 seconds to solve the first instance of this
kind – MathSAT5 needs 177 seconds. In contrast, Z3 and

CVC4 are unable to solve such instances even within 3600
seconds.

4.2 Number of Uniquely Solved Instances
Table 5 addresses another aspect to judge the results: the
number of uniquely solved instances. In particular this
number is of interest when considering a portfolio of mul-
tiple solvers – as adding a further solver to an existing
portfolio is only beneficial if the added solver contributes
uniquely solved instances. When solving floating-point in-
stances, BTC EP relies on EP-CBMC and iSAT3. Thus,
the question is whether the SMT2 solvers are able to solve
instances which were not solved by EP-CBMC or iSAT3.
As shown in Table 5 this is not the case. When consider-
ing EP-CBMC and iSAT3 individually, then in particular
Bitwuzla has some uniquely solved instances – but there
would be no benefit to add Bitwuzla to the existing portfo-
lio containing EP-CBMC and iSAT3.
On the other hand, when considering today’s multicore
workstations, then it can be beneficial to run multiple
solvers in parallel. Although no SMT2 solver is able to
solve more instances than the combination of EP-CBMC
and iSAT3 and thus the number of instances being solved
within a 60 seconds timeout would stay unchanged, the
overall runtime might decrease if a SMT2 solver returns
a result in shorter time. The number of such instances
is quite low, i.e. CVC4 is faster for 6 instances, Math-
SAT5 is faster for 7 instances, Z3 is faster for 8 instances
and Bitwuzla is faster for 14 instances. Thus, the benefit
of adding one of the SMT2 solvers to a parallel portfolio
would be marginal.

4.3 Separating BMC and IND Formulas
While we think there is only limited room for improve-
ments regarding the encoding of the operations in SMT210,
there is optimization potential when separating the BMC
and IND formulas. As mentioned earlier, each file passed
to the four SMT2 solvers employs incremental solving by
using push and pop statements in order to solve a se-
quence of BMC formulas and one IND2 formula. Thus,
in order to solve BMC and IND formulas within one in-
stance, the initial states have to be removed. Depending
on the implementation of the SMT2 solver this can de-
teriorate the solving performance as learned knowledge
which involves the initial states might be invalidated. A
similar observation was made in the original k-induction
paper [11] – according to the experimental results it is ben-
eficial to use two separate instances for BMC and IND for-
mulas.
In order to test the effect of such a separation, we concen-
trate on the BMC part and use a plain incremental BMC
encoding without any IND check. Thus, regarding the TC
instances we optimistically assume that the IND2 check
(which will be always satisfiable) adds no runtime. With
this approach we want to evaluate how the four SMT2
solvers would perform under optimal conditions.

10When neglecting syntax, the transition step in an SMT2, C and HYS
instance is encoded in a similar way.



Timeout 60 seconds
EC i3 EC+i3 EC i3 EC+i3

uniq. uniq. uniq. uniq. uniq. uniq.
Solver TC TC TC TC DC DC DC DC
Z3 4123 0 0 0 537 0 1 0
CVC4 3431 0 0 0 384 0 2 0
MathSAT5 5624 0 0 0 423 0 2 0
Bitwuzla 7135 1 2 0 613 1 12 0
EP-CBMC 7642 - 30 - 627 - 19 -
iSAT3 7624 12 - - 970 362 - -

Timeout 3600 seconds
Z3 6359 0 0 0 577 0 2 0
CVC4 7074 1 0 0 541 0 2 0
MathSAT5 7434 1 0 0 626 0 16 0
Bitwuzla 7666 3 12 0 628 0 18 0
EP-CBMC 7664 - 13 - 628 - 18 -
iSAT3 7662 11 - - 983 373 - -

Table 5 Overview of uniquely solved TC and DC instances regarding EP-CBMC (abbreviated EC), iSAT3 (abbreviated
i3) and the union of EP-CBMC and iSAT3 (abbreviated EP+i3). For example, when considering a timeout of
3600 seconds EP-CBMC solves 13 TC instances which were not solved by iSAT3 while iSAT3 solves 11 TC
instances being unsolved by EP-CBMC. Furthermore, it can be observed that no SMT2 solver is able to solve
instances which were not solved by EP-CBMC or iSAT3 – i.e. both columns for EP+i3 contain only zeros.

Table 6 shows the results for the number of solved TC in-
stances. We compare with the numbers of EP-CBMC and
iSAT3 from Table 4 – i.e. while the SMT2 solvers solve
pure BMC instances, EP-CBMC and iSAT3 still perform
k-induction and Craig Interpolation, respectively. For an
easier comparison, column 2 in Table 6 includes in paren-
thesis the number of solved TC instances from Table 4. It
can be observed that the number of instances solved by the
SMT2 solvers increases considerably in most cases with
the pure BMC encoding – e.g. MathSAT5 solves more than
1000 additional TC instances within the 60 seconds time-
out. Furthermore, with a timeout of 3600 seconds Bitwu-
zla solves 12 instances which were not solved by any other
solver. On the other hand, the number of instances being
solved faster by Z3, CVC4, MathSAT5 or Bitwuzla com-
pared to EP-CBMC and iSAT3 increases only marginally
and stays below 30 for each SMT2 solver.
As observed in Section 4.1 with a timeout of 3600 seconds
Bitwuzla already performs equally well as EP-CBMC re-
garding the number of solved instances – while EP-CBMC
clearly outperforms Bitwuzla when considering a 60 sec-
onds timeout. When using two SMT2 solver instances in
order to solve the BMC and IND formulas separately, it
can be expected that Bitwuzla reduces the distance to EP-
CBMC and iSAT3 regarding the 60 seconds timeout – but
even under optimal conditions for Bitwuzla (i.e. assum-
ing IND2 causes no runtime) EP-CBMC and iSAT3 still
solve roughly 150 TC instances more. Similarly, although
MathSAT5 now solves more than 1000 additional TC in-
stances, MathSAT5 is even under optimal conditions still
roughly 900 instances behind EP-CBMC and iSAT3 – the
gap from EP-CBMC and iSAT3 to CVC4 and Z3 is even
larger. Thus, the overall ranking of the solvers stays un-
changed.

4.4 Encountered Issues
Bitwuzla is a new solver first presented in 2020. Thus,
it can be expected that there might be issues when run-
ning the solver on benchmark instances it was not tested
on. During our experiments we observed that Bitwuzla ter-
minated abnormally on some instances – this was quickly
fixed by the authors of Bitwuzla.
On the other hand, we did not expect problems with the
more mature solvers Z3, CVC4 and MathSAT5. Hence, we
were surprised that Z3 and the Windows version of Math-
SAT5 returned spurious results in some cases. The issue in
MathSAT5 is already fixed in version 5.6.5. Regarding Z3
the affected instances are rather large – therefore, we try
to extract a smaller fragment still triggering the issue. Just
submitting the original instances to a public issue tracker
is not an option for us as the instances considered in this
paper are confidential.

5 Conclusion

Inspired by the evaluation of [1] which benchmarked soft-
ware model checkers on automotive code, we bench-
marked in this paper SMT solvers on automotive code.
The automotive code considered here is not identical to [1]
but has similar characteristics. Our evaluation is motivated
by the question whether off-the-shelf SMT solvers could
supplement our current back-end solvers for floating-point
instances within BTC EP – namely EP-CBMC (which is
a wrapper for CBMC) and iSAT3. Thus, we compared
both solvers with SMT solvers supporting the theory of
bitvectors and the theory of floating-point. In order to re-
duce the effort regarding file formats, we concentrated on
SMT solvers supporting the SMT2 format and selected Z3,
CVC4, MathSAT5 and Bitwuzla.



Timeout 60 seconds
EC i3 EC+i3

uniq. uniq. uniq.
Solver TC TC TC TC
Z3 (4123) 4794 0 0 0
CVC4 (3431) 4191 0 0 0
MathSAT5 (5624) 6716 0 0 0
Bitwuzla (7135) 7471 2 21 0
EP-CBMC 7642 - 30 -
iSAT3 7624 12 - -

Timeout 3600 seconds
Z3 (6359) 6577 0 0 0
CVC4 (7074) 7288 1 0 0
MathSAT5 (7434) 7561 1 0 0
Bitwuzla (7666) 7659 13 12 12
EP-CBMC 7664 - 13 -
iSAT3 7662 11 - -

Table 6 Overview of the number of solved TC instances
regarding a pure incremental BMC encoding for
the SMT2 solvers by optimistically assuming that
the IND2 check adds no runtime. The numbers
of the uniquely solved TC instances are regarding
EP-CBMC (abbreviated EC), iSAT3 (abbreviated
i3) and the union of EP-CBMC and iSAT3 (abbre-
viated EP+i3). The numbers in parenthesis for the
SMT2 solvers are taken from Table 4 to allow an
easier comparison. Even under this optimal con-
dition no SMT2 solver is able to outperform EP-
CBMC or iSAT3.

The instances used in our experiments originate from au-
tomatic test case generation. Besides generating test cases,
it is additionally required that the solvers are able to de-
tect dead code. Therefore, we used k-induction for the
SMT2 solvers. Our SMT2 encoding includes BMC and k-
induction checks in one instance. Additionally, we tested
the effect of separating BMC and k-induction formulas.
Hence, when coming back to the two questions from Sec-
tion 1 the answers are as follows:

1. How do off-the-shelf SMT solvers perform on in-
stances originating from automotive code?

In order to answer this question, we used a timeout of
3600 seconds – i.e. we wanted to know how many in-
stances can be solved at all when a solver has enough
time. Regarding this timeout the four tested SMT2
solvers are ranked as follows: Bitwuzla is the clear
winner (8294 solved instances), followed by Math-
SAT5 (8060 solved instances), CVC4 (7615 solved
instances) and Z3 (6936 solved instances). On the
other hand, none of the SMT2 solvers was able to out-
perform EP-CBMC (8292 solved instances) or iSAT3
(8645 solved instances) – be it regarding the number
of solved instances or runtime. Only Bitwuzla was
able to solve the same number of instances as EP-
CBMC.

2. How do these solvers compare to the back-end solvers
used in the commercial tool BTC EP – in particular
when considering the default time limit of 60 seconds
of BTC EP?

EP-CBMC and iSAT3 dominate the four SMT2
solvers if only 60 seconds are available per instance as
iSAT3 (8594 solved instances) and EP-CBMC (8269
solved instances) solve within 60 seconds nearly the
same number of instances as within 3600 seconds.
This is not the case for the SMT2 solvers. It can be ob-
served that the gap to EP-CBMC and iSAT3 increases
when decreasing the timeout. The ranking is as fol-
lows: Bitwuzla (7748 solved instances), MathSAT5
(6047 solved instances), Z3 (4660 solved instances)
and CVC4 (3815 solved instances). It can be expected
that these numbers improve when splitting the BMC
and k-induction formulas to separate instances for the
SMT2 solvers – but even under optimal conditions
no SMT2 solver will solve as many instances as EP-
CBMC or iSAT3.

To summarize, off-the-shelf SMT solvers are currently
unable to outperform the back-end solvers used within
BTC EP – in fact it is vice versa, i.e. the two back-
end solvers EP-CBMC and iSAT3 outperform Z3, CVC4,
MathSAT5 and Bitwuzla on floating-point dominated au-
tomotive code.
Among the four SMT2 solvers Bitwuzla clearly outper-
forms the other three – but is still behind EP-CBMC and
iSAT3 when considering practically relevant timeouts. On
the other hand, with further optimizations, Bitwuzla might
become a promising candidate to supplement our solver
portfolio in future versions of BTC EP.
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