
290

Approximate Symbolic Model Checking
for Incomplete Designs

Tobias Nopper and Christoph Scholl

Institute of Computer Science
Albert-Ludwigs-University Freiburg

D-79110 Freiburg im Breisgau, Germany

Abstract. We consider the problem of checking whether an incomplete
design can still be extended to a complete design satisfying a given CTL
formula and whether the property is satisfied for all possible extensions.
Motivated by the fact that well-known model checkers like SMV or VIS
produce incorrect results when handling unknowns by using the pro-
grams’ non-deterministic signals, we present a series of approximate, yet
sound algorithms to process incomplete designs with increasing quality
and computational resources. Finally we give a series of experimental
results demonstrating the effectiveness and feasibility of the presented
methods.

1 Introduction

Deciding the question whether a circuit implementation fulfills its specification
is an essential problem in computer-aided design of VLSI circuits. Growing in-
terest in universities and industry has led to new results and significant advances
concerning topics like property checking, state space traversal and combinational
equivalence checking.

For proving properties of sequential circuits, Clarke, Emerson, and Sistla pre-
sented model checking for the temporal logic CTL [1]. Burch, Clarke, and McMil-
lan et al. improved the technique by using symbolic methods based on binary
decision diagrams [2] for both state set representation and state traversal in [3, 4].

In this paper we will consider how to perform model checking of incomplete
circuits, i.e. circuits which contain unknown parts. These unknown parts are
combined into so-called Black Boxes. In doing so, we will approach two poten-
tially interesting questions, whether it is still possible to replace the Black Boxes
by circuit implementations, so that a given model checking property is satisfied
(‘realizability’) and whether the property is satisfied for any possible replacement
(‘validity’).

There are three major benefits symbolic model checking for incomplete cir-
cuits can provide: First, instead of forcing the verification runs to the end of the
design process where the design is completed, it rather allows model checking
in early stages of design, where parts may not yet be finished, so that errors
can be detected earlier. Second, complex parts of a design can be replaced by
Black Boxes, simplifying the design, while many properties of the design still can

A.J. Hu and A.K. Martin (Eds.): FMCAD 2004, LNCS 3312, pp. 290–305, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.3
 Optimize For Fast Web View: No
 Embed Thumbnails: No
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [2400 2400] dpi
 Paper Size: [439.37 666.142] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 1200 dpi
 Downsampling For Images Above: 1800 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Maximum
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 1200 dpi
 Downsampling For Images Above: 2400 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Maximum
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 2400 dpi
 Downsampling For Images Above: 3600 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Cancel Job
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Leave Color Unchanged
 Intent: Default
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: Yes
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: Yes
 Log DSC Warnings: No
 Resize Page and Center Artwork for EPS Files: Yes
 Preserve EPS Information From DSC: Yes
 Preserve OPI Comments: No
 Preserve Document Information From DSC: Yes

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 2.0
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 1200
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 1200
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [2400 2400]
>> setpagedevice

Approximate Symbolic Model Checking for Incomplete Designs 291

be proven, yet in shorter time. Third, the location of design errors in circuits
not satisfying a model checking property can be narrowed down by iteratively
masking potentially erroneous parts of the circuit.

Some well-known model checking tools like SMV [4] (resp. NuSMV [5]) and
VIS [6] provide the definition of non-deterministic signals (see [7–9]). At first
sight, signals coming from unknown areas can be handled as non-deterministic
signals, but we will show that modeling by non-deterministic signals is not capa-
ble of answering the questions of realizability (‘is there a replacement of the Black
Boxes so that the overall implementation satisfies a given property?’) or validity
(‘is a given property satisfied for all Black Box replacements?’). This approach
is even not able to provide approximate solutions for realizability or validity.

Whereas an exact solution to the realizability problem for incomplete de-
signs with several Black Boxes (potentially containing an unrestricted amount
of memory) is undecidable in general [10], we will present approximate solutions
to symbolic model checking for incomplete designs. Our algorithms will not give
a definite answer in every case, but they are guaranteed to be sound in the sense
that they will never give an incorrect answer. First experimental results given
in Sect. 5 prove effectiveness and feasibility of these approximate methods.

Our methods are based on symbolic representations of incomplete combina-
tional circuits [11]. Using these representations we provide different methods for
approximating the sets of states satisfying a given property ϕ. During one run
of symbolic model checking we compute both underapproximations and overap-
proximations of the states satisfying ϕ and we will use them to provide approx-
imate answers for realizability and validity.

The work of Huth et al. [12], which introduced Kripke Modal Transition Sys-
tems (KMTSs), comes closest to our approach. Whereas our simplest algorithm
can be modeled by using KMTSs, KMTSs are not able to model the fact that the
Black Box outputs can not take different values at the same time, a constraint
that will be considered in our most advanced algorithm.

Black Boxes in incomplete designs may be seen as Uninterpreted Functions
(UIFs) in some sense. UIFs have been used for the verification of pipelined mi-
croprocessors [13], where a validity problem is solved under the assumption that
both specification and implementation contain the same Uninterpreted Func-
tions. Whereas in [13–16] a dedicated class of problems for pipelined micropro-
cessors is solved (which is basically reduced to a combinational problem using
an inductive argument), we will deal here with arbitrary incomplete sequential
circuits and properties given in the full temporal logic CTL.

The paper is structured as follows: After giving a brief review of symbolic
model checking and of representations for incomplete designs in Sect. 2, we will
discuss the results of the method handling Black Boxes using non-deterministic
signal definitions as provided by SMV and VIS, together with the arising prob-
lems in Sect. 3. In Sect. 4, we will introduce several algorithms capable of perfor-
ming sound and approximate symbolic model checking for incomplete circuits.
Finally we give a series of experimental results demonstrating the effectiveness
and feasibility of the presented methods in Sect. 5 and conclude the paper in
Sect. 6.

292 Tobias Nopper and Christoph Scholl

2 Preliminaries

2.1 Symbolic Model Checking for Complete Designs

Before we introduce symbolic model checking for incomplete designs we will give
a brief review of the well-known symbolic model checking for complete designs [3].

Symbolic model checking is applied to Kripke structures which may be de-
rived from sequential circuits on the one hand and to a formula of a temporal
logic (in our case CTL (Computation Tree Logic)) on the other hand.

We assume a (complete) sequential circuit to be given by a Mealy automa-
ton M := (IB|�q|, IB|�x|, IB|�y|, δ, λ, �q 0) with state set IB|�q|, the set of inputs IB|�x|,
the set of outputs IB|�y|, transition function δ : IB|�q|×IB|�x|→IB|�q|, output func-
tion λ : IB|�q|× IB|�x|→IB|�y| and initial state �q 0∈IB|�q|. In the following we will use
�x = (x0, . . . , xn−1) (n = |�x|) for vectors of input variables, �y for vectors of output
variables, �q for current state variables and �q ′ for next state variables.

The states of the corresponding Kripke structure are defined as a combination
of states and inputs of M . The resulting Kripke structure for M is given by
struct(M) := (S,R,L) with:

S :=IB|�q| × IB|�x|

R :=
{(

(�q, �x), (�q ′, �x ′)
)
,
∣∣�q, �q ′∈IB|�q|, �x, �x ′∈IB|�x|, δ(�q, �x)=�q ′}

L
(
(�q,�ε)

)
:=

{
xi

∣
∣εi = 1

} ∪ {
yi

∣
∣λi(�q,�ε) = 1

}
.

As usual we write struct(M), s |= ϕ if ϕ is a CTL formula that is satisfied in
state s = (�q, �x) ∈ S of struct(M). If it is clear from the context which Kripke
structure is used, we simply write s |= ϕ instead of struct(M), s |= ϕ. |= is
defined recursively:

s |= ϕ; ϕ ∈ V ⇐⇒ ϕ ∈ L(s) (V = set of atomic propositions)
s |= ¬ϕ ⇐⇒ s �|= ϕ

s |= (ϕ1 ∨ ϕ2) ⇐⇒ s |= ϕ1 or s |= ϕ2

s |= EXϕ ⇐⇒ ∃s′ ∈ S : R(s, s′) and s′ |= ϕ

s |= EGϕ ⇐⇒ s |= ϕ and ∃s′ ∈ S : R(s, s′) and s′ |= EGϕ

s |= Eϕ1Uϕ2 ⇐⇒ s |= ϕ2 or
(∃s′ ∈ S : R(s, s′) and s |= ϕ1 and s′ |=Eϕ1Uϕ2

)

The remaining CTL operations ∧, EF , AX , AU , AG and AF can be expressed
by using ¬, ∨, EX, EU and EG [4].

In symbolic model checking, sets of states are represented by characteristic
functions, which are in turn represented by BDDs. Let Sat(ϕ) be the set of
states of struct(M) which satisfy formula ϕ and let χSat(ϕ) be its characteristic
function, then χSat(ϕ) can be computed recursively based on the characteristic
function χR(�q, �x, �q ′) :=

∏|�q|−1
i=0

(
δi(�q, �x) ≡ q′i

)
of the transition relation R:

χSat(xi)(�q, �x) := xi

χSat(yi)(�q, �x) := λi(�q, �x)

Approximate Symbolic Model Checking for Incomplete Designs 293

�� ����� ���	
 �
���
��	 ��� ��
� ����� ���	
 �
���
��	 ��� ��

������� �
��� �� ��
��	 �� �� �
����� ���� �� ��	� �
��� �� ��	�
��	 �� �� � ���������

�
��
��	 ��	�

�

��� ���
 �� � �
��� �� ��
��	 �� �� �
����� ���� �� ��	� �
��� �� ��	�
��	 �� �� � ��� � ����������

�
��
��	 ��	�

�

Fig. 1. Fixed point iteration algorithms

χSat(¬ϕ)(�q, �x) := χSat(ϕ)(�q, �x)
χSat((ϕ1∨ϕ2))(�q, �x) := χSat(ϕ1)(�q, �x) + χSat(ϕ2)(�q, �x)
χSat(EXϕ)(�q, �x) := χEX(χSat(ϕ))(�q, �x)
χSat(EGϕ)(�q, �x) := χEG(χSat(ϕ))(�q, �x)
χSat(Eϕ1Uϕ2)(�q, �x) := χEU (χSat(ϕ1), χSat(ϕ2))(�q, �x)

with χEX(χX)(�q, �x) := ∃�q ′∃�x ′(χR(�q, �x, �q ′) · (χX | �q←�q ′
�x←�x ′

)
(�q ′, �x ′)

)

χEG and χEU can be evaluated by the fixed point iteration algorithms shown in
Fig. 1.

A Mealy automaton satisfies a formula ϕ iff ϕ is satisfied in all the states of
the corresponding Kripke structure which are derived from the initial state �q 0

of M :
M |= ϕ ⇐⇒ ∀�x ∈ IB|�x| : struct(M), (�q 0, �x) |= ϕ

⇐⇒ ∀�x(χSat(ϕ)|�q=�q 0

)
= 1

2.2 Incomplete Designs

Representing Incomplete Designs: If parts of a circuit are not yet known
or cut off, we have to handle incomplete designs. In this section we briefly review
symbolic representations of incomplete designs which we will need in Sect. 4.

Unknown parts of the design are combined into so-called ‘Black Boxes’ (see
Fig. 2a for a combinational example with one Black Box).

For simulating the circuit wrt. some input vector we can make use of the
ternary (0, 1, X)-logic [17, 11]: We assign a value X to each output of the Black
Box (since the Black Box outputs are unknown) and we perform a conventional
(0, 1, X)-simulation [18] (see Fig. 2b). If the value of some primary output is X ,
we do not know the value due to the unknown behavior of the Black Boxes.

For a symbolic representation of the incomplete circuit we model the ad-
ditional value X by a new variable Z as in [19, 11]. For each output gi of the
incomplete design with primary input variables x1, . . . , xn we obtain a BDD rep-
resentation of gi by using a slightly modified version of symbolic simulation with

gi|x1=ε1...
xn=εn

=






1 , if the (0,1,X)-simulation with input (ε1, . . . , εn) produces 1
0 , if the (0,1,X)-simulation with input (ε1, . . . , εn) produces 0
Z, if the (0,1,X)-simulation with input (ε1, . . . , εn) produces X

294 Tobias Nopper and Christoph Scholl

�
�

�
��

�

�
�

�

� �

�

��

�

�

�

�

�

�

�

� �

� �

����� ���

��

��
��

�

�� �

� �

�
�

�

�

�� ��� �� ������	
�� ��
 �� ��
 ��� ���������� ������

�
�

�
��

�

�
�

�

� �

�

� �
�

�

�

�

�

�

�

�

�� ��

�
��

����� ���

��

�
��

����� ���

��

�

��

��

���

�

�

�� �������� �������������

�� ���

 �

�����

�� �������� ��� �� �������������

Fig. 2. Incomplete design

This modified version of symbolic simulation is called symbolic (0,1,X)-simula-
tion, see Fig. 2c for an example.

Since (0, 1, X)-simulation can not distinguish between unknown values at
different Black Box outputs, some information is lost in symbolic (0, 1, X)-
simulation. This problem can be solved at the cost of additional variables: In-
stead of using the same variable Z for all Black Box outputs, we introduce a new
variable Zi for each Black Box output and perform a (conventional) symbolic
simulation. This approach was called symbolic Zi-simulation in [11]. Fig. 2d
shows an example for symbolic Zi-simulation. (Note that the first output can
now be shown to be constant 0.)

In Sect. 4 we will use symbolic (0, 1, X)-simulation and symbolic Zi-simu-
lation to approximate transition functions and output functions of incomplete
sequential circuits.

Please note that in contrast to [11], we will consider Black Boxes that can
be replaced not only by combinational, but also by sequential circuits, so that
for two states in a computation path that generate the same Black Box input,
the Black Box may answer with different outputs.

Realizability and Validity: In Sect. 4 we will present methods realizing ap-
proximate symbolic model checking for incomplete designs. We will consider two
types of questions:

1. Is there a replacement of the Black Boxes in the incomplete design, so that
the resulting circuit satisfies a given CTL formula ϕ? If this is true, then the
property ϕ is called realizable for the incomplete design. The corresponding
decision problem is called realizability problem.

2. Is a CTL formula ϕ satisfied for all possible replacements of the Black Boxes?
If this is the case, then ϕ is valid for the incomplete design; the corresponding
decision problem is denoted as validity problem.

Approximate Symbolic Model Checking for Incomplete Designs 295

Mux Mux
A

Read Ports

D DA

Register
File

Inst. Reg. (Input)

Register File State
(Output)

Reg Reg

ALU

Reg Write
PortD

A

C
on

tr
ol

Fig. 3. Pipelined ALU

�

�

���

�

�

��

�

��

�� �

��

��

�

����� ���

����

Fig. 4. First Counterexample

3 Model Checking for Incomplete Designs
Using Non-deterministic Signals

Well-known CTL model checkers such as SMV and VIS provide so-called ‘non-
deterministic assignments’ resp. ‘non-deterministic signals’ to model non-deter-
minism [7–9]. At first sight it appears to be advisable using non-deterministic
signals for handling Black Box outputs, since the functionality of Black Boxes
is not known. In this section we motivate our approach by the observation that
non-deterministic signals lead to incorrect results when used for model checking
of incomplete designs. We will show that they even can not be used to obtain
approximate results by analyzing two small examples.

Before doing so, we will report on a larger and more familiar example showing
the same problems. Interestingly, incorrect results of SMV (resp. VIS) due to
non-deterministic signals can be observed for the well-known pipelined ALU
circuit from [3] (see Fig. 3). In [3], Burch et al. showed by symbolic model
checking that (among other CTL formulas) the following formulas are satisfied
for the pipelined ALU1:

AG
(
(EX)2R ≡ (AX)2R

)
(1)

AG
(
(EX)3R ≡ (AX)3R

)
(2)

Now we assume that the ALU’s adder has not yet been implemented and it is
replaced by a Black Box. The outputs of the Black Box are modeled by non-
deterministic signals. In this situation SMV provides the result that (2) is not
satisfied2. However, it is clear that there is at least one replacement of the Black
Box which satisfies the CTL formula (a replacement by an adder, of course).
Moreover, it is not hard to see, that the formula is even true for all possible
replacements of the Black Box by any (combinational or sequential) circuit, so
one would expect SMV to provide a positive answer both for (1) and (2).

Obviously, the usage of non-deterministic signals leads to non-exact results.
Yet, one might consider that although the results are not exact, they might be

1 The formulas essentially say that the content of the register file R two (resp. three)
clock cycles in the future is uniquely determined by the current state of the system.

2 Using VIS, the verification already fails for (1) – this is due to a slightly different
modeling of automata by Kripke structures in VIS and SMV.

296 Tobias Nopper and Christoph Scholl

�
��
�

�
�
�
�

�

�

�
��
��

�

�

�

�

�

�

��

�

� ��

��

����� ���

���

��

��
��

�� ��

�

�� ���

Fig. 5. Second Counterexample

�

�

� �

�

����� ���

�� ��

�� ���

Fig. 6. Mealy automaton with Black Box

approximate in some way. We will disprove this by analyzing two small exemplary
circuits with SMV (similar considerations can be done for VIS as well).

Hypothesis 1: A Negative Result of SMV Means That a Property Is Not Valid.
Figure 4 shows a counterexample for this hypothesis: If we substitute the

Black Box output by a non-deterministic signal, SMV provides the result that
ϕ1 = AG(AXy0∨AX¬y0) is not satisfied. Now consider two finite primary input
sequences which differ only in the last element. Since the Black Box input does
not depend on the primary input, but only on the state of the flip flop, these
two primary input sequences produce the same input sequence at the Black Box
input. Thus, the primary output (which is the same as the Black Box output)
will be the same for both input sequences. This means that the CTL formula ϕ1

is satisfied for all possible Black Box substitutions, thus it is valid. So we observe
that a negative result of SMV does not mean that a property is not valid.

Hypothesis 2: A Negative Result of SMV Means That a Property Is Not Realiz-
able.

We consider the circuit shown in Fig. 5 and the CTL formula ϕ2 =EX(EGy0∨
AGy1). We assume that the flip flop is initialized by 0. If we replace the Black
Box output by a non-deterministic signal, SMV provides the result that ϕ2 is
not satisfied. However, it is easy to see that the formula is satisfied if the Black
Box is substituted with the constant 1 function; so the property is realizable.
Thus, a negative result of SMV does not mean that a property is not realizable.

Hypothesis 3: A Positive Result of SMV Means That a Property Is Valid.
Again, we consider the example shown in Fig. 5 and the CTL formula ϕ2 =

EX(EGy0 ∨ AGy1), yet this time we assume that the flip flop is initialized by
1. If we substitute the Black Box output by a non-deterministic signal, SMV
provides the result that ϕ2 is satisfied. Though, it is easy to see that the formula
is not satisfied if the Black Box is substituted with the constant 0 function; so
the property not valid. Thus, a positive result of SMV does not mean that a
property is valid.

Hypothesis 4: A Positive Result of SMV Means That a Property Is Realizable.
Finally, we reconsider the circuit shown in Fig. 4 in combination with

ϕ3 = ¬ϕ1 = ¬AG(AXy0 ∨ AX¬y0). Again, we assume the Black Box out-
put to be a non-deterministic signal and we verify the circuit using SMV, which

Approximate Symbolic Model Checking for Incomplete Designs 297

provides the result that ϕ3 is satisfied. However, since property ϕ3 is the nega-
tion of property ϕ1 which has been proven to be valid when considering the first
hypothesis, it is quite obvious that ϕ3 is not realizable. Thus, a positive result
of SMV does not mean that a property is realizable.

Conclusion. Using non-deterministic signals for Black Box outputs is obviously
not capable of performing correct Model Checking for incomplete designs – the
approach is even not able to provide an approximate algorithm for realizability
or validity3.

This motivates our work presented in the next section: we will define approx-
imate methods for proving validity and for falsifying realizability of Black Box
implementations. The results are not complete, but they are sound, i.e. depend-
ing on the formula and the incomplete design they may fail to prove validity or
falsify realizability, but they will never return incorrect results.

4 Symbolic Model Checking for Incomplete Designs

4.1 Basic Principle

Symbolic model checking computes the set Sat(ϕ) of all states satisfying a CTL
formula ϕ and then checks whether all initial states are included in this set. If
so, the circuit satisfies ϕ.

The situation becomes more complex if we consider incomplete circuits, since
for each replacement of the Black Boxes we may have different state sets sat-
isfying ϕ. In contrast to conventional model checking we will consider two sets
instead of Sat(ϕ): The first set is called SatexE (ϕ) and it contains all states, for
which there is at least one Black Box replacement so that ϕ is satisfied. To ob-
tain SatexE (ϕ) we could conceptually consider all possible replacements R of the
Black Boxes, compute SatR(ϕ) for each such replacement by conventional model
checking and determine SatexE (ϕ) as the union of all these sets SatR(ϕ). The
second set is called SatexA (ϕ) and it contains all states, for which ϕ is satisfied
for all Black Box replacements. Conceptually, SatexA (ϕ) could be computed as an
intersection of all sets SatR(ϕ) obtained for all possible replacements R of the
Black Boxes.

Given SatexE (ϕ) and SatexA (ϕ), it is easy to prove validity and to falsify real-
izability for the incomplete circuit: If all initial states are included in SatexA (ϕ),
then all initial states are included in SatR(ϕ) for each replacement R of the
Black Boxes and thus, ϕ is satisfied for all replacements of the Black Boxes
(“ϕ is valid”). If there is at least one initial state not belonging to SatexE (ϕ),

3 Yet, there are subclasses of CTL, for which VIS and SMV can provide correct re-
sults: Considering ACTL (type A temporal operators only, negation only allowed for
atomic propositions), a positive result of SMV/VIS means that the property is valid.
Considering ECTL (analogously for E operators), a negative result of VIS means
that the property is not realizable; this is not true for SMV due to its universal
abstraction of the primary inputs at the end of the evaluation.

298 Tobias Nopper and Christoph Scholl

then this initial state is not included in SatR(ϕ) for all replacements R of the
Black Boxes and thus, there is no replacement of the Black Boxes so that ϕ is
satisfied for the resulting complete circuit (“ϕ is not realizable”).

4.2 Approximations

For reasons of efficiency we will not compute exact sets SatexE (ϕ) and SatexA (ϕ).
Instead we will compute approximations SatE(ϕ) and SatA(ϕ) of these sets.
To be more precise we will compute overapproximations SatE(ϕ)⊇SatexE (ϕ) of
SatexE (ϕ) and underapproximations SatA(ϕ)⊆SatexA (ϕ) of SatexA (ϕ).

Because of SatE(ϕ)⊇SatexE (ϕ)⊇SatR(ϕ) for arbitrary replacements R of the
Black Boxes we can also guarantee for SatE(ϕ) that ϕ is not realizable if some
initial state is not included in SatE(ϕ). Analogously we can guarantee that ϕ
is valid if all initial states are included in SatA(ϕ) (since SatA(ϕ)⊆ SatexA (ϕ)⊆
SatR(ϕ)).

Approximations of SatE(ϕ) and SatA(ϕ) will be computed based on an ap-
proximate transition relation and on approximate output functions for the cor-
responding Mealy automaton M . In incomplete designs we have Black Boxes in
the functional block defining the transition function δ and the output function λ
(see Fig. 6). For this reason there are two types of transitions for the automaton:
We have
– transitions which exist independently from the replacement of the Black

Boxes, i.e. for all possible replacements of the Black Boxes (we will call
them ‘fixed transitions’) and

– transitions which may or may not exist in a complete version of the design
– depending on the implementation for the Black Boxes (we will call them
‘possible transitions’).
We will work with two types of approximations of the transition relation

χR(�q, �x, �q ′): An underapproximation χRA(�q, �x, �q ′) will only contain fixed tran-
sitions and an overapproximation χRE (�q, �x, �q ′) will contain at least all possible
transitions (of course, this includes all fixed transitions).

In the same manner we will approximate the sets of states Sat(yi) in which
the output value yi of λi is true:
– an underapproximation SatA(yi) contains only states in which yi is true

independently from the replacements of the Black Boxes and
– an overapproximation SatE(yi) contains at least all states in which yi may

be true for some replacement of the Black Boxes.
Based on these approximations χRA , χRE , SatA(yi), and SatE(yi) we will compute
the underapproximations SatA(ϕ) and overapproximations SatE(ϕ) mentioned
above for arbitrary CTL formulas ϕ.

In the following we will present different approximate methods which will
(among other things) differ from the accuracy of approximating transition rela-
tion and output functions. More exact methods will identify more fixed transi-
tions and less possible transitions. We will make use of symbolic (0, 1, X)-simu-
lation and symbolic Zi-simulation for computing δ and λ as described in Sect. 2.

Approximate Symbolic Model Checking for Incomplete Designs 299

Symbolic Z-Model Checking: We apply symbolic (0, 1, X)-simulation (see
Sect. 2) for computing δ and λ. Thus, we introduce a new variable Z, which
is assigned to each output of a Black Box and symbolic (0, 1, X)-simulation
provides symbolic representations of functions λi(�q, �x, Z) and δj(�q, �x, Z).

Output Functions: If λi|�q=�q fix, �x=�x fix = 1 for some state (�q fix, �xfix) ∈ IB|�q|×|�x|, we
know that λi is 1 in this state independently from the replacement of the Black
Boxes, so we include (�q fix, �xfix) into SatA(yi) and SatE(yi). If λi|�q=�q fix, �x=�x fix = Z,
then the output λi may or may not be equal to 1 and thus, we include (�q fix, �xfix)
into SatE(yi), but not into SatA(yi). This leads to the following symbolic repre-
sentations:

χSatA(yi)(�q, �x) = ∀Z(
λi(�q, �x, Z)

)
, χSatE(yi)(�q, �x) = ∃Z(

λi(�q, �x, Z)
)
.

Transition Functions: An analogous argumentation leads to fixed transitions and
possible transitions of χR, since the outputs of the transition functions may be
definitely 1 or 0 (independently from the Black Boxes) or they may be unknown:
For χRA , representing only fixed transitions we obtain

χRA(�q, �x, �q ′) =
(|�q|−1∏

i=0

∀Z(
δi(�q, �x, Z) ≡ q′i

))
(3)

and for χRE representing at least all possible transitions we obtain

χRE (�q, �x, �q ′) =
(|�q|−1∏

i=0

∃Z(
δi(�q, �x, Z) ≡ q′i

))
. (4)

Note that χRA defined in this way underapproximates the set of all fixed transi-
tions due to well-known deficiencies of (0, 1, X)-simulation [11] and χRE overap-
proximates the set of all possible transitions (the same is true for χSatA(yi) and
χSatE(yi), respectively).

In order to compute SatA(ϕ) and SatE(ϕ) recursively for arbitrary CTL for-
mulas we need rules to evaluate operators EX, ¬, ∨, EG and EU .

Computing SatA(EXψ) and SatE(EXψ): Given SatA(ψ), the set of states which
definitely satisfy ψ for all Black Box replacements, we include into SatA(EXψ)
all states with a fixed transition to a state in SatA(ψ). It is easy to see that these
states definitely satisfy EXψ, independently from the replacement of the Black
Boxes. Likewise, we include all the states into SatE(EXψ) which have a possible
transition to a state in SatE(ψ). Fig. 7 illustrates the sets. Thus, we have

χSatA(EXψ)(�q, �x) =∃�q ′∃�x ′(χRA(�q, �x, �q ′) · (χSatA(ψ)| �q←�q ′
�x←�x ′

)
(�q ′, �x ′)

)

and χSatE(EXψ)(�q, �x) =∃�q ′∃�x ′(χRE (�q, �x, �q ′) · (χSatE(ψ)| �q←�q ′
�x←�x ′

)
(�q ′, �x ′)

)
.

300 Tobias Nopper and Christoph Scholl

Æ�
��

Æ�
��Æ�
���

�
�

�

�

�
�
�
��

�
��

���� ���������

���� ���������

���� �����	�	
�

���� �����	�	
�

�
��	�
� �����	�	
�

�����	
��	��

��
�	
��	��

�������
�����	
��	��

�������
��
�	
��	��

Fig. 7. Evaluation of SatA(EXψ) and SatE(EXψ)

Computing SatA(¬ψ) and SatE(¬ψ): SatE(ψ) is an overapproximation of all
states in which ψ may be satisfied for some Black Box replacement. Thus, we do
know that for an arbitrary state in IB|�q| × IB|�x| \ SatE(ψ) there is no Black Box
replacement so that ψ is satisfied in this state or, equivalently, ¬ψ is definitely
satisfied in this state for all Black Box replacements. This means that we can use
IB|�q| × IB|�x| \ SatE(ψ) as an underapproximation SatA(¬ψ). Since an analogous
argument holds for SatA(ψ) and SatE(¬ψ) we define

χSatA(¬ψ)(�q, �x) = χSatE(ψ)(�q, �x) and χSatE(¬ψ)(�q, �x) = χSatA(ψ)(�q, �x).

Evaluating ∨, EG and EU : It is easy to see that χSatA(ϕ1∨ϕ2) = χSatA(ϕ1) ∨
χSatA(ϕ2) and χSatE(ϕ1∨ϕ2) = χSatE(ϕ1) ∨ χSatE(ϕ2). Moreover, ϕ = EGψ and
ϕ = Eψ1Uψ2 can be evaluated by standard fixed point iterations according to
Figures 1a and 1b based on the evaluation of EX defined above (two separate
fixed point iterations for SatA and SatE).

Altogether we obtain an algorithm to compute approximations for SatA(ϕ)
and SatE(ϕ). According to the arguments given at the beginning of this sec-
tion we need just SatE(ϕ) to falsify realizability and we need just SatA(ϕ) to
prove validity. However, evaluation of negation shows that it is advisable to com-
pute both SatA(ϕ) and SatE(ϕ) in parallel, since we need SatA(ψ) to compute
SatE(¬ψ) and we need SatE(ψ) to compute SatA(¬ψ). Note that we do not need
to perform two separate model checking runs to compute SatE(ϕ) and SatA(ϕ).
By using an additional encoding variable e and defining χR = χRA + e · χRE ,
we can easily combine the two computations of χSatA(ϕ) and χSatE(ϕ) into one
computation for χSat(ϕ) = χSatA(ϕ)+e·χSatE(ϕ). More details can be found in [20].

Example: Again, we consider the incomplete circuit shown in Fig. 4. It is quite
obvious that in every state at least one of the two primary outputs y0 and
y1 has to be 0 independently from the Black Box implementation. This is ex-
pressed by the CTL formula ϕ := AG(¬y0 ∨ ¬y1). By recursively evaluating
the subformulas using the approximate algorithm described above, we obtain
χSatA(ϕ) = χSatE(ϕ) = 1 and thus we can prove that the formula is satisfied for
all possible replacements of the Black Box.

Symbolic Zi-Model Checking. We obtain a second and more accurate ap-
proximation algorithm by replacing symbolic (0, 1, X)-simulation by symbolic
Zi-simulation. In symbolic Zi-simulation we introduce a new variable Zi for
each output of a Black Box. The output functions λi(�q, �x, �Z) and transition

Approximate Symbolic Model Checking for Incomplete Designs 301

functions δj(�q, �x, �Z) will now depend on a vector �Z of additional variables. As
in the previous section, we include a state (�q fix, �xfix) ∈ IB|�q|×|�x| into SatA(yi)
iff λi|�q=�q fix, �x=�x fix = 1 and we include it into SatE(yi) iff λi|�q=�q fix, �x=�x fix = 1 or
λi|�q=�q fix, �x=�x fix depends on the variables �Z. The transition relation is computed
accordingly. The advantage of symbolic Zi-simulation lies in the fact that the
cofactors mentioned above may be 1 or 0 whereas the corresponding cofactors of
(0, 1, X)-simulation are equal to Z. In general this leads to smaller overapprox-
imations SatE(ϕ) and larger underapproximations SatA(ϕ). The formulas for a
recursive evaluation of a CTL formula are similar to the previous section (just
replace Z by �Z).

An additional improvement of approximations can be obtained by replacing
equation (4) by χRE (�q, �x, �q ′) = ∃�Z(∏|�q|−1

i=0

(
δi(�q, �x, �Z) ≡ q′i

))
.

Symbolic Output Consistent Zi-Model Checking. In this section we will
further improve the accuracy of the approximations presented in the last sec-
tion. Again, we will use the incomplete circuit in Fig. 4 (with flip flop initial-
ized to 0) to motivate the need for an improvement. Consider the CTL formula
EF (y1 ∧ ¬y1). It is easy to see that the algorithm given in the last section is
neither able to prove validity nor falsify realizability for the given incomplete
design and the given formula, since the output y1 will be 0 or 1 depending on
the output of the Black Box. However, it is clear that there will be no time
during the computation when y1 is both true and false. This problem can only
be solved if we change our state space by including the Black Box outputs into
the states of the Kripke structure, i.e. the state space is extended from (�q, �x) to
(�q, �x, �Z). In this way the Black Box output values �Z are constant within each
single state and therefore in our example y1 will have a fixed value for each state.

Detailed information on modifications which have to be made for this version
of the model checking procedure is omitted due to lack of space. It can be found
in [20].

5 Experimental Results

To demonstrate the feasibility and effectiveness of the presented methods we
implemented a prototype model checker called MIND (Model Checker for Incom-
plete Designs) based on the BDD package CUDD 2.3.1 [21]. MIND uses ‘Lazy
Group Sifting’ [22], a reordering technique particularly suited for model checking,
and partitioned transition functions [23].

For a given incomplete circuit and a CTL formula, MIND first tries to gain
information by using symbolic Z-model checking. In the case that no result can
yet be obtained, MIND moves on to symbolic Zi-model checking and later – if
necessary – to symbolic output consistent Zi-model checking.

For our experiments we used a class of simple synchronous pipelined ALUs
similar to the ones presented in [3] (see also Sect. 3, Fig. 3). In contrast to
[3], our pipelined ALU contains a combinational multiplier. Since combinational
multipliers show exponential size regarding to their width if represented by BDDs

302 Tobias Nopper and Christoph Scholl

Table 1. Faulty pipelined ALU with 16 registers: Falsifying the realizability of ϕ1 =
AG

(′′R2 :=R0 ⊕ R1
′′→(

(AX)2R0⊕(AX)2R1≡(AX)3R2

))
using symb. Z-model checking

�� ����� ����	
���� �
� ����������
����� ���������� �
� �� ����
�������� �� ����� ����	 �	���	 �������� �� ����� ����	

���� ��� ������ ��� 	
 ��� ������ ��� 	
 ��� ������ ��� 	

����
 ���� ���� ����� ���� ���� ���� ���� ����� ���� ���� ���� ���� ����� ���� ����

� ��� �������� ������ ����� ����� ��� ������� ����� ���� ���� �� ������� ����� ���� ����

� ��� �������� ������ ������ ������ ��� �������� ������ ������ ������ �� �������� ������ ����� �����

� ��� �������� ������� ������� ������� ��� �������� ������ ����� ����� ��� �������� ������ ����� �����

�� ��� �������� ������ ������ ������ ��� �������� ������ ����� �����
�� ��� �������� ������ ����� ������ ��� �������� ������ ����� ������
�� ���� �
�� ������ ���� ���� �������� ������ ������ ������ ��� �������� ������ ����� ������

�� ���� �������� ������ ������ ������� ��� �������� ������ ������ �������
�� ���� �
�� ������ ���� ��� ��������� ������ ������ �������

[2], symbolic model checking for the complete design can only be performed up
to a moderate bit width of the ALU.

In the following we compare a series of complete pipelined ALUs with 16
registers in the register file and varying word width to two incomplete pendants:
For the first, the adder and the multiplier are substituted by Black Boxes and
for the second, 12 of the 16 registers in the register file are masked out as well.

All experiments were performed on an Intel Pentium4 2.6GHz with 1GB
RAM and with a limited runtime of 12.000 seconds.

In a first experiment we inserted an error to the implementation of the XOR
operation, so it produced incorrect results. We then checked the CTL formula
ϕ1 = AG

(′′R2 :=R0⊕R1′′ →
(
(AX)2R0 ⊕ (AX)2R1 ≡ (AX)3R2

))
which corre-

sponds to formula (1) in [3]. It says that whenever the instruction R2 :=R0⊕R1
is given at the inputs, the values in R2 three clock cycles in the future will
be identical to the exclusive-or of R0 and R1 in the state two clock cycles in
the future (R0, R1 and R2 are the respective first, second and third register
in the register file). This property is false for our complete, but faulty design,
independently of how the adder and multiplier function are implemented. Due
to that, ϕ1 is satisfied for no possible Black Box replacement in the incomplete
pipelined ALUs, thus not realizable. Note that the Black Boxes lie inside the
cone of influence for this CTL formula.

In Tab. 1 we give the results for both complete and incomplete pipelined
ALUs with varying word width tested with ϕ1. For each word width and each
pipelined ALU, the table shows the number of BDD variables (‘BDD vars’),
the peak memory usage, the peak number of BDD nodes, the time spent while
reordering the BDD variables (‘RO time’) and the overall time in CPU seconds.

As mentioned above, a multiplier has a large impact on BDD size and thus
on computation time. On account of this, the model checking procedure for
complete pipelined ALUs with multipliers of word width beyond 8 bit exceeds
the time limit. In contrast to that, the incomplete pipelined ALUs without adder
and multiplier can still be verified (using symbolic Z-model checking) and ϕ1

can be proven to be unrealizable up to a word width of 48 bit.
The results for the incomplete pipelined ALU, in which most of the register

file has been replaced by Black Boxes as well, show a further speedup compared
to the complete pipelined ALU, making it possible to prove the unrealizability
of ϕ1 up to a word width of 64 bit. This is mainly due to the decrease of needed

Approximate Symbolic Model Checking for Incomplete Designs 303

Table 2. Correct pipelined ALU with 16 registers: Proving the validity of ϕ1 =
AG

(′′R2 :=R0 ⊕ R1
′′→(

(AX)2R0⊕(AX)2R1≡(AX)3R2

))
using symbolic output consis-

tent Zi-model checking

�� ����� ����	
���� �
� ����������
����� ���������� �
� �� ����
�������� �� ����� ����	 �	���	 �������� �� ����� ����	

���� ��� ������ ��� 	
 ��� ������ ��� 	
 ��� ������ ��� 	

����
 ���� ���� ����� ���� ���� ���� ���� ����� ���� ���� ���� ���� ����� ���� ����

� ��� �������� ������ ����� ����� ��� �������� ����� ����� ����� �� ������� ����� ���� ����

� ��� �������� ������ ������ ������ ��� �������� ������ ������ ������ ��� �������� ������ ����� �����

� ��� �������� ������� ������� ������� ��� �������� ������ ������ ������ ��� �������� ������ ����� ������

�� ��� �������� ������ ������ ������ ��� �������� ������ ����� ������
�� ��� �������� ������ ������ ������� ��� �������� ������ ����� ������
�� ���� �
�� ������ ���� ���� �������� ������ ������� ������� ��� �������� ������ ������ �������

�� ���� �������� ������ ������� ������� ���� �������� ������ ������ �������
�� ���� �
�� ������ ���� ���� �������� ������ ������ �������

BDD variables, caused by the reduction of many qi and q′i variables to a single Z
variable and the simplification of the transition function, which does no longer
depend on the input functions of the registers that have been masked out.

Thus, we are able to mask out the most complex parts of the pipelined ALU
– the multiplier and the adder – and most of the register file without losing any
significance of the result.

In a second experiment we considered the same CTL formula as above, yet
this time we used a correct implementation of the XOR operation. In this case,
ϕ1 is satisfied for the complete and valid for the incomplete pipelined ALUs.

In Tab. 2 we give the results for both complete and incomplete pipelined
ALUs tested with ϕ1. In this example, symbolic Z-model checking and symbolic
Zi-model checking were not able to prove the validity of ϕ1. However, in all
cases the formula could be proved by output consistent Zi-model checking, which
extends the state variables by the Zi variables. So the values given in Tab. 2 are
the overall values for Z-model checking, Zi-model checking and output consistent
Zi-model checking, since the implementation considers the methods one after the
other until one is able to provide a definite result. Table 2 clearly shows that our
method outperforms the conventional model checking of the complete version –
for the same reasons as given above.

We also checked ϕ2 = AG
(
(EX)2R ≡ (AX)2R

)
from [3], which is true for

the complete design and valid for the incomplete designs, as already mentioned
in Sect. 3. This can be proven by using output consistent Zi-model checking.
Since the results are similar to the ones given above, detailed information on the
results is omitted due to lack of space and can be found in [20].

Taken together, the results show that by masking out expensive parts of the
pipelined ALU we are still able to provide correct (i.e. sound) and useful results,
yet at shorter time and with fewer memory consumption.

6 Conclusions and Future Work

We introduced three approximate methods to realize symbolic model checking
for incomplete designs. Our methods are able to provide sound results for fal-
sifying realizability and for proving validity of incomplete designs (even if the
Black Boxes lie inside the cone of influence for the considered CTL formula).

304 Tobias Nopper and Christoph Scholl

Experimental results using our prototype implementation MIND proved that
the need for computational resources (memory and time) could be substantially
decreased by masking complex parts of a design and by using model checking
for the resulting incomplete design. The increase in efficiency was obtained while
still providing sound and useful results.

At the moment we are working on further improvements concerning the ac-
curacy of our approximate symbolic model checking methods. Starting from a
concept for exact symbolic model checking of incomplete designs (containing sev-
eral Black Boxes with bounded memory) we develop appropriate approximations
trading off accuracy and computational resources.

References

1. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite–state
concurrent systems using temporal logic specifications. ACM Trans. on Program-
ming Languages and Systems, 8(2):244–263, 1986.

2. R.E. Bryant. Graph - based algorithms for Boolean function manipulation. IEEE
Trans. on Comp., 35(8):677–691, 1986.

3. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, 1992.

4. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.

5. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new Symbolic
Model Verifier. In N. Halbwachs and D. Peled, editors, Proceedings Eleventh Con-
ference on Computer-Aided Verification (CAV’99), number 1633 in Lecture Notes
in Computer Science, pages 495–499, Trento, Italy, July 1999. Springer.

6. The VIS Group. VIS: A system for verification and synthesis. In Computer Aided
Verification, volume 1102 of LNCS, pages 428–432. Springer Verlag, 1996.

7. K.L. McMillan. The SMV system - for SMV version 2.5.4. Carnegie Mellon Uni-
versity, Nov. 2000.

8. K. L. McMillan. The SMV language. Cadence Berkeley Labs.

9. T. Villa, G. Swamy, and T. Shiple. VIS User’s Manual. Electronics Research Lab-
oratory, University of Colorado at Boulder.

10. A. Pnueli and R. Rosner. Distributed systems are hard to synthesize. In 31th IEEE
Symp. Found. of Comp. Science, pages 746–757, 1990.

11. C. Scholl and B. Becker. Checking equivalence for partial implementations. In
Design Automation Conf., pages 238–243, 2001.

12. Michael Huth, Radha Jagadeesan, and David Schmidt. Modal transition systems:
A foundation for three-valued program analysis. In Sands D., editor, Proceedings of
European Symposium on Programming, number 2028 in Lecture Notes in Computer
Science, pages 155+. Springer, April 2001.

13. J.R. Burch and D.L. Dill. Automatic verification of microprocessor control. In
Computer Aided Verification, volume 818 of LNCS, pages 68–80. Springer Verlag,
1994.

14. K. Sajid, A. Goel, H. Zhou, A. Aziz, and V. Singhal. BDD-based procedures for a
theory of equality with uninterpreted functions. In Computer Aided Verification,
volume 1447 of LNCS, pages 244–255. Springer Verlag, 1998.

Approximate Symbolic Model Checking for Incomplete Designs 305

15. S. Berezin, A. Biere, E.M. Clarke, and Y. Zhu. Combining symbolic model checking
with uninterpreted functions for out-of-order processor verification. In Int’l Conf.
on Formal Methods in CAD, pages 369–386, 1998.

16. R.E. Bryant, S. German, and M.N. Velev. Processor verification using efficient re-
ductions of the logic of uninterpreted functions to propositional logic. ACM Trans-
actions on Computational Logic, 2(1):1–41, 2001.

17. A. Jain, V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and M. Hsiao. Testing,
verification, and diagnosis in the presence of unknowns. In VLSI Test Symp., pages
263–269, 2000.

18. M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital Systems Testing and
Testable Design. Computer Science Press, 1990.

19. C. Scholl and B. Becker. Checking equivalence for partial implementations. Tech-
nical Report 145, Albert-Ludwigs-University, Freiburg, October 2000.

20. T. Nopper and C. Scholl. Symbolic model checking for incomplete designs. Tech-
nical report, Albert-Ludwigs-University, Freiburg, March 2004.

21. F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3.1. University of
Colorado at Boulder, 2001.

22. H. Higuchi and F. Somenzi. Lazy group sifting for efficient symbolic state traversal
of FSMs. In Int’l Conf. on CAD, pages 45–49, 1999.

23. R. Hojati, S.C. Krishnan, and R.K. Brayton. Early quantification and partitioned
transition relations. In Int’l Conf. on Comp. Design, pages 12–19, 1996.

