
Development and Analysis of Decision Heuristics

for an Interval Constraint Solver

Handling Non-linear Arithmetic

Diploma Thesis

Linus Feiten

April 2010

Department of Computer Science, Albert-Ludwigs-Universität Freiburg
Georges-Köhler-Allee 51, 79110 Freiburg im Breisgau

Foreword

I would like to thank all groups and individuals who supported me during my Computing
Science studies leading to the completion of this thesis. First of all my parents, without
whose ongoing support and understanding my academic and private path of life would not
have been possible in the way it has been. Then, my sister, brother and the whole extended
family, whose backing has consciously but probably even more subconsciously carried me
through these years.
A dept of gratitude is owed to my friends and fellow students in Freiburg: Andy, Alex,
Ben, Clemens, Dosn, Henni, Jakob, Jan, Kosta, Moritz, Najib, Nick, Philip, Sebastian,
Seppo and Stefan, who went this way or parts of it with me together. Many thank also go
to my friends in Aberdeen, who warmly welcomed me there during my Erasmus year. It
is owed to them that I feel fit to write this thesis in English.
I thank Prof. Bernd Becker and Prof. Christoph Scholl for excellent academic teaching
and for having invoked my interest for Computer Architecture in the first place, and my
supervisors Stefan Kupferschmid and Tobias Schubert, without whose commitment and
catching enthusiasm this thesis would not have been possible. Heartfelt thanks are also
owed to Dr. Ilia Polian for outstanding teaching and for being of invaluable help together
with Dr. Sudhakar Reddy in enabling my internship with Mentor Graphics India. Finally
thanks to all staff members of IRA and ABS in Freiburg, who have always been most
friendly and cooperative!

Freiburg im Breisgau, April 2010 Linus Feiten

Abstract in German

Bei iSAT [1, 9, 10] handelt es sich um einen SMT-Solver, der Boolsche Kombinationen von
linearen und nichtlinearen Constraints auf ihre Erfüllbarkeit prüft. Die Variablen in den
Constraints können Boolsche, ganzzahlige oder reelwertige Variablen sein und haben zu je-
dem Zeitpunkt der Berechnungen ein abgeschlossenes Interval zugewiesen. Die Constraints
können transzendentale Funktionen enthalten, wodurch es sich um eine im allgemeinen un-
entscheidbare Theorie handelt. Anders als ein lediglich mit Boolschen Variablen operieren-
der SAT-Solver, kann iSAT daher das Ergebnis “unknown” liefern. Das Verfahren zur
Lösung entspricht dem DPLL-Algorithmus [7, 8], aber das Propagieren von Variablenbele-
gungen ist auf die Intervallarithmetik erweitert. Da die Variablen keine Punktwerte son-
dern Intervale haben, können sie im Verlauf des Lösungsfortschittes mehrfach entschieden
werden.
In dieser Arbeit wurden verschiede Heuristiken entwickelt, implementiert und getestet,
welche die Reihenfolge festlegen, in der die Variablen entschieden werden. Diese Reihen-
folge hat einen großen Einfluss darauf, wie schnell eine Lösung gefunden wird. Als Resultat
steht eine große Auswahl an neuen Heuristiken und Zusatzoptionen zur Verfügung, von de-
nen sich bestimmte als sehr vorteilhaft erwiesen haben, um die benötigte Gesamtlaufzeit
zur Lösung der 40 Testbenchmarks um annähernd 50% zu beschleunigen.

Abstract

The solver iSAT [1, 9, 10] is an SMT solver, which computes the satisfiability of Boolean
combinations of linear and non-linear constraints. These constraints can contain Boolean,
integer or real valued variables, which have bounded intervals assigned to them at any
step of the algorithm. Furthermore, the constraints can contain transcendental functions,
which makes the theory generally undecidable. Thus, iSAT might also return the result
“unknown”. The solving procedure is equivalent to the DPLL algorithm [7, 8]. But the
propagation of variable assignments is extended to handle interval arithmetic. As variables
have no single values but instead intervals assigned to them, they can be decided several
times in course of the solving process.
In this thesis, several different heuristics were developed and tested, which determine the
order in which the variables are decided. This order can have a great impact on the runtime
of the solver. As a result, a big range of new heuristics and additional options is available,
some of which have proven to be very beneficial to reduce the overall runtime of 40 tested
benchmarks by almost 50%.

Contents

1 Introduction 1

2 Fundamentals 3
2.1 Propositional logic formulas . 3
2.2 Boolean SAT and the DPLL algorithm . 5
2.3 2-watched-literals . 11
2.4 Decision strategies in Boolean SAT . 12

2.4.1 Böhm . 12
2.4.2 Jeroslow-Wang . 13
2.4.3 DLIS and DLCS . 13
2.4.4 VSIDS . 14

2.5 Bounded Model Checking and SAT . 15
2.6 iSAT . 16

2.6.1 Variable intervals and constraints . 16
2.6.2 The algorithm . 18

3 iSAT Decision Heuristics 21
3.1 Heuristics deciding by variable attributes 21

3.1.1 BMC-forward/backward . 21
3.1.2 Dominant-first . 22
3.1.3 Boolean-first/last . 24
3.1.4 Integer/Real-first/last . 25

3.2 Heuristics deciding by variable interval . 25
3.2.1 Small-interval-first/last . 25
3.2.2 Relative-small-interval-first/last . 26
3.2.3 Shrunk-interval-first/last . 26

3.3 Heuristics deciding by occurrences in conflict clauses 26
3.3.1 Most occurrences in conflict clauses 28
3.3.2 Most occurrences in watched constraints of conflict clauses 28
3.3.3 Most occurrences in shortest conflict clauses 28
3.3.4 Jeroslow-Wang: Most occurrences in many short conflict clauses . . 28

3.4 Miscellaneous heuristics . 28
3.4.1 Natural . 28
3.4.2 VSIDS . 29

vii

Contents

3.4.3 max-cand, sum-cand . 29

4 Additional options 31
4.1 Resorting options . 31

4.1.1 Resort after i decisions (--sortafter=i) 32
4.1.2 Resort after conflict (--resort-ac) . 32
4.1.3 Dynamic resort (--dynamic) . 32

4.2 Split Candidate Lists . 32
4.2.1 --sb-cand-true . 38
4.2.2 --zero-cand . 38
4.2.3 Candidate split list specific heuristics 38

4.3 Ignore true or implied clauses . 39
4.4 Ignore false constraints . 39
4.5 Strict . 40
4.6 Pre-Minimal Splitting Width . 41

5 Experiments 43
5.1 Procedures and Methodology . 43
5.2 Comparison by overall time and other values 44
5.3 Correlations between heuristics and between benchmark instances 49

6 Conclusions and future work 55

Bibliography 56

List of Figures 59

List of Tables 61

viii

Chapter 1

Introduction

The Boolean satisfiability problem (SAT) is of great importance in contemporary electronic
design automation [4, 19] but also in AI planning [14, 15] and other fields where NP-
complete problems need to be solved in reasonable time. This is due to the fact that
every NP-complete problem can be transformed with only polynomial effort into a Boolean
formula whose satisfiability is equivalent to the solution of the respective NP-complete
problem. In the nineties of the 20th century, there has been a big leap in the field of
so called SAT solver programs, which allow for the handling of bigger and bigger SAT
instances (i.e. Boolean formulas). The continuing mission of the SAT community is to
develop new SAT solvers which can solve the SAT problem faster and handle bigger SAT
instances.
An extension of Boolean SAT is SAT modulo theories [2]. There, instead of only Boolean
variables, it is possible to have constraints within the formula which belong to a certain
background theory. According to this background theory, each such atom can be evaluated
to true or false under certain circumstances. (If the background theory is undecidable, the
constraints can also remain neither true nor false.) Such atoms can be handled like Boolean
variables by a SAT solver algorithm. One way of applying SAT modulo theories with great
practical relevance is to take the undecidable domain of non-linear constraints involving
transcendental functions as background theory. A constraint can thus be any equation
or inequation consisting of variables and real numbers like for example x < 2 ∗ y7 + 5.
Whether this constraint evaluates to true, false or neither depends on the intervals which
restrict the values of the variables it contains.
The solver iSAT [1, 9, 10] is a program which tries to compute for a given Boolean combina-
tion of non-linear constraints if there exists a value assignment for the occurring variables,
such that the whole formula evaluates to true. If non such assignment exists, iSAT returns
that the formula is unsatisfiable. As the theory of non-linear constraints involving tran-
scendental functions is not decidable it is also possible that iSAT returns “unknown” as a
result. The way the algorithm works is that at each step a variable is chosen for a possible
new assignment of its interval. The act of assigning a new interval to a variable is called
a decision.
The order in which variables are chosen for decisions has a great impact on the time it takes
to come to a solution. A heuristic according to which the next decision variable is chosen
is called a decision heuristic. For pure Boolean SAT, decision heuristics have already been

1

Chapter 1 Introduction

researched to a degree at which a certain type of heuristic has emerged as yielding the best
empirical results. It is, however, not necessarily the case that an adoption of this heuristic
type will also work best for a SAT modulo theory solver like iSAT.
In course of the work for this thesis, we invented and implemented several different types
of decision heuristics for the interval-based non-linear arithmetic domain, which will be
presented in Chapter 3 and 4. As an introduction, Chapter 2 will include the presentation
of different topics whose concepts are necessary for understanding the rest of this work.
Chapter 5 will present and interpret the empirical results gathered through the final work
phase and Chapter 6 will consist of a summary and future prospects.

2

Chapter 2

Fundamentals

2.1 Propositional logic formulas

To understand the terminology used in this thesis, some foundational aspects of Boolean
formulas need to be introduced. Most of the time we will say formula or Boolean formula
when we mean propositional logic formula. Furthermore, we will use ∧ and ∨ for the
propositional connectives and and or and we will use x for the negation of any propositional
expression x. An example for such a formula over a set of variables V = {a, b, c} could be
f = (a ∧ b) ∨ (a ∨ c).
An assignment for a formula is a function V → {true, false} that assigns true or false to
each variable v ∈ V . For such an assignment the propositional expression (x ∧ y) is true,
if and only if both x and y are true. If either x or y is false, (x ∧ y) is false. Similarly,
(x∨ y) is false, if and only if both x and y are false. If either x or y is true, (x∨ y) is true.
The negation x of a propositional expression x is true, if and only if x is false; and false,
if and only if x is true.
To decide whether there exists an assignment such that any Boolean formula evaluates to
true is known to be NP-complete [6]. This means that there is no known algorithm to
produce an answer and to solve the so called SAT (for satisfiability) problem in polynomial
time. However, there have been major progresses beginning in the nineties of the 20th cen-
tury regarding SAT solver programs, which use elaborated search space pruning, learning
and branching techniques, such that results for many SAT instances can be computed in
reasonable time despite NP-completeness [11, 18, 20, 23].
For most modern SAT solvers the formula has to be in conjunctive normal form (CNF). A
CNF is a conjunction of clauses (i.e. clauses connected by ∧’s) and a clause is a disjunction
of literals (i.e. literals connected by ∨’s). A literal is a variable v in its positive phase v or
in its negative phase v. A literal can be

• true ⇔ The literal is in positive phase and its variable is assigned true
or the literal is in negative phase and its variable is assigned false.

• false ⇔ The literal is in positive phase and its variable is assigned false
or the literal is in negative phase and its variable is assigned true.

• unassigned ⇔ The variable of the literal is unassigned.

3

Chapter 2 Fundamentals

A clause can be

• true or satisfied ⇔ At least one literal in the clause is true.

• false or unsatisfied ⇔ All literals in the clause are false.

• unresolved ⇔ At least one literal in the clause is unassigned
and no literal in the clause is true.

In order for a CNF to be satisfied, every clause in it has to be satisfied. This means that
in each clause there has to be at least one true literal.
Every propositional logic formula can be transformed into an equivalent CNF through
expansion and application of the boolean distributive law. That, however, has in the worst
case an exponential complexity and is therefore not efficiently applicable. But there is a
method with only polynomial complexity, which transforms any formula f into a new CNF
with the same satisfiability properties as f . And the size of the new formula only grows
linearly in the size of the original one [22]. To achieve this, new auxiliary variables have
to be added to the variables of the original formula. The formula f = (a ∧ b) ∨ (a ∨ c),
for example, can be transformed into the following CNF using the additional auxiliary
variables U = {d, e, f}. And the process of its creation ensures that this new formula
Cnf(f, U) is satisfiable if and only if the original formula f is satisfiable.

Cnf(f, U) = d ∧(d ∨ e) ∧ (d ∨ f) ∧ (d ∨ e ∨ f)
∧(e ∨ a ∨ b) ∧ (e ∨ a) ∧ (e ∨ b)
∧(f ∨ a) ∧ (f ∨ c) ∧ (f ∨ a ∨ c)

In this example, Cnf(f, U) can be reduced even further without changing its satisfiability.
This allows us to introduce another concept which is relevant for the work presented in
Chapter 4.3. It is that a clause can be implied by another clause1. Consider two clauses
c1 and c2 of a CNF and let c1 include (among others) all literals which are included in c2:

c1 = c2 ∨ R1

with R1 being the rest of c1. If this is the case, we say “c2 implies c1” or “c1 is implied by
c2”. Let for example c1 and c2 be the following clauses:

c1 = (a ∨ b ∨ c ∨ d ∨ e), c2 = (a ∨ b ∨ d)

Then R1 would be (c ∨ e) and we say “c1 is implied by c2”. It is obvious that every
assignment satisfying c2 automatically satisfies the implied clause c1 as well. Hence, we do
not alter the satisfiability of a CNF, if we remove all implied clauses.
In the example above, both (d ∨ e) and (d ∨ f) are implied by the single literal clause d.
Thus, the CNF can be simplified even more to:

Cnf(f, U) = d ∧ (d ∨ e ∨ f) ∧ (e ∨ a ∨ b) ∧ (e ∨ a) ∧ (e ∨ b) ∧ (f ∨ a) ∧ (f ∨ c) ∧ (f ∨ a ∨ c)
1In other literature the concept of clauses implying other clauses is called subsumption. Instead of “c2

implies c1” these authors say “c2 (syntactically) subsumes c1” or accordingly “c1 is (syntactically)
subsumed by c2”. We have chosen the terminology of implication.

4

2.2 Boolean SAT and the DPLL algorithm

2.2 Boolean SAT and the DPLL algorithm

This section is supposed to give the reader an idea of several terms from the field of
Boolean SAT solvers, which will be picked up on several occasions when our heuristics are
explained in Chapter 3. These terms will in particular be: decision, decision level, unit
clause, Boolean constraint propagation, implication, implication graph, conflict, conflicting
clause, learned conflict clause, conflict-driven learning, and backtracking.
It would go beyond the scope of this work to fully cover all possible features and variations
of the following techniques. The aim of this section is merely to evoke an intuition, which
suffices to understand what follows in the remainder of the thesis. All terms and techniques
shall be demonstrated on the basis of one single example. Let the CNF f be given as:

f = c1 ∧ c2 ∧ c3 ∧ c4 ∧ c5 ∧ c6 ∧ c7 ∧ c8

With its clauses c1, ..., c8 being:

c1 = (x1 ∨ x2)
c2 = (x3 ∨ x5)
c3 = (x4 ∨ x7)
c4 = (x6 ∨ x7)
c5 = (x2 ∨ x6 ∨ x7)
c6 = (x3 ∨ x4 ∨ x7)
c7 = (x4 ∨ x6 ∨ x7)
c8 = (x2 ∨ x4 ∨ x6 ∨ x7)

Thus, there are 7 Boolean variables, each of which can be assigned the value true or false.
In order for f to be satisfied, at least one literal in each clause has to evaluate to true. The
question is: Does an assignment for all variables exist, such that all clauses c1, ..., c8 are
satisfied? A naive way to come to an answer would be to try all possible assignments. As
each variable can assume two different values (true or false), there are 27 = 128 different
possible assignments. These can be represented as the leaves of a binary tree, in which
each node represents the decision of a single variable. The left branch of a node stands for
assigning false and the right branch for assigning true to the respective variable. Figure
2.1 shows such a tree for only 5 variables. The structure of the tree is referred to as the
search space.
The number of possible assignments is always 2 to the power of the number of variables; it
grows exponentially with the number of variables. As a consequence, it is always possible
to create problems which cannot be solved in humanly time, no matter how fast a physical
computer is. That is, if the algorithm is to simply try out all the 2#variables assignments.
Finding a satisfying assignment for a CNF belongs to the problem class of so called NP-
complete problems [6]. Expressed in a simplified way this means, that a non-deterministic

5

Chapter 2 Fundamentals

x1

0 1

leaf representing the assignment
x1 = false (0), x2 = true (1), x3 = true (1), x4 = false (0), x5 = true (1)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x2

0 1

x3

0 1 0 1

0 1

x4

x5x5

x4

x5x5

x3

0 1 0 1

0 1

x4

x5x5

x4

x5x5

x2

0 1

x3

0 1 0 1

0 1

x4

x5x5

x4

x5x5

x3

0 1 0 1

0 1

x4

x5x5

x4

x5x5

edge/branch representing the
decision of assigning
false (0) to x1

edge/branch representing the
decision of assigning

true (1) to x1

Figure 2.1: A complete binary tree representing the search space in the search
for an assignment with 5 Boolean variables. One leaf is picked as
a demonstration example of how leaves represent assignments.

algorithm can find a solution in polynomial time. Being non-deterministic the algorithm
“guesses” (or knows from an oracle) a suitable path from the root of the binary tree
(search space) to one of the leaves which stands for a satisfying assignment. And the check
if this leaf is representing a satisfying assignment can be done in polynomial time. But in
real physical computers, only deterministic algorithms are possible. Hence, the “parallel”
checks of all possible assignments done by the theoretical non-deterministic machine are
not possible in reality.

Even though it has not yet been proven that a deterministic algorithm for solving NP-
complete problems cannot exist, most people believe that there is no way of solving them
in polynomial time with a deterministic machine, because such an algorithm has not yet
been found. So the only chance of getting a solution for the SAT problem seems to be the
expensive way of trying out all possible assignments.

In recent years, however, there have been great achievements in the research of SAT solving
algorithms deploying techniques which allow them to prune great portions of the search
space, such that many possible assignments do not need to be considered at all [11, 18, 20,
23]. How this is possible shall be shown on the basis of our above example, which we are
now coming back to.

The DPLL algorithm is named after its inventors Davis, Putnam, Logemann, and Love-
land [7, 8]. Its most basic functionality can be declared with the following simple steps:

6

2.2 Boolean SAT and the DPLL algorithm

1. Decide an unassigned variable, i.e. assign the value true or false to it.

2. Check if assignments of other unassigned variables have to be made in order for the
whole CNF not to become false. This is referred to as the deduction step or also
Boolean constraint propagation (BCP) or unit-propagation.

3. Check if the following conditions apply and take the appropriate actions:

• If at least one clause of the CNF evaluates to false under the current assignment,
undo the variable decision causing this conflict and try the respectively other
value for this variable; unless both values have already been tried, in which case
an even earlier decision needs to be undone.

• If all values for all variables have been tried, return “unsatisfiable” (unsat).
• If all variables are assigned and the CNF is not false, return “satisfiable” (sat)

and the current assignment as satisfying assignment.
• Otherwise, go back to step 1 and decide the next unassigned variable.

Let us assume that the DPLL algorithm working in our example decides the variables in
ascending order of their indices: first x1, then x2, and so forth. Let us furthermore assume,
that at each decision the first value to be tried for an unassigned variable is the value false.
Hence, the first act of our example solver is to assign false to x1.

x1 on decision level 1 x1

Implication graph:Progress in search space:

x1@1 x2@1
c1

c1 = (x1 ∨ x2)

x2
As x2 is implied,

x3 is decided
next.

x3

Implication of x2

prunes portion of
search space,
in which
x2 is
false.

Figure 2.2: DPLL example: The progress in the search space and the impli-
cation graph after assigning false to x1 at decision level 1. The
assignment for x2 is implied.

This means we go down the left branch from the root node, which represents the decision
of x1 in our search space tree (see the left side of Figure 2.2). As this has been the first
decision, we say that it has taken place at decision level 1. Next, the SAT solver enters step
2, in which it deduces the implications2 occurring due to the previously made decision, if
there are any.

2The term “implication” in this context is not to be mistaken with what is meant, when one clause is
implied by another clause, as explained on page 4.

7

Chapter 2 Fundamentals

In our set of clauses listed on page 5, we see that the clause c1 = (x1 ∨ x2) only consists of
two literals, one of which is x1. Now, that x1 has been assigned false, the literal x1 evaluates
to false as well. This leaves the clause c1 with only one unassigned literal, namely x2. In
order for c1 to be satisfied, the literal x2 has to evaluate to true, because otherwise, with x1

already being false, c2 would be false and with it the whole CNF. A clause, whose literals
are under the current assignment all but one false and whose remaining literal belongs to
an unassigned variable, is called a unit clause.
Every unit clause causes what is called an implication. In our case, c1 has become a unit
clause after the first decision. Hence, the decision of assigning the value false to x1 at
decision level 1 implies that the value true is assigned to x2. This is commonly illustrated
in an implication graph [18, 24] (see the right side of Figure 2.2).
An implication graph is a directed graph, in which each node represents the assignment of a
variable. Each edge from one node to another represents that the assignment of the source
node implied the assignment of the sink node. The label of an edge designates, which
clause was responsible for the implication by becoming a unit clause after the source node
assignment. For readability reasons, we are using the following notation in our implication
graph: If the value true is assigned to a variable xi at decision level k, we write (xi@k). If
false is assigned, we write (xi@k).
Thus, our implication graph has two nodes after the first decision: One node is (x1@1),
which stands for the decision of assigning false to x1 at decision level 1. It does not have
any predecessor nodes, as it was a decision and hence not implied by any other assignment.
The other node (x2@1) has (x1@1) as its predecessor. Their connecting edge is labelled
with c1 representing that assigning false to x1 has turned c1 into a unit clause, which in
turn implied the assignment of true to x2 at decision level 1.
As assigning false to both x1 and x2 will make the whole CNF false, the portion of the
search space in which these values are assigned does not have to be explored any further.
Because it is not necessary to try assignments for the remaining unassigned variables,
when the CNF already evaluates to false under the currently assigned variables. The
implication of assignments through unit clause deduction has exactly this effect of search
space pruning.
No other clause but c1 is directly affected by the assignment of x1. The implied assignment
of x2, however, also has effects on c5 = (x2 ∨ x6 ∨ x7) and c8 = (x2 ∨ x4 ∨ x6 ∨ x7), in
which x2 occurs in negative phase. As x2 has been assigned true, these two occurrences
now evaluate to false. But c5 and c8 are still not unit, because they still have more than
one unassigned literal each. Thus, no further implications take place, which is the end of
step 2 of our simplified DPLL declaration.
As none of the conditions described under step 3 apply, the algorithm comes back to step
1, in which it decides the next unassigned variable. Actually, x2 would have been the next
variable to decide according to the decision order. But as x2 has already been assigned
through implication, the next unassigned variable to decide is x3.
Hence, x3 is set to false at decision level 2. The only two clauses in which x3 occurs are
c2 = (x3∨x5) and c6 = (x3∨x4∨x7). As the occurrence of x3 in c2 is in its negative phase,

8

2.2 Boolean SAT and the DPLL algorithm

x1 on decision level 1 x1

Implication graph:Progress in search space:

x1@1 x2@1
c1

x3@2

x2

x3 on decision level 2

x4

x3

x2 implied

through c1

Figure 2.3: DPLL example: The progress in the search space and the implica-
tion graph after assigning false to x3 at decision level 2.

this clause is now satisfied. In c6, x3 evaluates to false but c6 still has two unassigned
literals. Thus, no implication is deduced. Step 3 is also skipped, as none of its conditions
are met. We insert the decision of assigning false to x3 at decision level 2 as (x3@2) in the
implication graph (see Figure 2.3).
The next variable to decide (at decision level 3) is x4, which is thereby set to false. The
clauses affected by this decision are c3 = (x4 ∨ x7), c6 = (x3 ∨ x4 ∨ x7), c7 = (x4 ∨ x6 ∨ x7),
and c8 = (x2 ∨ x4 ∨ x6 ∨ x7). As the occurrence of x4 in c3 and c6 is in its negative phase,
these two clauses are now satisfied. c7 and c8 are left with only two unassigned literals
each (x2 in c8 is already assigned true). So, no unit clauses were generated (condition for
step 2), nor has any clause become false (condition for step 3). Proceeding to decision
level 4, x5 is assigned false. The only occurrence of x5 is in c2 = (x3 ∨ x5), which was
already satisfied due to the assignment of false to x3. The assignments of x4 and x5 are
illustrated in Figure 2.4.
On decision level 5, x6 is assigned false. This affects c4 = (x6 ∨ x7), c5 = (x2 ∨ x6 ∨ x7),
c7 = (x4 ∨ x6 ∨ x7), and c8 = (x2 ∨ x4 ∨ x6 ∨ x7). As the occurrence of x6 in c7 and in c8

is in negative phase, these two clauses are now satisfied. c4 and c5, however, in which x6

occurs in positive phase, have both become unit clauses: The only unassigned literals are
x7 in c4 and x7 in c5. Thus, in order to satisfy c4, false has to be assigned to x7, and in
order to satisfy c5, it has to be true. Each unit clause implies a different assignment! This
is what is called a conflict (see Figure 2.5) and c4 and c5 are called the conflicting clauses.
An analysis of the implication graph shows that the cause of this conflict is not just due to
assigning false to x6 but that the conflict might not have occurred, if x1 was not assigned
false. Thus, it can be asserted that assigning false to x1 and false to x6 always causes this
conflict. To prevent this assignment in the future, a new clause is added to the CNF:

c9 = (x1 ∨ x6)

This clause is called a learned conflict clause. It becomes unit as soon as either x1 or x6 is

9

Chapter 2 Fundamentals

x1 on decision level 1 x1

Implication graph:Progress in search space:

x1@1 x2@1
c1

x2

x3 on decision level 2

x4

x3

x4@3

x5@4

x4 on decision level 3

x5x5 on decision level 4

x6

x3@2

x2 implied

through c1

Figure 2.4: DPLL example: The progress in the search space and the implica-
tion graph after assigning false to x4 at decision level 3 and false
to x5 at decision level 4.

x1 on decision level 1 x1

Implication graph:Progress in search space:

x1@1 x2@1
c1

x2

x3 on decision level 2

x4

x3

x4@3

x5@4

x4 on decision level 3

x5x5 on decision level 4

x6

x3@2

x6 on decision level 5 x6@5

c4 = (x6 ∨ x7)
c5 = (x2 ∨ x6 ∨ x7)

x7@5

x7@5

c5

c5

c4

Conflict:
x7 cannot be
true and false.

learn conflict clause:
c9 = (x1 ∨ x6)

x2 implied
through c1

Figure 2.5: DPLL example: Assigning false to x6 at decision level 5 causes a
conflict.

10

2.3 2-watched-literals

assigned false and thereby implies that the respectively other variable is assigned true.
Conflict-driven learning was first incorporated independently in the SAT solvers GRASP [18]
and rel-sat [3]. But the novelty of these solvers was not just the learning of conflict clauses
but also a technique called conflict-driven backtracking. Backtracking means that assign-
ments are undone, which were made in previous decisions. The solver jumps back to a
previous decision level undoing all assignments made from that decision level on. For that
reason, backtracking is also referred to as backjumping in some literature.

2.3 2-watched-literals

The 2-watched-literals method is a technique to quickly identify unit clauses in the Boolean
constraint propagation (BCP) phase of the SAT solver. Before this method was invented,
there were counter-based solutions, which track the number of literals evaluating to false
for each clause. If a counter reaches the overall number its clause’s literals minus 1, the
clause is unit unless the remaining literal evaluates to true. Such counter-based BCP
methods were employed in solvers such as GRASP [18], rel-sat [3], and satz [16].
The major disadvantage of these techniques becomes apparent when assignments are un-
done by backtracks. Because then all counters need to be updated, which can become very
time consuming. With the 2-watched-literals method, the authors of the solver Chaff [20]
introduced a technique to overcome this backtracking update problem. Every clause has
two watch-pointers, each of which is initially pointing at a different literal of the clause.
The literals pointed at by the watch-pointers are the watched literals of a clause. If a
watched literal becomes false, the respective watch-pointer has to be set to another literal,
which is still not false. If none such other literal exists except the other watched literal,
the status of the other watched literal has to be checked. If it is true, the clause is already
satisfied and cannot be unit. If it is unassigned, the clause is unit. And if it evaluates
to false as well there is a conflict. (The latter case can occur when both watched literals
become false in course of a single decision.)
When a backtrack occurs and variable assignments are undone, the watch-pointers do not
need to be changed, because the watched literals can only change back to being unassigned.
If both watched literals were false, they caused the conflict and the backtrack will make at
least one of them unassigned again. Otherwise, they remain valid watched literals anyway,
because one of them is unassigned or true.
Let us consider c8 = (x2∨x4∨x6∨x7) from the preceding Section and let its watch-pointers
initially point at x2 and x4. After some time, let true be assigned to x2. This means that
the literal x2 becomes false. Hence, the watch-pointer cannot remain with x2 and has to
find another literal, which is still not evaluating to false. This could be x6, such that x4

and x6 are now watched.
Next, let false be assigned to x4 such that the literal x4 cannot remain watched. The last
non-watched literal not evaluating to false is x7. Thus, x6 and x7 are now watched. Then,
let true be assigned to x6 such that there is no other literal left for x6’s watch-pointer to

11

Chapter 2 Fundamentals

switch to. When the other watched literal x7 is still unassigned, c8 is identified as a unit
clause.
If a backtrack undoes any assignments affecting c8, x6 and x7 become unassigned before
any other literal of c8, because their assignments happened on the most recent decision
levels. Hence, the watched-pointers can remain with these literals and do not have to be
updated in course of backtracks.

2.4 Decision strategies in Boolean SAT

In this section, the reader is introduced to several decision heuristics as the exist for
purely Boolean SAT. A basic understanding of these is necessary for comprehending the
descriptions of our newly developed decision heuristics for iSAT. Moreover, several of our
these new heuristics are equivalents of or were modelled on already existing heuristics in
Boolean SAT.
In Section 2.2, the DPLL algorithm was presented which searches for a variable assignment
satisfying the given CNF. Every time, when no deductions through unit propagation are
possible, a new variable has to be decided. In the example, we determined the order in
which the variables were decided according to their indices. But many other methods are
thinkable. Such methods are called decision heuristics3.

2.4.1 Böhm

In early SAT solvers, most decision heuristics counted the occurrences of variables in clauses
with certain attributes. Böhm’s heuristic [5] counts in how many unresolved clauses of a
certain length a variable occurs. Variables occurring in short clauses are preferred, as
short clauses are more likely to become unit clauses. The next decision variable is the one
currently occurring in most unresolved clauses of the shortest length. And the length of
a clause is the number of its unassigned variables. In [17] this is illustrated as a vector
H(x) = (H1(x),H2(x), ..., Hn(x)) for every variable x, where Hi(x) represents the number
of occurrences of x in unresolved clauses of length i. The variable with the maximal vector
in lexicographic order is selected for decision.
Hence, a variable x occurring in 0 clauses of length 1, in 4 of length 2 and in 0 clauses with
a length greater than 2 would have the vector

H(x) = (0, 4, 0, 0, ..., 0)

In the same way, a variable y occurring in 0 clauses of length 1, in 3 of length 2, in 27 of
length 3 and in 0 of a length greater than 3 would have the vector:

H(y) = (0, 3, 27, 0, ..., 0)

3As a decision is always equivalent to choosing a branch in the search space binary tree, the term ”branch-
ing heuristic“ is also used in some literature denominating the same as ”decision heuristic”.

12

2.4 Decision strategies in Boolean SAT

In this scenario, Böhm’s heuristic selects x for decision because x occurs in more clauses
of length 2 than y. The fact that y also occurs in 27 clauses of length 3 is not taken
into account, which can be considered a flaw of the heuristic. An approach to avoid such
potentially disadvantageous decisions is the Jeroslow-Wang heuristic.

2.4.2 Jeroslow-Wang

The Jeroslow-Wang decision heuristics were proposed in [13] and further analysed in [12].
Like Böhm’s heuristic it works with counters indicating in how many clauses of a certain
length a variable occurs. There are two versions of Jeroslow-Wang: one differentiating
between literals in positive and negative phase (one-sided Jeroslow-Wang) and one adding
both the occurrences together (two-sided Jeroslow-Wang). In the following we assume that
the latter version is used, which is also the one we based our iSAT equivalent on. For each
variable x, the following function is calculated:

JW (x) =
m∑

i=1

Hi(x) ∗ 2−i

with m being the maximum clause length. Hi(x) is the number of occurrences of x in
unresolved clauses of length i as described in Section 2.4.1. Thus, the shorter a clause is
in which x occurs, the more will this occurrence add to the sum of JW (x). An occurrence
in a clause of length l weighs twice as much as an occurrence in a clause of length l + 1.
The variable with the greatest JW value is preferred for decision. In this the potential
shortcoming of Böhm’s heuristic can be avoided.
Revisiting the example from Section 2.4.1 demonstrates this. Let x and y be again the
variables, whose occurrences in conflict clauses of certain lengths are represented by the
the vectors:

H(x) = (0, 4, 0, 0, ..., 0)

H(y) = (0, 3, 27, 0, ..., 0)

Böhm’s heuristic prefers x for decision because x occurs in more clauses of length 2 than
y. The Jeroslow-Wang heuristic, however, calculates JW (x) and JW (y) as follows:

JW (x) = 4 ∗ 2−2 = 1

JW (y) = 3 ∗ 2−2 + 27 ∗ 2−3 = 4.125

Hence, y is be preferred.

2.4.3 DLIS and DLCS

Another way of counting the occurrences of variables in clauses are the DLCS and DLIS
heuristics, which were proposed in [17]. DLCS stands for “dynamic largest combined sum
(of literals)” and DLIS for “dynamic largest individual sum (of literals)”. Both heuristics

13

Chapter 2 Fundamentals

count the occurrences of a variable in unresolved clauses as literals in positive and negative
phase.
CP (x) is defined as the number of occurrences in unresolved clauses of a variable x in
positive phase. CN (x) is this number for occurrences in negative phase. If a variable x has
great values for CP (x) and/or CN (x), it can be considered a good variable to be decided
next. Because many clauses will be affected by this assignment. If x is assigned true, all
clauses which contributed to CP (x) will be satisfied, and those which contributed to CN (x)
will come one literal closer to becoming unit clauses. If x is assigned false, it is the other
way around.
To satisfy clauses or to generate unit clauses can both be considered beneficial for the overall
SAT solving process. Hence, variables with great CP (x) and/or CN (x) are favoured by
DLCS and DLIS. The difference between the two heuristics lies in the “and/or” between
CP (x) and/or CN (x). DLCS adds (hence combined sums) both values, whereas DLIS
considers the values individually, such that the variable with the greatest value of either
CP (x) or CN (x) is preferred.
DLCS and DLIS do not only have an influence on which variables are decided. They also
determine which value is assigned to the variable. The authors of [17] were aiming at
satisfying as many clauses as possible. Hence, if CP (x) ≥ CN (x) they assign true to x and
in case of CP (x) < CN (x) they assign false.

2.4.4 VSIDS

The heuristics described in the previous sections have a common disadvantage: Similar
to the BCP techniques predating 2-watched-literals they need a lot of effort to maintain
their counters. Especially when a backtrack takes place, it can be expected, that a lot
of counters have to be updated. Thus, the counter maintenance dominates the overall
computation time of a solver.
In 2001, the authors of [20] proposed a heuristic called VSIDS, which was able to overcome
this problem by making updates in case of backtracks redundant. The acronym stands
for “Variable State Independent Decaying Sum”. And “state independent” expresses that
the state (i.e. the assignment) of a variable has no impact on the variable’s position in the
decision order.
What VSIDS does, is that at the beginning of the solving process, every variable is ini-
tialised with a value corresponding to its number of occurrences in the initial CNF. This
is not different from what DLCS does. But the way these values are altered in course of
the solving process is very different: VSIDS increases the value of a variable every time
it occurs in a newly learned conflict clause. Thus, the variables occurring in most conflict
clauses have the greatest values.
Furthermore, the values of all variables are periodically divided by a constant number,
such that variables which occurred in recent conflict clauses are weighed more. This is
what “decaying sum” in VSIDS stands for. The VSIDS heuristics were shown to generally
outperform all previous decision heuristics, which were based on literal counting.

14

2.5 Bounded Model Checking and SAT

2.5 Bounded Model Checking and SAT

This chapter caters both for giving an example of the practical use of SAT in the industry,
and for conveying the concept of Bounded Model Checking (BMC) and SAT. In BMC one
is interested in whether a (mostly finite) state system can run into a state in which an
invariant is violated. For example, the controller of a train’s door must never reach a state
in which the train is moving and the door is open. To model this, all states of the system
are encoded as vectors of Boolean values. A state a could for example be encoded as the
bit vector

−→
S a = (0, 1, 1, 0, 1, . . . , 1)

and a state b as the bit vector

−→
S b = (1, 1, 0, 1, 0, . . . , 0).

After the states are encoded, one declares certain constraints in form of predicates over
so called state variables −→

W = (w0, . . . , wn). These state variables act as placeholders, in
which the bit values like (0, 1, 1, 0, 1, . . . , 1) for state a or (1, 1, 0, 1, 0, . . . , 0) for state b can
be inserted. Furthermore, one declares an initial constraint I(−→W), which evaluates to true
if and only if the state values substituted for −→

W encode an initial state. In the following
we will sometime just say: “a predicate ‘accepts’ a state”, to express this.
Besides the initial constraint I(−→W) there is also the final constraint F (−→W), which evaluates
to true if and only if the state values substituted for −→W encode a state, in which the desired
invariant is violated. In our train example, F would accept states, in which the train is
moving and the door is open.
As a third and last constraint, there is the transition constraint T (−→W,

−→
W

′
), which evaluates

to true if and only if the system has a transition from the state values substituted for −→
W

to the state values substituted for −→
W

′
. The whole model is written as M = (I, T, F). A

run of the model M of length j ≤ i ≤ k is a sequence of states −→
S 0 . . .

−→
S j . . .

−→
S k with the

following conditions:

• I(−→S 0) = true
The state −→

S 0 is accepted by I.
I.e. −→S 0 is a valid initial state.

• ∀0 ≤ i < k : T (−→S i,
−→
S i+1) = true

All states, which stand next to each other in the sequence, are accepted by T .
I.e. there exists a transition from each state to its successor state in the sequence.

• ∃j ≤ i ≤ k : F (−→S i) = true
There exists at least one state among −→

S j , . . . ,
−→
S k which is accepted by F .

I.e. one of these states is a bad state, in which the invariant is violated.

15

Chapter 2 Fundamentals

These three conditions can be combined and translated into a single Boolean formula:

Bmck
j (M) = I(−→W 0) ∧

 ∧
0≤i<k

T (−→W i,
−→
W i+1)

 ∧

 ∨
j≤i≤k

F (−→W i)

We now have time step instantiated versions −→

W i of our general variables −→
W . This means

that the instantiated variables −→W i act as place holders for states of M at the specific time
step4 i.
If Bmck

j (M) is satisfiable, there exists a run of length i with j ≤ i ≤ k. This means that
it is possible for the system to run into a bad state. And this bad state is one of the states
between step j and step k. Furthermore, the satisfying variable assignment reveals, which
states were traversed from the initial state to the bad state. This kind of information can
be very helpful for debugging the system modelled by M .

2.6 iSAT

In Section 2.2, the Boolean SAT problem was presented and it was shown how it is solved
by the DPLL algorithm. This concept can be extended, by replacing the Boolean literals
in the CNF with another form of expressions from a certain background theory. This is
referred to as the paradigm of Satisfiability Modulo Theories (SMT, e.g. [2]). For the
iSAT algorithm [1, 9, 10], the background theory is the domain of non-linear constraints
involving transcendental functions. This domain is generally undecidable, such that iSAT
does not always return satisfiable or unsatisfiable but can also have unknown as a result.

2.6.1 Variable intervals and constraints

A definition of constraints in iSAT can be given as follows:

constraint ::= pair | triplet
pair ::= variable relation unary operator operand
triplet ::= variable relation operand binary operator operand
relation ::= < | ≤ | = | ≥ | >
unary operator ::= exp | log | abs | sin | cos | power | sqrt
binary operator ::= + | - | * | min | max
operand ::= constant | variable

The term constant can be replaced by any rational number. The term variable is a place-
holder for variables or powers of variables. In iSAT, variables are not restricted to being
Boolean but can also be integer or real valued. All variables have to be assigned a bounded
interval at any time, particularly at the beginning of the algorithm.

4In other literature a “step” of a model or system is also referred to as a “cycle”. We will, however, stick
to the “step” terminology.

16

2.6 iSAT

A constraint can be

• true or satisfied ⇔ The constraint (in-)equation is true for all values within
its variables’ intervals.

• false or unsatisfied ⇔ The constraint (in-)equation is false for all values within
its variables’ intervals.

• consistent ⇔ Within the variables’ intervals there are both values
for which the constraint (in-)equation is true and values
for which it is false.

The constraint (x = 4) with x ∈ R, for example, only evaluates to true, if and only if the
point interval [4, 4] is assigned to x. If the upper bound of the interval is less than 4, for
example x ∈ [2, 3], the constraint (x = 4) evaluates to false, because no value in [2, 3] can
satisfy (x = 4). Analogously, the constraint evaluates to false, if the interval’s lower bound
is greater than 4, for example x ∈ [5, 6]. If the upper bound is greater than 4 and the lower
bound less than 4, for example x ∈ [3, 5], the constraint (x = 4) is consistent. Because in
the interval [3, 5] there are still – but not exclusively – values which can satisfy (x = 4).
The bounds of an interval can be strict or non-strict. In the above example, the bounds were
both non-strict, which means that the values of the upper and lower bounds themselves are
part of the interval. Non-strict bounds are expressed through the “[]”-bracket notation.
Thus, (x = 4) is consistent under the assignment x ∈ [3, 4], because the satisfying value 4
is included in the interval. If a bound is strict, its value is not part of the interval. Strict
bounds are expressed through the “()”-bracket notation. Thus, (x = 4) evaluates to false
for x ∈ [3, 4), because 4 is not included in the interval.
When iSAT is given the input data of a problem, the constraints are generally not written
in the format defined above. Their structure can be much more complex like for example:

(x3 + sin(2 ∗ y) ≤ 3 ∗ ln(z) + 0.5 ∗ z)

with x, y, z ∈ R. Such constraints cannot be processed by iSAT directly. They have to
be rewritten into the pair/triplet format before the actual solving process starts. This is
done using additional auxiliary variables similar to the ones used for Tseitin transforma-
tion. Thus, this example constraint is transformed into the conjunction of the following
pair/triplet constraints using the auxiliary variables h1, ..., h7:

(h1 ≤ 0 + h2) (triplet)
(h1 = x3 + h3) (triplet)
(h3 = sin(h4)) (pair)
(h4 = 2 ∗ y) (triplet)
(h2 = h5 + h6) (triplet)
(h5 = 3 ∗ h7) (triplet)
(h7 = ln(z)) (pair)
(h6 = 0.5 ∗ z) (triplet)

17

Chapter 2 Fundamentals

2.6.2 The algorithm

The solving process of iSAT is very similar to Boolean DPLL an can be drafted in the
following pseudo code:

Data : CNF F
Result : sat, unsat or unknown
1: while true do
2: if propagate() then
3: if !decideVar() then
4: return sat/unknown;
5: end
6: else
7: if !analyseBacktrack() then
8: return unsat;
9: end
10: end
11: end

First, propagate() is executed (line 2). If it succeeds, decideVar() is executed (line 3). If
decideVar() fails, a solution can be returned (line 4). If it succeeds, propagate() is executed
again (line 2). If propagate() fails (line 6), there is a conflict and analyseBacktrack() is
executed (line 7). If analyseBacktrack() fails, the given formula F is unsatisfiable (line 8).
If it succeeds, the assignments causing the conflict have been undone and propagate() is
executed again (line 2).

propagate()

The iSAT equivalent of Boolean constraint propagation (BCP) is called interval constraint
propagation (ICP), which takes place in the propagate() function. In BCP, unit clauses
are identified and variable assignments are implied to satisfy them. ICP works similarly,
as it also identifies unit clauses and implies variable assignments, such that the remaining
consistent constraint of a unit clause becomes true.
Let ((x < −1) ∨ (x2 = y)) be a clause in a CNF handled by iSAT and let the following
variable intervals be assigned: x ∈ [2, 13] and y ∈ [0, 100]. This makes the constraint
(x < −1) false while (x2 = y) is still consistent. Thus, the clause is unit and variable
assignments have to be implied which satisfy this consistent constraint. Through ICP it is
found that the upper bound of x must not be greater than 10, because 102 = 100 which is
the upper bound of y. Analogously, the lower bound of y must not be less than 4, because√

4 = 2 which is the lower bound of x. So, new interval assignments are implied: x ∈ [2, 10]
and y ∈ [4, 100].

18

2.6 iSAT

decideVar()

When the solver has performed all possible implications and the CNF is still not satisfied,
a variable has to be decided just as it is the case in Boolean SAT. In the domain of interval
constraints, deciding a variable means to change (i.e. reduce) its interval. A default way
of doing this is to split the interval in half, but there are other possibilities as well (see
Section 4.2). Thus, an integer or real valued variable can be decided several times; unlike
Boolean variables which can only be decided once.

returning unknown

In line 4 of the iSAT pseudo code it says “return sat/unknown”. In the following we explain
what the result “unknown” means. As a matter of fact, iSAT cannot prove in many cases
that a given formula is satisfiable. Because many constraints, cannot become true, as the
values needed to achieve this are not representable.
Take for example the constraint (h3 = sin(h4)) and let the current interval of h3 be the
point interval [1, 1]. In order for (h3 = sin(h4)) to be satisfied, h4 has to assume the point
interval of π/2 or (4n + 1) ∗ π/2 with n ∈ N0. But as iSAT does not support symbolic
representation of numbers, π cannot be represented. What iSAT does instead, is to split
the interval of h4 again and again until its upper and lower bounds have come as close to π
as the minimal splitting width (MSW) allows. The MSW parameter of iSAT sets the value,
down to which the width of an interval can be split. This is necessary for termination.
When MSW is reached for all variables and the CNF is still not satisfied, iSAT returns
“unknown” and gives the intervals as candidate solutions. It is called candidate solution
because these intervals may or may not include a satisfying assignment.
But even when there are no transcendental functions involved, the problem can occur.
Take for example the fact that the number 0.1 cannot be precisely represented in the
IEEE Standard for Floating-Point Arithmetic (IEEE 754). The reason for that is that in
the decimal numeral system, which composes numbers as sums of powers of ten, 0.1 stands
for 0 ∗ 100 + 1 ∗ 10−1 and can therefore be represented without any period. In the binary
numeral system underlying IEEE 754, however, numbers are composed of different powers
of two and the following can be observed:

(0.0001100)binary =
(
2−4 + 2−5

)
decimal

= (0.09375)decimal

< (0.1)decimal

< (0.0001101)binary =
(
2−4 + 2−5 + 2−7

)
decimal

= (0.1015625)decimal

This example demonstrates (albeit does not proof) that the decimal number 0.1 cannot
be represented as a binary number without a period. Hence, it cannot be represented in
IEEE 754. And this is why a constraint like (x = 0.1) would lead into a situation of the
same kind as (h3 = sin(h4)), because it would never be considered satisfied.

19

Chapter 2 Fundamentals

It could be considered very dissatisfactory, that iSAT cannot really show the satisfiability of
many problems. But from a practical point of view this might not be that big a downside
as it first seems. Remember what has been explained in Section 2.5 about SAT and
BMC. Most practical problems, which a solver like iSAT would be applied to, are BMC
related. In these scenarios the designer of a system, whose model includes non-linear
interval arithmetics, needs to know if the system violates an invariant within the given
amount of transition steps. If the solver returns “unsat”, it is proven that this is not the
case. And “unsat” is a result, which iSAT can reliably provide.
In case the solver returns “sat”, the designer knows how the system reached the unsafe
state. But when iSAT returns “unknown” with a candidate solution instead of “sat”, it
can still be quite helpful. One has to take into consideration that the systems examined
through BMC most commonly include analogue or non-discrete components like sensors
and actuators. These components all have certain blurry or noisy characteristics due to
their physical properties. Thus, if iSAT returns a candidate solution, which consists of
very small (though not point) intervals, one might already be well advised to change the
system’s design, such that it cannot even come that close to a solution. Because when
there are blurry and noisy components in the real system, these might sometimes just “tip
the scales”.

analyseBacktrack()

Like in Boolean DPLL, there also exists an implication graph in iSAT, such that it is
possible to execute conflict-driven backtracking. This includes the learning of conflict
clauses, which are constructed in accordance with the decisions responsible for the conflict.
In iSAT, each decision of a variable is a retrenchment of its interval. This means that
either a new greater lower bound or a new smaller upper bound is assigned. Let, for
example, the interval of a variable x be [0, 10] before it is decided. Then let iSAT make
the decision of splitting the interval in half by assigning 5 as the new lower bound. Thus,
only x ∈ [5, 10] is considered for the following branches of the decision tree. This decision
can be expressed as a constraint itself, namely (x ≥ 5). Now, let the decision of another
variable y be the assignment of a new strict upper bound 4. This can be expressed as the
constraint (y < 4). And finally let these two decisions be responsible for a conflict. So, the
analysis of the implication graph yields that the decisions (x ≥ 5) and (y < 4) always lead
to a conflict. To avoid this combination of assignments in the future, the conflict clause
((x < 5) ∨ (y ≥ 4)) is learned and added to the CNF. Now, (x ≥ 5) implies (y ≥ 4), and
vice versa (y < 4) implies (x < 5).
This small example makes clear how conflict clauses in iSAT are created and why they
only consist of constraints of the following form: (v ◦ c), with v being a variable, c being a
constant value and ◦ being a relation <,≤,≥ or >. These kinds of constraints are called
simple bounds. The fact that conflict clauses only consist of simple bounds is of great
relevance for our considerations described in Section 3.3.

20

Chapter 3

iSAT Decision Heuristics

This chapter consists of detailed descriptions for all heuristics we implemented for iSAT.
Each heuristic and, if applicable, its parameters are explained as well as the respective
intuitions behind them. As a matter of course, it is not possible to derive an optimal
heuristic by purely mathematical means. Contrariwise, for each heuristic it is always
possible to construct a problem such that the variables preferred by this heuristic will
result in a maximum execution time. Hence, our approach had to be a rather engineered
one than purely mathematical. Our method was to think of heuristics whose functionalities
can be conceived as potentially beneficial for the SAT solving process.

3.1 Heuristics deciding by variable attributes

This section is about the category of iSAT decision heuristics, which prefer a variable
according to certain static attributes. Static means that these variable attributes never
change during the SAT solving process.

3.1.1 BMC-forward/backward (bmc-fwd, bmc-bwd)

In Section 2.5, the basic concepts of bounded model checking (BMC) were explained and
how they are related to SAT solvers. It has been shown that the formula representing the
BMC problem consists of variables whose assignments encode the states of the examined
system. Depending on the depth of the formula each of these variables occurs several times
in the formula with different indices. Each index stands for a step of the system.
Hence, there are state variables with the index 0 representing the initial states of the
system. Then, there are variables with the index 1 representing the states following the
initial state, and so forth. This goes on until the maximum depth of the formula is reached.
If the depth is n, the index of the state variables cannot be greater than n. The variables
with index n represent the last considered step of the system.
The aim of BMC is to identify, whether an invariant is violated at a step k ≤ n of the
system. The BMC formula is constructed such that the SAT solver will find a satisfying
variable assignment if and only if the system can run into a bad state in k steps. This
assignment is called a counter example. If the SAT solver returns “unsat”, it is proven
that the invariant cannot be violated at any step of the system until step n. In order to

21

Chapter 3 iSAT Decision Heuristics

prove which states can or cannot be reached by the system in k steps, it is necessary to
make assignments for all variables with indices ≤ k.
The BMC-forward heuristic prefers variables depending on how small their BMC index is.
Thus, variables with a small index are decided first. This makes sense because in order
to know whether a state at step k is reachable, the states at the steps < k have to be
known as well. Furthermore, it is probable that assigning variables of earlier steps leads
to ICP implications, which narrow down the decision possibilities for later steps. This
would decrease the search space for the rest of the solving process. If a counter example
exists for a rather early step, the assignments for variables with greater indices are not
even necessary.
In [21] Strichman puts forward that it is quite possible to assign variables belonging to
different ranges of indices without the SAT solver realising that these assignments are
already contradicting each other. It could, for example, be the case that all variables with
indices between 4 and 12 are already assigned and so are all variables with indices between
14 and 18. To the SAT solver, the assignments are still consistent until it tries to assign the
variables with the index 13, which reveal that there is no transition between the currently
assigned index 12 and index 14 states. So the many of the previous assignments have been
tried in vain.
Thus, it can be considered beneficial to assign the variables in the order of their indices such
that “gaps” between assigned variables cannot occur. In this context it does not matter
whether the variables are assigned beginning with the greatest or the smallest indices.
The “gap” avoiding effect will be the same in both alternatives. Hence, we do not just
have a BMC-forward heuristic, which decides variables with small indices first, but also a
BMC-backward heuristic, which prefers variables with great indices instead.

3.1.2 Dominant-first/last (dominant-fst/lst)

In Section 2.6 it has been shown how new auxiliary variables are introduced, when iSAT is
rewriting complex constraints from an input problem definition into its pair/triplet format.
Let for example the following constraint be part of a problem definition given to iSAT:

(3 + x) ∗ 0.5 − 7 ∗ y ≤ 5

As this is not in accordance with pair/triplet format, the following triplets will be created
using h1, h2 and h3 as new auxiliary variables:

h1 = 3 + x h2 = h1 ∗ 0.5 h3 = 7 ∗ y h2 − h3 ≤ 5

We call variables which are not auxiliary dominant. In this example, x and y are the
dominant variables. The dominant-first heuristic gives preference to dominant variables.
Because its intuition is that the problem space is in fact spanned by the dominant variables,
whereas the auxiliary variables are only a result of rewriting the problem. So, in order to
explore the whole problem space, it might be beneficial to decide the dominant variables

22

3.1 Heuristics deciding by variable attributes

first. Because the split of a dominant variable is more likely to actually correspond to a
spilt of the problem space.

Furthermore, if dominant and auxiliary variables are treated equally by a heuristic, the
following side effect can occur: Consider again the example above with the four triplets.
The order in which iSAT initially stores the variables is according to when they are cre-
ated. In the pair/triplet rewriting process, iSAT follows a depth-first/left-first strategy in
examining the constraint to be rewritten. Hence, the order of the two dominant variables
x, y and three auxiliary variables h1, h2, h3 in this example would be x, h1, h2, y, h3. If these
five variables are decided in this order, it would effectively be like deciding x three times
in a row and then deciding y two times.

This is because a decision of h1 or h2, will through ICP automatically reduce the interval
of x. And this would also have been the case if x itself had been decided. Let for example
the interval of x be [−100, 100]. Because of (h1 = 3 + x), the interval of h1 would be set
to [−97, 103] by ICP, even before any decision is made. Now, we decide h1 by splitting its
interval in the middle and consider the right portion in the following. I.e. the interval of
h1 becomes [3, 103]. The ICP step following this decision, will realize that (h1 = 3 + x)
can only be satisfied if x is in the interval [0, 100]. Hence, the interval of x is also reduced
like it would have been the case if x had been decided itself. Similarly, a decision of h2 has
through (h2 = h1 ∗ 0.5) an ICP effect on the interval of h1, which in turn will imply a new
interval for x.

In the same way a decision of h3 will reduce the interval of y. So, by deciding the variables
x, h1, h2, y, h3 in the order they were created, it would be similar to deciding x three times
and then deciding y two times. But why should x be decided so often before y is decided
for the first time? Should the two dominant variables x and y not be decided in turns
when they are spanning the problem space? The dominant first heuristic would decide the
variables in the order x, y, h1, h2, h3 when no other options are activated.

For completeness reasons we also implemented the converse heuristic dominant-last, which
prefers auxiliary variables.

3.1.2.1 All-and-only-dominant-first

At a later stage of our research we realised that the implementation of dominant-first might
not be exactly according to our initial intuition. Because dominant-first does decide the
auxiliary variables as well, after all dominant variables have been decided only once. Only
after that the dominant variables are decided again.

The “all-and-only-dominant-first” heuristic is similar to dominant-first. But it does not
decide any auxiliary variable as long as there are still dominant variables which have not
reached an interval of the minimal splitting width.

23

Chapter 3 iSAT Decision Heuristics

3.1.3 Boolean-first/last (b-fst, b-lst)

The CNF to be solved by iSAT can include variables of different types which can be
Boolean, integer or real. When the Boolean-first heuristic is used, variables of the type
Boolean will be decided first. As Booleans can only have the value 0 or 1 they can only
be decided once. So it can be assumed that deciding these first will cut off great portions
of the search space at an early stage of the algorithm, before the really time consuming
splitting of the remaining variables begins.
Let for example a and b be Boolean variables and let x be a real valued variable with the
initial interval [−1000000, 1000000]. Furthermore, let the problem contain the following
clauses1:

(b ∨ a) ∧ (b ∨ a) ∧ (a → ((x > 1) ∧ (x < 0.1)))

It is obvious that these clauses are unsatisfiable, because (b ∨ a) ∧ (b ∨ a) can only be
satisfied when true is assigned to a. But if a is true, ((x > 1)∧ (x < 0.1)) must be true as
well. Otherwise (a → ((x > 1)∧ (x < 0.1))) is not satisfied. ((x > 1)∧ (x < 0.1)), however,
is unsatisfiable. Hence, the whole CNF containing these clauses is unsatisfiable.
This can be realised by iSAT very quickly, if it decides the Boolean variables a and b first.
The reason for this is, that after only one decision iSAT will have deduced though ICP
that a has to be true, if the decision itself has not been setting a to true. This is shown in
the following case differentiation:

Case 1 : Decide a = true: a = true as decision (trivial).

Case 2 : Decide a = false: (b ∨ a) implies b = true.
(b ∨ a) implies b = false.
⇒ Conflict leads to backtrack and a = true.

Case 3 : Decide b = false: (b ∨ a) implies a = true.

Case 4 : Decide b = true: (b ∨ a) implies a = true.

Now, that true is assigned to a, the clause (a → ((x > 1) ∧ (x < 0.1))) will immediately
imply both (x > 1) and (x < 0.1), which is a conflict. As no other assignments for a are
possible, iSAT can return “unsat”.
If, on the other hand, iSAT follows a heuristic by which it decides real valued variables
first, the following occurs: x ∈ [−1000000, 1000000] is split in the middle. If [−1000000, 0]
is considered first, (x > 1) becomes false and that a = false is implied because of (a →
((x > 1) ∧ (x < 0.1))). This will lead to the same conflict as in case 2 of the above
case differentiation. Thus, after a backtrack is done and [0, 1000000] is considered instead.
Now, both (x > 1) and (x < 0.1) are still consistent. So no implications take place and x i

1For legibility reasons we will in this example ignore the fact that iSAT would rewrite these clauses into
several pair/triplet constraints before actually starting the solving process. Our example works the
same if transformed into pair/triplet constraints, but would be very less legible.

24

3.2 Heuristics deciding by variable interval

decided again. This procedure can repeat itself until the interval will have narrowed down
to a size at which one of its bounds lies between 0.1 and 1, because only then iSAT will
realize that satisfying (x > 1) and (x < 0.1) at the same time is not possible.
This example may seem somewhat constructed, but the occurrence of such scenarios - on
a much more complicated scale of course - cannot be ruled out. It shows clearly how one
Boolean decision can avoid a lot of futile non-Boolean decisions.
We also implemented the converse heuristic Boolean-last, which puts the variables in the
opposite decision order of Boolean-first. Hence, all non-Boolean variables will be decided
first. But after each non-Boolean variables has been decided once, Boolean-last decides
the Boolean variables as well. And these can only be decided once anyway.

3.1.4 Integer/Real-first/last (i-fst, i-lst)

Like with the Boolean-first/last heuristics we also wanted to be able to prefer other variable
types (integer and real valued) for decision. It cannot be justified a priori, why one of these
heuristics should be beneficial. But for completeness reasons we implemented integer-
first/last heuristics as well. A real-first/last heuristic did not have to be implemented
explicitly, as its functionality can be achieved through combinations of boolean-last and
integer-last.

3.2 Heuristics deciding by variable interval

In iSAT every variable has a bounded interval assigned to it at any time. These intervals
are initially given through the definition of the formula, which iSAT is solving. During
the solving process variables are decided, i.e. their intervals are split at certain points
and either the right or left side is considered for the following part of the algorithm. If
assignments are undone through backtracks the intervals can become greater again, but
in general the variable intervals are getting smaller and smaller the longer the algorithm
continues. The intuition behind the heuristics described in this section is that the current
size of a variable’s interval might correlate with how beneficial its decision is for the solving
process.

3.2.1 Small-interval-first/last (si-fst, si-lst)

The small-interval-first heuristic decides variables first, which have the smallest intervals.
Small-interval-last works exactly the other way around. Both heuristics take into account
the absolute width of a variable’s interval. This means that a real valued variable with,
for example, an interval width of 1.0 will be treated like an unassigned Boolean variable,
whose interval [0, 1] (false = 0, true = 1) also has a width of 1.0.

25

Chapter 3 iSAT Decision Heuristics

3.2.2 Relative-small-interval-first/last (si-rel-fst, si-rel-lst)

The relative-small-interval-first/last heuristics were implemented to overcome a potential
deficiency of small-interval-first/last. This deficiency is that it does not take into account
that a real valued variable can be split much more often than an integer or Boolean variable
with the same interval width. Instead of deciding by the interval width this heuristic
decides by a measure of how often a variable can still be decided. This is achieved through
dividing the interval widths of real variables by the minimal splitting width (MSW) before
comparing their widths with those of integer and Boolean variables. If for example the
MSW is 0.1, a real valued variable with an interval width of 1.0 can be split as often as an
integer variable with a width of 10.
We called this heuristic type “relative-small-interval-first/last”, as it does not take into
account the absolute width of a variable interval but considers an interval small or great
in relation to how often it can still be split. An integer valued variable’s interval is thus
relatively smaller than the one of a real valued variable with the same absolute width.

3.2.3 Shrunk-interval-first/last (shrunk-fst, shrunk-lst)

With the shrunk-interval-first heuristic we wanted to decide variables first whose intervals
have decreased most since the beginning of the algorithm. The quotient by which an
interval has shrunk in comparison to its initial width is an indicator for this.
The initial interval widths of all variables are stored at the beginning of the algorithm after
a first ICP has been executed. It is important to execute this first ICP before the intervals
are stored, because it is completely arbitrary how large the interval widths are set by the
problem definition. The problem definition could define the initial interval of a variable x
to be [−100, 100]. But in the CNF we could also have unit clauses limiting x to a much
smaller range, like (x ≥ 3)∧ (x ≤ 7). A first ICP will immediately shrink the interval of x
to [3, 7], and 4 will be stored as the realistic initial interval width of x instead of 200.
When two variables are compared, both their current interval widths are divided by their
respective initial widths. The smaller the resulting quotient is, the more has the interval
shrunk and the variable with the smaller quotient is preferred. Shrunk-interval-last works
just the other way around, i.e. it prefers variables whose intervals have shrunk the least.

3.3 Heuristics deciding by occurrences in conflict clauses

Before VSIDS emerged as the generally best decision heuristic in Boolean SAT algorithms,
there were several different approaches. Some were focused on satisfying as many clauses
as possible in order to satisfy the whole CNF as early as possible. Such decision heuristics
prefer variables which occur most unresolved clauses. Because by assigning the suitable
value to that variable all, these clauses can be satisfied. If, for example, a Boolean variable
x occurs in its negative phase x in 17 unresolved clauses, these clauses can be satisfied by
assigning false to x. And if x in occurs in its positive phase x in 14 unresolved clauses,

26

3.3 Heuristics deciding by occurrences in conflict clauses

these can be satisfied by assigning true to x. Assigning false to x can be considered a
better decision because more clauses are satisfied than through assigning true.
Other heuristics aimed at generating unit clauses as quickly as possible. A unit clause is
an unresolved clause with only one unassigned literal left. All other literals evaluate to
false. Hence, the remaining unassigned literal has to be satisfied: the unit clause implies
the appropriate assignment. If many implications take place, it is advantageous for the
solving process, because variables are assigned without branching in the decision tree.
Furthermore, it is always through implications that conflicts are identified and backtracks
of the solver are triggered. And conflicts also generate conflict clauses, which have proven
the most powerful mean to prune big portions of the search space.
In order to generate unit clauses as quickly as possible, it is also necessary to prefer variables
occurring in most unresolved clauses. Because all these clauses can be brought one literal
closer to being unit by assigning the value, which makes these literals false. If, for example,
a Boolean variable y occurs in its negative phase y in 23 clauses which are still consistent,
all these clauses can be brought one literal closer to being unit by assigning true to y. So,
the heuristics trying to generate unit clauses work quite similar to those trying to satisfy
as many clauses as possible. Both prefer the same variables. The only difference is that
the former choose the assignment making most literals false whereas the latter choose the
assignment making most literals true.
An addition to the unit clause generating heuristics can be, that not only the number of
occurrences in unresolved clauses is taken into account, but that also the length of these
clauses is considered. Because a short clause is closer to becoming unit than a long one.
The length of a clause would have to be the number of its unassigned literals.
When VSIDS emerged, it turned out to outperform most of the previous approaches. But
this was the case in purely Boolean SAT. In the SAT modulo non-linear interval arithmetic
it does not necessarily have to be the same. That is why we decided to adopt several pre-
VSIDS approaches in Boolean SAT for iSAT.
The unit clause generating or clause satisfying heuristics just described seem intuitively
sensible in their functionality. But adopting them for iSAT is not trivial. They make
literals true or false by only one decision. In Boolean SAT this cannot be any other way
because a Boolean variable can only be assigned once with true or false. In iSAT, however,
clauses consist of constraints including integer and real valued variables, which can be
split several times. Some constraints include more than one variable and can therefore
sometimes not be made true or false with a single decision. Other constraints include
transcendental functions and can therefore not be satisfied either.
The only constraints which can always be satisfied with a single decision are the so called
simple bounds. These consist of only a variable, a relation <,≤,≥ or > and a constant
value; for example (x ≥ 2.4) or (y < −4). Therefore, the iSAT adoptions of the above
heuristics are only considering clauses, which only consist of simple bounds. Such clauses
are all conflict clauses (see Section 2.6). That is why the heuristics in this section are all
working with the variable occurrences in conflict clauses.

27

Chapter 3 iSAT Decision Heuristics

3.3.1 Most occurrences in conflict clauses (moicc)

This heuristic goes by the number of occurrences in conflict clauses. The more occurrences
in conflict clauses a variable has, the more it is preferred. Thus, each variable has a counter,
which is increased every time it is used in a newly learned conflict clause.

3.3.2 Most occurrences in watched constraints of conflict clauses (moiwccc)

In iSAT every clause has two watched constraints which are the equivalent of watched
literals in Boolean DPLL. As long as a clause has two different watched constraints, it
is not unit. Watched constraints have to be consistent (the equivalent of an unassigned
literal in Boolean DPLL). If the assignment of a variable leads to a watched constraint
becoming false a new consistent constraint of this clause has to be selected. The moiwccc
heuristic counts in how many watched constraints a variable currently occurs and prefers
the variables occurring in most.

3.3.3 Most occurrences in shortest conflict clauses (moiscc)

The moiscc heuristic can be considered an iSAT equivalent of Böhm’s heuristic. Every
variable has counters to indicate in how many conflict clauses of different lengths it occurs.
These counters are used to fill the Böhm specific H vectors (see Section 2.4.1). As in the
Boolean original of Böhm’s heuristic, variables with the smallest H vector in lexicographic
order are preferred.

3.3.4 Jeroslow-Wang: Most occurrences in many short conflict clauses (jw)

The Jeroslow-Wang adaptation for iSAT uses the same counters as the moiscc heuristic,
which count the occurrences of each variable in conflict clauses of different lengths. These
values are used to compute the JW function for every variable (see Section 2.4.2). Variables
with the greatest JW value are preferred.
In the Boolean original of Jeroslow-Wang there are two versions: one-sided and two sided
(see Section 2.4.2). One-sided differentiates between Boolean literals in positive and nega-
tive phase. We do not differentiate between different kinds of simple bounds here. Hence,
our adaptation is the equivalent of two-sided Jeroslow-Wang.

3.4 Miscellaneous heuristics

3.4.1 Natural (no heuristic)

The “natural” decision order is not an actual heuristic, because the decision order is not
changed. All variables are decided in the order in which they were created during the
initialisation of iSAT. Thus, the variables are, however, not decided in a random order. It
might very well be, that deciding them in the order they were created has its benefits.

28

3.4 Miscellaneous heuristics

3.4.2 VSIDS

The iSAT equivalent of VSIDS works similar to the Boolean original (see Section 2.4.4):
variables are rewarded when they occur in conflict clauses. But variables in iSAT have
intervals with a lower and upper bound each. When a variable occurs in a new conflict
clause, VSIDS increases the activity of either its lower or upper bound, depending on which
bound was responsible for the conflict and hence is included in the conflict clause.
This allows VSIDS to differentiate between the activities of a variable’s upper and lower
bound. When two variables are compared, the maxima of their respective upper and
lower bounds are compared. The variable with the higher activity on one of its bounds is
preferred for decision.

3.4.3 max-cand, sum-cand

There are two heuristics, “max-cand” and “sum-cand”, working with values gathered by
the additional “sb-split-cand” option (see Section 4.2). Activating one of these heuristics
automatically activates “sb-split-cand”. As they are decision heuristics, they are mentioned
in this section. But to understand how they work it is necessary to have read about the
“sb-split-cand” option first. Hence, “max-cand” and “sum-cand” are explained in Section
4.2.3.

29

Chapter 3 iSAT Decision Heuristics

30

Chapter 4

Additional options

4.1 Resorting options

To understand the resorting options, the reader’s attention needs to be turned to a par-
ticular aspect of iSAT’s implementation. This is the vector object sorted vars[], in which
the pointers to all variables are stored. When iSAT has to decide a variable, it tries the
variable whose pointer stands at position next var pos of sorted vars[]. The integer vari-
able next var pos is 0 at the beginning of the algorithm. After every attempt1 to decide a
variable, next var pos is incremented; or set back to 0 when the end of sorted vars[] has
been reached.
What decision heuristics in iSAT do is to sort the vector sorted vars[] in a specific man-
ner. Dominant-first, for example, sorts all dominant variables into the first positions of
sorted vars[], such that they are decided first. If another heuristic is activated in combina-
tion with dominant-first - for example small-interval-first - the dominant variables are still
sorted into positions preceding the auxiliary ones. But the orders among the dominant
and among the auxiliary variables are determined by small-interval-first.
A comparison between dominant-first and small-interval-first makes clear why resorting
is necessary for some heuristics and for others not. With dominant-first all variables are
sorted according to whether they are dominant or auxiliary. These attributes never change
during the solving process. Hence, a resorting of sorted vars[] would have no effect on the
sorting order. Small-interval-first, on the other hand, sorts the variables according to their
current interval width, which is a rather frequently changing variable attribute. Thus, a
resort of sorted vars[] is likely to yield different sorting orders at different times during the
solving process.
After every resort, next var pos is reset to 0, because sorted vars[0] holds the pointer to
the most preferred variable. If one wishes to always decide the variable which is currently
be preferred by the activated heuristics, one has to execute resorts rather often. But
this might sometimes not be desired. Consider again the case of small-interval-first: The
first variable to be decided is the one with the smallest interval. As a consequence of its
decision some other variables’ intervals may shrink as well through ICP. But the interval of

1A variable does not necessarily have to be decidable at any point of the algorithm. Boolean variables can
only be decided once and integer or real valued variables can only be decided as long as their intervals
are still bigger than 1 or bigger than the minimal splitting width respectively.

31

Chapter 4 Additional options

the decided variable has definitely been divided in half. So it is probable that it will again
be the variable with the smallest interval. In that case a resort would put the variable
again at position 0 of sorted vars[]. And as next var pos is reset to 0 the same variable
would be decided again.
Whether such a repeated decision of only one variable is generally disadvantageous for the
overall search process or not is a question which eventually has to be answered empirically.
But this example makes clear, why it is not only necessary to resort sorted vars[] but also
to be able to determine at what points of the algorithm such resorts take place.

4.1.1 Resort after i decisions (--sortafter=i)

This option determines that a resort is executed after each i decisions of the solver. It
can be conceived, that the more decisions have taken place, the more likely it is that the
variables in sorted vars[] are no longer in the correct order.

4.1.2 Resort after conflict (--resort-ac)

With this option activated, iSAT executes a resort after every conflict. A resort at these
points of the solving process makes sense because conflicts always entail backtracks. And
backtracks often undo a lot of assignments, such that the attributes of many variables
might have changed, by which a heuristic determines their preferability.

4.1.3 Dynamic resort (--dynamic)

The “dynamic-resort” option is a resorting mechanism intended to execute a resort when it
is probably needed. This should keep the overhead for unnecessary resorts at a minimum.
Every time a variable at position next var pos of sorted vars[] is decided, the succeeding
variable at position next var pos+1 is checked as well. If these two adjacent variables are
still sorted according to the activated decision heuristics, nothing happens. If they are not
sorted, however, a resort is executed after this decision.
Thus, no resort is done until two adjacent variables in sorted vars[] are discovered which
are not in the right order any more.

4.2 Simple Bound Split Candidate Lists (--sb-split-cand)

In Section 3.3 we described heuristics which prefer variables occurring in most conflict
clauses. The reason for this is that conflict clauses exclusively consist of simple bounds,
which can always be satisfied or made false through a single decision; given they are still
consistent, of course. Take for example the simple bound (x ≥ 5.7) and let the current
interval of x be [−10, 10]. If we wish to make the simple bound false, we have to reduce
the interval of x to a range in which (x ≥ 5.7) can no longer be satisfied. This is the case
if the upper bound of x becomes strictly less than 5.7. Thus, by reducing the interval of

32

4.2 Split Candidate Lists

x to [−10, 5.7), the simple bound becomes false. The strict upper bound 5.7. is only the
greatest upper bound to achieve this. Any upper bound which is even smaller than 5.7
would make the simple bound false, too.

If, on the other hand, we wish to make (x ≥ 5.7) true, the interval of x has to be reduced
to a range in which the simple bound is always satisfied. This is the case if the lower bound
of x becomes greater than 5.7. Here, the lower bound does not need to be strict, because
5.7 itself is a satisfying assignment. Thus, by reducing the interval of x to [5.7, 10], the
simple bound becomes true. But any other lower bound which is even greater than 5.7
would make it true as well.

With the ability to make consistent simple bounds true or false by a single decision, we
have an iSAT equivalent of making unassigned literals true or false in Boolean SAT. Most
Boolean heuristics, which inspired us for the heuristics of Section 3.3, count a variable’s
occurrences separately for its positive and negative phase. Depending on which phase
has more occurrences and whether one wishes to make these occurrences true or false,
the variable is assigned. If for example the negative phase z of a variable z has more
occurrences than its positive phase and the goal is to make many literals true, z is assigned
false.

The iSAT equivalent of counting occurrences in positive and negative phase is to count
occurrences in consistent simple lower bounds or consistent simple upper bounds. Because
all consistent simple upper bounds, in which a variable occurs, can be made true or false
with a single decision. And the same is possible for all consistent simple lower bounds. We
refer to these consistent simple bounds as split candidates. An example will demonstrates
how these split candidates are counted and how the influence the decision of their variable.

Let x be a variable whose interval is [−10, 10] and let x occur in the following simple
bounds of conflict clauses:

(x ≥ −10) (x ≤ 10)

(x < −10)

(x ≤ −13) (x < −4.9) (x ≤ 8.1)

(x < 10)

(x ≤ 10) (x < 14)(x ≥ 2.4)

(x > 4.1)

candidates
(x ≤ −13)
and (x < −10)
already false

candidates
(x ≤ 10)
and (x < 14)
already true

all potential candidates:

initial interval of x:
[−10, 10]

Figure 4.1: Split candidate example: initial interval of x: [−10, 10]

33

Chapter 4 Additional options

(x ≤ −13) (1)
(x < −10) (2)
(x < −4.9) (3)
(x ≤ 8.1) (4)
(x < 10) (5)
(x ≤ 10) (6)
(x < 14) (7)
(x ≥ 2.4) (8)
(x > 4.1) (9)
(x > 12.8) (10)

The interval of x and its split candidates are visualised in Figure 4.1. We will go through
the candidates one by one and explain if and why they are counted: (1) is already false
under the variable interval [−10, 10] of x. Because if x ≥ −10, it cannot be ≤ −13. (2) is
also already false, because it requires x to be strictly smaller than 10. Thus, (1) and (2)
are not counted as split candidates.
The values of (3) and (4) are still within the current interval [−10, 10]. So, they are
consistent and as they are both upper bounds, we count two upper bound split candidates.
(5) is a consistent upper bound as well, which brings us to a total of three upper bound
candidates. (6) is already true under the current interval of x, because all points in [−10, 10]
satisfy the requirement (x ≤ 10). The same applies for (7), which is an even greater upper
bound. Hence, neither (6) nor (7) are counted as upper bound candidates. (8) and (9)
are both consistent lower bounds. Hence, we count two lower bound occurrences. (10) is
already false for the interval [−10, 10], hence not counted.
So, we have three upper bound candidates and two lower bound candidates, which makes
the upper bounds more interesting for our heuristics aiming at making simple bounds true
or false. The three simple upper bounds could be made true or false with only one decision.
If we want to make all upper bound candidates true, we have to take the smallest upper
bound candidate as the new upper bound for the variable interval. Consequently, this
smallest upper bound candidate is satisfied. And the other upper bound candidates are
satisfied as well, because they have even greater values. In our example with x ∈ [−10, 10],
the three upper bound candidates are: (x < −4.9), (x ≤ 8.1) and (x < 10). If we want to
make them all true, we take the smallest of them (x < −4.9) and make it the new upper
bound of the interval of x. This gives us x ∈ [−10,−4.9) and all our three candidates are
satisfied. See Figure 4.2.
If we want to make all upper bound candidates false, we have to look at the greatest upper
bound candidate and take an even greater value as the new lower bound of the variable
interval. Consequently, this greatest upper bound is false. And the other upper bound
candidates are false as well, because they have even smaller values. In our example, we
have to take the greatest upper bound candidate (x < 10) and make 10 the new lower
bound of the interval of x. This gives us x ∈ [10, 10] and all three candidates are thus
false. See Figure 4.3.

34

4.2 Split Candidate Lists

(x ≥ −10) (x < −4.9)

(x < −10)

(x ≤ −13) (x < −4.9) (x ≤ 8.1)

(x < 10)

(x ≤ 10) (x < 14)(x ≥ 2.4)

(x > 4.1)

candidates
(x ≤ −13)
and (x < −10)
already false

Previously consistent upper bound candidates
(x < −4.9), (x ≤ 8.1) and (x < 10) have become true.
Candidates (x ≤ 10) and (x < 14) were already true

before, when the interval was [−10, 10].
Lower bounds (x ≥ 2.4) and (x > 4.1)
have become false as a side-effect.

all potential candidates:

new interval of x:
[−10,−4.9)

Figure 4.2: Split candidate example: new interval of x: [−10,−4.9) making all
upper bound candidates true

(x ≥ 10)
(x ≤ 10)

(x < −10)

(x ≤ −13) (x < −4.9) (x ≤ 8.1)

(x < 10)

(x ≤ 10) (x < 14)(x ≥ 2.4)

(x > 4.1)

Previously consistent upper bound candidates
(x < −4.9), (x ≤ 8.1) and (x < 10) have become false.
Candidates (x ≤ −13) and (x < −10) were already false

when the interval was [−10, 10].
Lower bounds (x ≥ 2.4) and (x > 4.1) have
become true as a side-effect.

candidates (x ≤ 10)
and (x < 14)
already true

all potential candidates:

new interval of x:
[10, 10]

Figure 4.3: Split candidate example: new interval of x: [10, 10] making all
upper bound candidates false

35

Chapter 4 Additional options

(x > 4.1) (x ≤ 10)

(x < −10)

(x ≤ −13) (x < −4.9) (x ≤ 8.1)

(x < 10)

(x ≤ 10) (x < 14)(x ≥ 2.4)

(x > 4.1)

Previously consistent lower bound candidates
(x ≥ 2.4) and (x > 4.1) have become true.
Candidates (x ≤ −13) and (x < −10) were already
false before when interval was [−10, 10].
Upper bound (x < −4.9) has become false as a side-effect.

candidates
(x ≤ 10)
and (x < 14)
already true

all potential candidates:

new interval of x:
(4.1, 10]

Figure 4.4: Split candidate example: new interval of x: (4.1, 10] making all
lower bound candidates true

If we want to make all lower bound candidates true, we have to take the greatest lower
bound candidate as new lower bound for the variable interval. Consequently, this greatest
lower bound candidate is satisfied and with it all other lower bound candidates. In our
example with x ∈ [−10, 10] we had (x ≥ 2.4) and (x > 4.1) as lower bound candidates. To
make them both true we have to take 4.1 as the new strict lower bound for the interval of
x. With x ∈ (4.1, 10] both the lower bound candidates are now satisfied. See Figure 4.4.

(x ≥ −10) (x < 2.4)

(x < −10)

(x ≤ −13) (x < −4.9) (x ≤ 8.1)

(x < 10)

(x ≤ 10) (x < 14)(x ≥ 2.4)

(x > 4.1)

candidates
(x ≤ −13)
and (x < −10)
already false

Previously consistent lower bound candidates
(x ≥ 2.4) and (x > 4.1) have become false.
Candidates (x ≤ 10) and (x < 14) were already
true before when the interval was [−10, 10].
Upper bounds (x ≤ 8.1) and (x < 10)
have become true as a side-effect.

all potential candidates:

new interval of x:
[−10, 2.4)

Figure 4.5: Split candidate example: new interval of x: [−10, 2.4) making all
lower bound candidates false

If we want to make all lower bound candidates false, we have to look at the smallest lower
bound candidate and take an even smaller value as the new upper bound of the variable
interval. Consequently, this smallest lower bound is false and with it all other lower bounds.
If we want to make the two lower bound candidates, (x ≥ 2.4) and (x > 4.1) both false, we
have to take 2.4 as the new strict upper bound of x. With x ∈ [−10, 2.4) both (x ≥ 2.4)

36

4.2 Split Candidate Lists

and (x > 4.1) are false. See Figure 4.5.
The sb-split-cand option is not a decision heuristic itself, because it has no impact on which
variables are decided. But it is possible to use their candidate counters to derive heuristics
(see below). It rather dictates the value at which a variable is split when decided. The
default method is overridden, by which a variable interval is always split in the middle. It
also overrides the default method to decide which side of a split interval is considered for
the continuing search process.
To determine the split points, it is necessary to store the constants of all simple bound
candidates and to store whether these come from a strict or non-strict simple bound. To
achieve this, following function is defined:

get candidate (Variable x,
Boolean make most false)

= (Boolean has candidate,
Real candidate value,
Boolean candidate is upper bound,
Boolean candidate is strict)

With:

• the argument x being the variable for whose interval we want to get the new split
value,

• the argument make most false being a Boolean indicating whether it is desired to
make most simple bounds true or false (If most simple bounds shall be made true,
the returned value has to be either the largest lower bound candidate or the smallest
upper bound candidate. If most simple bounds shall be made false, it has to be
either the smallest lower bound or the greatest upper bound.),

• the return value has candidate being a Boolean indicating if a candidate has been
found at all,

• the return value candidate value being the constant from the returned simple bound
candidate, which will determine the point at which the interval of x will be split,

• the return value candidate is upper bound being a Boolean indicating whether the
returned simple bound candidate is an upper or lower bound, and

• the return value candidate is strict being a Boolean indicating whether the returned
simple bound candidate is strict or not.

The four return values allow iSAT to determine the point at which the interval of x needs
to be split with respect to whether make most false was set to true. If make most false
was, for example, set to false and a non-strict upper bound is returned, iSAT knows that

37

Chapter 4 Additional options

it is the greatest upper bound candidate. Because by making the greatest upper bound
candidate false, all smaller upper bound candidates are made false as well. Hence, we have
to make the returned candidate value the new strict lower bound of x. It has to be strict,
such that the non-strict greatest upper bound candidate, from which the split value came,
is false as well.
When get candidate returns an upper bound instead of a lower bound, it is because there
were more upper bound candidates than lower bound candidates; and vice versa. The
evaluation, which simple bound occurrences of x are still consistent in the current interval
of x, is done by get candidate. It also does the comparison between the amounts of upper
bound and lower bound candidates of a variable.

4.2.1 --sb-cand-true

In Section 3.3 we already explained the difference between the heuristic types trying to
make most constraints true and those trying to most false. The intuition behind the former
was that satisfying constraints will always satisfy the whole clause in which they occur.
Hence, satisfying constraints can be expected to bring the algorithm closer to a satisfying
assignment for the whole CNF. The intuition behind the latter was that making constraints
false will bring their clauses closer to becoming unit clauses.
Both alternatives can be conceived to be theoretically justified. For our experiments, we
had to be able to try both. The sb-cand-true option enables us to switch between them.
By default, sb-split-cand tries to make as many constraints as possible false in order to
quickly create unit clauses. I.e. the make most false argument of the abovementioned
function get candidate() is set to true. By enabling sb-cand-true, make most false is set to
false, such that sb-split-cand tries to make as many constraints as possible true.

4.2.2 --zero-cand

Enabling the zero-cand option has the effect that 0 is treated as if it was both an upper
and lower bound candidate for all variables. The motivation for this is, that iSAT often
has to deal with symmetrical functions like sin(x), cos(x) or triplets of the form y = x2.
For such functions, everything concerning the evaluation for x ≤ 0 will have an equivalent
in the evaluation for x ≥ 0. Hence, it can be expected that splitting the interval of x at
the point 0 will result in two interval halves for which it makes sense to examine them
separately.

4.2.3 Candidate split list specific heuristics

max-cand This heuristic prefers variables for decision which currently have the maximum
number of upper bound or lower bound candidates. Let, for example, the variable x have
13 upper bound candidates and 7 lower bound candidates. And let the variable y have 3
upper bound and 16 lower bound candidates. Then, max-cand prefers y as it is possible
to make 16 simple bounds true or false compared to only 13 with x.

38

4.3 Ignore true or implied clauses

Max-cand can be considered an equivalent to the Boolean decision heuristic DLIS (see Sec-
tion 2.4). DLIS stands for “dynamic largest individual sum (of literals)” and “individual”
means that the occurrences are counted individually for positive and in negative phase.
This is similar to what max-cand does, because occurrences in upper bounds and lower
bounds are counted individually.

sum-cand This heuristic prefers variable for decision which currently have most split can-
didates in total. This value is calculated by adding the amount of upper bound candidates
and lower bound candidates. Let x be a variable with 13 upper bound candidates and 7
lower bound candidates. And let the variable y have 3 upper bound and 16 lower bound
candidates. sum-cand adds up these candidate counts to totals of 13 + 7 = 20 for x and
3 + 16 = 19 for y. As x has the higher sum, it is preferred.
sum-cand can be seen as an equivalent to the Boolean decision heuristic DLCS (see Section
2.4). DLCS stands for “dynamic largest combined sum (of literals)” and “combined” means
that the occurrences in positive and in negative phase are added. This is the same principle
followed by sum-cand, as the occurrences in upper bounds and lower bounds are added as
well.

4.3 Ignore true or implied clauses (no-ti)

The heuristics described in Section 3.3 and the option sb-split-cand (see Section 4.2) all
work with variable occurrences in conflict clauses and are, by different means, aiming at
making these conflict clauses true or making most of their contained constraints false.
Now, the question can arise: Why do we still want to reward variables and handle them as
more preferable to decide, if most of their occurrences we counted are actually in conflict
clauses which are already true?
If a constraint is still consistent and belongs to a clause which is already true due to
another of its constraints being true, a decision to make the consistent constraint true will
not change the status of the clause. Just as little will a decision to make the consistent
constraint false bring the clause closer to being a unit clause, because if the clause is
already satisfied it cannot become unit any more.
Hence, it can be considered desirable to ignore occurrences in conflict clauses, which are
already true, just as to ignore split candidates belonging to true conflict clauses. This is
exactly the effect of activating the no-ti option. Furthermore, it can be considered just
as idle as counting occurrences in true clauses, to count occurrences in implied clauses.
Through the activation of no-ti, implied clauses are ignored in the same way as true clauses.

4.4 Ignore false constraints (false-sb)

In Section 4.3 we explained, why it can make sense that constraints from true or implied
clauses are ignored by the heuristics working with variable occurrences in conflict clauses

39

Chapter 4 Additional options

and by the sb-split-cand option. Similarly, it can be argued that the occurrence of a
variable in a conflict clause should not be counted by the heuristics described in Section
3.3, if the constraint it occurs in is already false, because the simple bound constraint will
remain false after the decision of its variable and hence not entail any immediate progress
in the search process.
The false-sb option has the effect, that occurrences in false simple bounds are not counted
by these heuristics. Activating false-sb has no effect on the sb-split-cand option, as the
latter only counts simple bounds as candidates if they are still consistent. Hence, false
simple bounds are ignored by it anyway. Neither, has false-sb an effect on the heuristic
moiwccc, because a false constraint can never be a watched constraint. Hence, false simple
bounds are ignored by that heuristic anyway, as well.

4.5 Strict (strict)

The option strict has an effect on whether the value of next var pos is incremented after
a decision. In Section 4.1 we explained how next var pos is the integer number indicating
the position in the vector sorted vars, at which the pointer to the next variable to decide
is stored. Normally, next var pos is incremented after every decision and only reset to 0
after a resort of sorted vars. But this might not always be what we want.
Take for example the case in which the active heuristic is small-interval-last. This means
that variables with the greatest interval are preferred for decision. Then let the first entries
of sorted vars be the variables x, y, z with the following intervals widths:

sorted vars[0] = pointer to x (interval width = 28)
sorted vars[1] = pointer to y (interval width = 10)
sorted vars[2] = pointer to z (interval width = 8)

The first variable to decide is x at position 0 of sorted vars. In course of the decision, the
interval of x is split in the middle, such that the new interval width becomes 28/2 = 14.
After the decision next var pos is incremented and y at position 1 of sorted vars is decided.
But this can be considered not to be, what the heuristic should actually do, because even
after the decision of x its interval with a width of 14 is still greater than the interval of y
with a width of only 10.
A way to circumvent this would be to activate the heuristic in combination with the
resorting option sortafter=1 (see Section 4.1.1). This will resort the vector sorted vars
after every decision and reset next var pos to 0. Hence, we can be sure that at each
decision the variable with, in the case of small-interval-last, currently greatest interval is
decided. Resorting, however, can become quite consumptive in terms of computing time,
such that the strict option embodies a cheap alternative.
What strict does is that after every decision, the solver compares the variable which has
just been decided and whose pointer is stored at position next var pos of sorted vars with
the succeeding variable at position next var pos+1. Normally, next var pos is incremented

40

4.6 Pre-Minimal Splitting Width

after every decision. But with strict activated, this incrementation only takes place, if the
compared variables (i.e. the one just decided and its successor) are not ordered any more
according to the respective decision heuristic.
So, consider once more the aforementioned example: After x at position 0 of sorted vars
has been decided, its interval has shrunk from 28 to 14. Normally, next var pos would be
incremented, but with strict activated x is first compared with its successor y at position
1. And as the interval of x is still greater than the interval of y, which is 10, next var pos
is not incremented and x is decided again. After this second decision, the interval of x
has been halved again, such that its width is now 14/2 = 7. When x is now compared
to y, it is found that they are not ordered according to small interval first, because the
interval of x is now smaller than the interval of y. Hence, next var pos is incremented from
0 to 1 and y is decided next. After the decision of y its interval has shrunk to 10/2 = 5,
which is already smaller than the interval of z with a width of 8. Hence, next var pos is
incremented immediately after the first decision of y and z is decided next.
The strict option can be activated with any heuristic or combination of heuristics. It will
always have the effect that the variable just decided is compared to its successor, and only
if the two are not ordered according to the heuristic any more, the successor variable is
considered for decision next.
Thus, if strict is, for example, activated in combination with small-interval-first, it can
be expected that every variable will be decided over and over again until its interval has
reached the minimal splitting width, before the next variable in sorted vars is considered
for decision. This is because at the beginning every variable at a position sorted vars[i]
has already an interval width smaller or equal to the interval width of its successor at
position sorted vars[i + 1], i ∈ N0. And after a variable at sorted vars[i] has been decided,
i.e. its interval has been halved, it is very likely that its new halved interval is still smaller
than the one of its successor at sorted vars[i + 1]. Hence, it will be decided again and
again. It could only happen through a rather unlikely ICP implication that the interval of
sorted vars[i+1] shrinks more than the interval of sorted vars[i], when the latter is decided.

4.6 Pre-Minimal Splitting Width

The minimal splitting width (MSW) in iSAT defines the value down to which the interval
of a variable can be split, before it is not considered a decidable variable any more. If
MSW is less than 1, all integer variables can be decided exhaustively because if an integer
variable with the interval width 1 is split, it immediately becomes a point interval of width
0. This is normally the case, such that MSW only has an effect on real valued variables.
If the interval width of a variable has reached the minimal splitting width, it will not be
decided any more and the next variable in the decision order according to the current
heuristic is considered for decision. If all variable intervals have reached the minimal
splitting width, the search algorithm terminates and returns these intervals as candidate
solutions.

41

Chapter 4 Additional options

The Pre-Minimal Splitting Width option allows us to define another value pre-msw, which
is greater than MSW but will be handled by the solver just like the actual MSW value.
Thus, all variables will through decisions, at first, only be split down to intervals of widths
not greater than pre-msw. Once, no variables are decidable any more with this pre-msw
value, a new pre-msw value will be calculated by dividing pre-msw by another value pre-
msw-div, which also has to be defined with the activation of the Pre-Minimal Splitting
Width option. The effect is, that all variable intervals are shrinking in a rather evenly
manner, similar to what the heuristic small-interval-last is aiming at.
Let for example be x, y and z be variables with the following interval widths:

width(x) = 28, width(y) = 10, width(z) = 8

Let furthermore be MSW = 0.1, pre-msw initiated with 16, and pre-msw-div = 4.
Let us for simplicity reasons assume that there are no ICP implications possible between
the three variables. Then what happens is, that at first x is decided, which halves its
interval, such that we get the following interval widths:

width(x) = 14, width(y) = 10, width(z) = 8

At this points all interval widths have reached pre-msw. Hence, pre-msw is divided by
pre-msw-div, which was 4, giving us the new value pre-msw = 4. This allows x to be
decided two more times (reducing its interval width from 14 to 7, then from 7 to 3.5) and
y as well (reducing its interval width from 10 to 5, then from 5 to 2.5). The interval of z
can only be split once (from 8 to 4), before it reaches the value of pre-msw again:

width(x) = 3.5, width(y) = 2.5, width(z) = 4

Now, pre-msw is again divided by pre-msw-div, which gives us pre-msw = 1 and allows for
two more decisions of x, y and z each:

width(x) = 0.875, width(y) = 0.625, width(z) = 1

Then, pre-msw is again divided by pre-msw-div, giving us pre-msw = 0.25, allowing again
for two more decisions of x, y and z each:

width(x) = 0.21875, width(y) = 0.15625, width(z) = 0.25

When iSAT tries to divide pre-msw by pre-msw-div again, it realises that the new value
pre-msw = 0.0625 is already less than the value of the actual minimal splitting width
MSW = 0.1. Hence, the value of MSW is used, which allows for two more decisions of x,
y and z each.

width(x) = 0.0546875, width(y) = 0.078125, width(z) = 0.0625

Now, all variable intervals have reached the minimal splitting width and a candidate solu-
tion will be returned by the solver.
As backtracks undo previous decisions and thereby restore variable intervals to their pre-
vious widths, we also had to implement a functionality which stores the pre-msw value for
each decision level and restores it in case of a backtrack.

42

Chapter 5

Experiments

5.1 Procedures and Methodology

After the developing and implementation phase was completed, the new heuristics had to
be tested in order to be compared regarding their usefulness. It is understood that there
is a measureless amount of possible heuristic and parameter combinations. We wanted
to examine each heuristic in its pure form without any additional options. But the ones
where resorting could be expected to have an effect we wanted to test as well with the
resorting options dynamic, resort-ac and three different values (1, 15, and 40) for the
sortafter option.
Furthermore, the strict option (see Section 4.5) should be tried once in combination with
each heuristic, as well as two different settings for the pre-msw option (see Section 4.6):
both settings had the initial pre-msw value set to 16, only in one setting pre-msw-div was
set to 2 and in the other to 4. Then, the sb-split-cand option (see Section 4.2) should also
be applied in combination with all heuristics, which included 8 different settings of its own:

1. sb-split-cand on its own
(trying to make most constraints false).

2. sb-split-cand with sb-cand-true activated
(trying to make most constraints true).

3.-4. the two points above with zero-cand activated.
5.-8. the four points above with no-ti and/or false-sb activated.

(We did not test the effects of no-ti and false-sb separately, but used them
in combination only. For some heuristics, like for example “most occurrences
in watched constraints of conflict clauses” (see Section 3.3.2), false-sb has no
effect anyway, such that only no-ti had to be activated.)

In the end, we still wanted to have time left to run tests where heuristics were combined
among each other which performed well in the first test runs individually; for example
boolean-first combined with small-interval-first. Thus, we ended up with over 400 different
settings, which we found worthy of running tests for. In order to be able to execute so
many tests, we had to limit ourselves to a restricted amount of benchmark instances and
a suitable timeout after which the solving process of a benchmark was aborted.

43

Chapter 5 Experiments

As timeout we chose 200 seconds for each of the 40 benchmark instances, which we se-
lected from the iSAT benchmark repository. These benchmarks consisted of real life BMC
problems (i.e. models of discretised hybrid systems) but also of developer benchmarks
(i.e. designed test cases from earlier iSAT creation phases). Among these 40 benchmarks
were 20, which iSAT could identify as being unsatisfiable within 200 seconds each, when
the “natural” decision order was used. For 10 a candidate solution was found. And the
remaining 10 could not be solved in 200 seconds.
The machines on which we ran our tests were two identical dual-processor computers, each
of which had two identical CPUs, namely an “AMD Opteron 252” running with 2.6 GHz
and a cache size of 1024 KB. Each computer had a memory of 16 GB, but we limited iSAT
to only use 2 GB per benchmark instance at maximum anyway. Thus, we were able to
have four instances of iSAT running simultaneously at all times; one on each of the four
identical CPUs.
In the following, we will present our findings which we found to be most striking and
interesting. It would go beyond the scope of this thesis to include all results, as the
gathered data is quite extensive. A detailed description of the individual benchmark files
is also omitted, but both the complete test data as the benchmark files are available in the
iSAT repository and will be gladly provided on demand.

5.2 Comparison by overall time and other values

In the evaluation phase we gathered data for each individual benchmark and each heuris-
tic/options combination. Among this data were characteristic values such as “maximum
decision level depth”, “maximum number of decisions per decision level”, “number of con-
flicts”, “average conflict clause size”, “maximum backjump distance”, and “number of
conflict clauses implied by conflict clauses”. Furthermore, the overall computation time
for each benchmark instance was assessed. We measured the times individually which were
spent for resorting the sorted vars vector (see Section 4.1) and for maintaining the different
efforts of sb-split-cand, no-ti and false-sb (see Sections 4.2, 4.3, and 4.4). The same was
done for the extra efforts needed for all heuristics depending on variable occurrences in
conflict clauses (see Section 3.3).
To compare the heuristics and their combinations with one another, we added the values of
all 40 benchmark instances for each heuristic and compared only the sums. If a benchmark
could not be solved within the timeout of 200 seconds, the value 200 was added to this
sum of overall computation times. We found that this sum was the most interesting and
significant value to estimate the usefulness of a heuristic. Because it could be seen that
the heuristics with the smallest overall time sums were also the ones which solved most
benchmarks.
Table 5.1, 5.2 and 5.3 show the 20 best heuristic combinations regarding the overall com-
putation times as well as the “natural” decision order setting for comparison. The times
spent for resorting sorted vars were all negligible for these heuristics (less than 1 second

44

5.2 Comparison by overall time and other values

for all 40 benchmarks per heuristic) and the same can be said about the time needed for
maintaining sb-split-cand (less than 8 seconds). The heuristic combinations in which no-ti
was activated (table rows 3, 4, 7, 8, 9, 10, 11, 12, and 18) showed that the maintenance
of no-ti is more demanding but still not noteworthy: only 2% of the overall computation
time was needed for no-ti operations.

Heuristic combination Overall
time [s]

#solved
of 40

#un-
known

#unsat #cc
implied

by cc

1 shrunk-interval-first
boolean-first
strict
sb-split-cand sb-cand-true

1465.46 36 12 24 9681

2 boolean-first
shrunk-interval-first
strict
sb-split-cand sb-cand-true

1471.50 36 12 24 9681

3 boolean-first
shrunk-interval-first
strict
sb-split-cand sb-cand-true
no-ti

1548.89 36 13 23 7209

4 shrunk-interval-first
boolean-first
strict
sb-split-cand sb-cand-true
no-ti

1554.45 36 13 23 7209

natural 2703.04 30 10 20 25100

Table 5.1: The 4 best heuristic combinations regarding the sum of all 40 benchmarks’
overall computation times. Values of “natural” (no heuristic) are given for
comparison.

The false-sb option does not appear among the best 60 heuristics, but then again it only
makes sense in combination with certain heuristics, which are not ignoring false simple
bounds anyway. It first appears at position 79 in combination with “Jeroslow-Wang
sortafter=40 sb-split-cand sb-cand-true no-ti” solving 31 benchmarks in 2489.15 seconds
with the time needed for false-sb operations being less than 1% of the overall computation
time.
It was not possible to find any patterns in the examination of the abovementioned values
“maximum decision level depth”, “number of conflicts” etc. An exception can be seen
in the value “number of conflict clauses implied by conflict clauses”, which is therefore
given in the tables under the abbreviation “#cc implied by cc”. Apparently there is a
correlation between the activation of sb-split-cand with sb-cand-true and a small value of
“#cc implied by cc”. Even though our four best heuristic combinations in Table 5.1 could

45

Chapter 5 Experiments

Heuristic combination Overall
time [s]

#solved
of 40

#un-
known

#unsat #cc
implied

by cc

5 small-interval-first
boolean-last
sb-split-cand sb-cand-true

1635.06 34 12 22 3195

6 small-interval-first
sb-split-cand sb-cand-true

1713.98 34 12 22 3728

7 integer-last
boolean-last
sb-split-cand sb-cand-true
no-ti

1812.09 34 11 23 4807

8 dominant-first
boolean-last
sb-split-cand sb-cand-true
no-ti

1861.27 33 11 22 3501

9 small-interval-first
boolean-last
sb-split-cand sb-cand-true
no-ti

1861.40 33 11 22 3917

10 boolean-last
integer-last
sb-split-cand sb-cand-true
no-ti

1891.24 34 11 23 3877

11 boolean-last
sb-split-cand sb-cand-true
no-ti

1911.34 33 11 22 3750

12 boolean-last
dominant-first
sb-split-cand sb-cand-true
no-ti

2009.54 34 11 23 4135

natural 2703.04 30 10 20 25100

Table 5.2: Heuristic combinations on position 5 to 12 of our ranking regarding the
sum of all 40 benchmarks’ overall computation times. Values of “natural”
(no heuristic) are given for comparison.

46

5.2 Comparison by overall time and other values

Heuristic combination Overall
time [s]

#solved
of 40

#un-
known

#unsat #cc
implied

by cc

13 small-interval-first
boolean-last

2043.46 32 10 22 18175

14 integer-last
boolean-last
sb-split-cand sb-cand-true

2078.99 33 11 22 4329

15 dominant-first
boolean-last
sb-split-cand sb-cand-true

2107.54 32 10 22 3004

16 boolean-last
sb-split-cand sb-cand-true

2122.06 33 11 22 4063

17 only-and-all-dominant-first
sb-split-cand sb-cand-true

2132.49 33 11 22 5254

18 small-interval-first
sb-split-cand sb-cand-true
no-ti

2135.25 33 11 22 4396

19 dominant-first
boolean-last

2153.33 35 11 24 26319

20 small-interval-last
sb-split-cand sb-cand-true

2154.64 32 10 22 3464

natural 2703.04 30 10 20 25100

Table 5.3: Heuristic combinations on position 13 to 20 of our ranking regarding the
sum of all 40 benchmarks’ overall computation times. Values of “natural”
(no heuristic) are given for comparison.

47

Chapter 5 Experiments

be considered outliers of this putative regularity with comparatively great “#cc implied
by cc”-values.
Striking is the fact that the sb-split-cand option with sb-cand-true is occurring in almost
all heuristics of our computation time top twenty. This gives reason to believe that it
does indeed have a positive effect, when variable intervals are split at points such that
most simple bounds belonging to learned conflict clauses become true. It is furthermore a
positive result, that the computation time could be reduced by almost 50% compared to
the “natural” decision order and that up to 6 more benchmark instances could be solved.
The four best heuristics (see Table 5.1) are basically one and the same combination of
heuristics. The only difference between rows 1 and 2 and between rows 3 and 4 respectively
is that in 1 and 4 the variable order is first determined according to shrunk-interval-first
and then according to boolean-first. In rows 2 and 3 it is the other way around. The
combinations of row 3 and 4 have the no-ti option activated whereas the ones in row 1 and
2 do not.
That boolean-first performed well can be seen as a confirmation of the intuition which led
to its creation. It was, however, more of a surprise that shrunk-interval-first with the strict
option performed so well. Because shrunk-interval-first without any resorting options does
effectively nothing: In the beginning of the solving process, when the initial interval widths
are stored, all variables are treated equally by this heuristic, because no variable intervals
have shrunk yet. When the strict option is activated, the following happens: After the
first variable has been decided, its interval has shrunk and probably more than (through
ICP) the interval of its successor variable in sorted vars. Hence, the variable just decided
and its successor are still in correct order according to shrunk-interval-first and the just
decided variable is decided again. This is very likely to go on until the variable’s interval
cannot be split any more. Apparently, this is a beneficial method to solve many of the
instances from our benchmark set.
Rows 1 to 4 show us, that it does not make much of a difference, which of the two heuristics
shrunk-interval-first or boolean-first is taken as primary and which as secondary sorting
criterion. The activation of no-ti does make a slight difference though, which is not so
much noticed in the slightly longer computation time. But there are two benchmarks, one
of which produced a timeout with no-ti but could be solved as unsat without no-ti in 16.72
seconds1, while the other one produced a timeout without no-ti and could be solved as
unknown (candidate solution) with no-ti in 1.5 seconds2. Phenomena like this demonstrate
very blatantly what kinds of irregularities and unpredictabilities we are dealing with in such
a heuristic research field.
Another heuristic with good results was small-interval-first (rows 5, 6, 9, 13, and 18)
without any resorting activated. This was rather unexpected, because small-interval-first
without resorting determines the decision order in the very beginning of the solving process

1/imira/benchmarks/sisat/process wireless ctrl/process wireless ctrl 04 sol nonprob.hys (BMC-depth
30)

2/imira/benchmarks/hysat/tomlin aircraft roundabout maneuver modified.hys (BMC-depth 3)

48

5.3 Correlations between heuristics and between benchmark instances

after a first deduction has taken place. So apparently the initial interval width of a variable
does have a significance for its decision preferability. It can be assumed, though, that the
effect of small-interval-first without resorting is quite similar to boolean-first. Because
Boolean variables have rather small intervals (namely of size 1) by nature. On the other
hand, small-interval-last, which is the opposite of small-interval-first also made it into the
top 20 table in the last row. This makes it difficult to draw any conclusion in favour of
small-interval-first.
Dominant-first (rows 8, 12, 15, and 19) and only-and-all-dominant-first (row 17) are among
the 20 best heuristics. But it has to be pointed out, that row 8, 12, and 15 are effectively
the same heuristic combination only with a different sorting order priority and no-ti being
omitted in row 15. The occurrences of dominant-first appear to be a justification of our
intuition. On the other hand, we find dominant-last in combination with sb-split-cand and
sb-cand-true at position 62 of our heuristic ranking, solving 31 benchmarks in 2405.13 sec-
onds. So, it might not be justified to argue in favour of dominant-first too enthusiastically.
Similarly, the combination of boolean-first with BMC-backward occurring in row 25 seems
not enough to claim a major achievement with BMC-backward, but it is noteworthy never
the less.
What can definitely be drawn from these results, is the usefulness of sb-split-cand with sb-
cand-true. We see this as an indicator for the necessity of examining the actual structure
of a given problem formula in order to solve it successfully.

5.3 Correlations between heuristics and between benchmark
instances

In an attempt to find out more about the iSAT heuristic problem, we set out to calculate
the correlations between all heuristic combinations with one another. The idea was to find
out which pairs of heuristics solved the same benchmarks in rather short periods of time.
This would enable us to identify, so to speak, “families” of heuristics and we could try what
happens if we combine heuristics belonging to the same family or to different uncorrelated
families. Likewise, we were interested in whether there are families of benchmarks, which
are all solved by about the same sets of heuristics. If a manageable small amount of such
benchmark families could be identified, it would be possible to select an equally small set
of heuristics, from which it could be expected to solve any new benchmark.3

But among our over 400 heuristic combinations there were of course many which did not
perform well at all for our 40 benchmarks, i.e. they produced timeouts for most instances.
These underachieving heuristics would all have rather high correlations among each other
and would also blow up the amount of data to be reprocessed. Hence, we reduced the data,
such that we only registered the cases in which a heuristic solved a benchmark in less than

3It needs to be said in advance, that the approach presented in this section did not yield the results we
hoped for. Never the less, the method and results are presented here as some considerable scientific
effort has been dedicated to them. Such endeavour is justified to be regarded in a Diploma thesis.

49

Chapter 5 Experiments

10 seconds4. Effectively this is the same as if we had run all our tests with a timeout of
10 seconds instead of 200.
From this data we created a table, whose rows are the heuristic combinations and whose
columns are the benchmark instances. A “-1” at the crossing of a heuristic row and a
benchmark column has the meaning that this benchmark was not solved by this heuristic
in less than 10 seconds; a “1” stands for that it was. Table 5.4 shows a small example of this
concept, which we refer to as “coverage table”, because the table show which benchmarks
are covered by which heuristic.

ae test abs 3.hys ae test min 3.hys bouncing ball euler.hys 57

natural -1 1 1

BMC-forward -1 1 -1

VSIDS 1 1 -1

Table 5.4: An exemplary extract of our coverage table, showing that ae test min 3.hys
is solved by VSIDS, that bouncing ball euler.hys with BMC-depth 57 is
solved by natural, and that ae test min 3.hys is solved by natural, BMC-
forward, and VSIDS.

From this coverage table we proceeded to calculating the correlations between all heuristics
and between all benchmarks as follows: Let the coverage table be represented as the m-
by-n matrix T , whose m rows are the heuristics and whose n columns are the benchmarks.
Thus, the entry tj,k (row j, column k) is “1”, if heuristic j solved benchmark k in less than
10 seconds; otherwise it is “-1”. The correlation between two heuristics, which stand in
row i and row j, is then calculated according to the formula:

HeuCor(i, j) =
∑n

k=1(ti,k ∗ tj,k)
n

with n being the number of benchmarks. Thus, the more identical two heuristics are
regarding which benchmarks they solved or did not solve, the closer is the value of their
correlation to 1. And the more they differ regarding their solved benchmarks, the closer
is their correlation to −1. The correlation between benchmark instances is calculated
analogously:

BenCor(i, j) =
∑m

k=1(tk,i ∗ tk.j)
m

with m being the number of heuristics.

4The choice of 10 seconds was admittedly arbitrary and could have been any other rather small value. But
10 seconds seemed like a suitable choice, as for all but one benchmark of the 40 we tested, there were
at least more than one heuristics which solved it in less than 10 seconds. The remaining benchmark
(/imira/benchmarks/hysat/train distance ctrl1.hys with BMC-depth 21) produced a timeout with all
heuristics.

50

5.3 Correlations between heuristics and between benchmark instances

As a result we got one m-by-m matrix showing the correlations between all benchmarks and
one n-by-n matrix showing the correlation between all heuristics. An exemplary extract
from the benchmark correlation matrix is shown in table 5.5.

bug.hys 12 freezer.hys 26 freezer.hys 27 h3 train jun isat.hys 17

bug.hys 12 1.00 −0.57 −0.37 −0.78

freezer.hys 26 1.00 0.72 0.80

freezer.hys 27 1.00 0.59

h3 train jun isat.hys 17 1.00

Table 5.5: An exemplary extract from the matrix representing the correlations be-
tween benchmark instances. The correlation of 0.80 between freezer.hys
with BMC-depth 26 and h3 train jun isat.hys with BMC-depth 17, for ex-
ample, indicates that these two benchmarks are solved by a similar set of
heuristics. A low correlation, on the other hand indicates that two bench-
marks are rarely solved by the same heuristic.

Next, we were interested in finding the abovementioned putative “families” of benchmarks
or heuristics. To have a clear result, we did not want to allow a benchmark or heuristic to
be the member of more than one family. This, however, confronted us with the problem
of how to define a family. The original intuition was that all members of a family should
have great correlations with one another. But consider the case where a member m1 has a
great correlation with another member m2 and another member m3, but m2 and m3 have
a very small or even negative correlation between each other. Following the intuition, m2

and m3 should not be in the same family but then we would have to decide which family
we assign m1 to.
To tackle this dilemma, it was decided to define a family such that in two different families
fx and fy there are never two members, one of which belongs to fx and the other to fy,
which have a correlation between each other above a certain value. Or in other words: If
two heuristics or benchmarks belong to different families, they definitely have a correlation
smaller than a certain value. This value was implemented as a variable parameter. When
set to 1.0, each heuristic or benchmark gets assigned its own family, because there was never
a correlation of 1.0 between two different heuristics or benchmarks. When the parameter
is set to a sufficiently small value, say 0.0, all heuristics or benchmarks get assigned to the
same family, because for every heuristic or benchmark there is at least one other heuristic
or benchmark with which it has a correlation greater than 0.0, such that their families are
merged.
We experimented with different values for this parameter until a manageable amount of
families was returned. But the results were somewhat sobering. Having set the parameter
to 0.8, we got 23 benchmark families all but four consisting of only one benchmark. Among
the four multi-member families were two, which consisted of two benchmarks each, one
consisting of four benchmarks and the remaining family comprised all remaining bench-

51

Chapter 5 Experiments

marks:

benchmark families 1-19: all consisting of only one benchmark
benchmark family 20: parking lin.hys, BMC-depth 43

parking lin2.hys, BMC-depth 43
benchmark family 21: parking rad mod 1.hys, BMC-depth 52

parking rad mod 1.hys, BMC-depth 53
benchmark family 22: bug.hys, BMC-depth 11

bug.hys, BMC-depth 12
sample bmc lha.hys, BMC-depth 8
sample bmc lha.hys, BMC-depth 9

benchmark family 23: comprising the remaining 13 benchmarks

Family 20 comprised the benchmarks parking lin.hys and parking lin2.hys both with BMC-
depth 43. This is not surprising, as these two benchmarks are very similar, such that it
could be expected that they are solved by similar sets of heuristics. Family 21 comprised
the benchmark parking rad mod 1.hys with BMC-depth 52 and 53, and family 22 the
benchmarks bug.hys with BMC-depth 11 and 12 and sample bmc lha.hys with BMC-depth
8 and 9. This means that for these three benchmarks the BMC-depth does not have a
great impact on which heuristics are suited best to solve them.
Unfortunately, this cannot be said for all benchmarks, what casts a shadow on the whole
idea of identifying benchmark families. When we look at the 19 single-member families,
we observe that the same benchmarks with different BMC-depths are assigned to sepa-
rate families, which means that for these benchmark the BMC-depth does indeed have
an effect on which heuristics they are solved by. Thus, we find the benchmark bounc-
ing ball euler.hys with BMC-depths 56 and 57 in two different single-member families.
The same is the case for the benchmark etcs train system static removed mod.hys with
BMC-depths 34 and 41 and for highlift4.hys with BMC-depths 64 and 65. Furthermore,
we find parking lin.hys and parking lin2.hys both with BMC-depth 44 in different single-
member families, which has to curb our enthusiasm for having found these two benchmarks
with the same BMC-depth in benchmark family 20.
Trying to identify families of heuristics in this way presented a similar scenario. With the
parameter set to 0.8, we get 17 families but almost all heuristics are assigned to one of
two different gigantic families, which makes it impossible to pick a representative heuristic.
The remaining 15 families are all single-membered except two:

heuristic families 1-13: all consisting of only one heuristic
heuristic family 14: VSIDS sortafter=8 sb-split-cand no-ti

VSIDS sortafter=40 sb-split-cand
heuristic family 15: max-cand sortafter=40 sb-split-cand sb-cand-true

moiwccc sortafter=15 sb-split-cand sb-cand-true
heuristic family 16 and 17: comprising the remaining ∼400 heuristics

52

5.3 Correlations between heuristics and between benchmark instances

This only allows to draw the conclusion that the two heuristics in family 14 and 15 respec-
tively are similar. But then the question is, why it is these parameter combinations and
not any other, which were also tested.

53

Chapter 5 Experiments

54

Chapter 6

Conclusions and future work

One of the most interesting result of this thesis is that the sb-split-cand option has proven
to bring a great advantage for the solving process. With it the solver is able to satisfy
many constraints of learned conflict clauses with only one variable decision. This brings
the problem of solving non-linear interval constraint formulas closer to the original Boolean
SAT domain.
Moreover, it has to be stated that several of the heuristics we tried were able to reduce the
overall computation time by almost 50% in comparison with the “natural” decision order.
The heuristics which have been implemented provide an extensive ground for future works.
One prospect is to implement a portfolio approach, in which a certain set of heuristics is
chosen to run in parallel. Also, it can be expected that further insight is gained, when test
are run for more than just the 40 benchmarks tried in this work.
The success of sb-split-cand is seen as an indicator, that future research needs to go into
a direction where the structure of a benchmark problem is examined more thoroughly.
On basis of such information, it would then be possible to estimate a suitable heuristic.
Further heuristics can easily be derived from the range of techniques developed for this
thesis.

55

Chapter 6 Conclusions and future work

56

Bibliography

[1] The iSAT web page, available at http://isat.gforge.avacs.org, 2010.

[2] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfia-
bility modulo theories. In Handbook of Satisfiability, pages 825–885. 2009.

[3] Roberto J. Bayardo and Robert C. Schrag. Using CSP lock-back techniques to solve
real-world SAT instances. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), pages 203–208, July 1997.

[4] Daniel Brand. Verification of Large Synthesized Designs. In IEEE/ACM International
Conference on Computer Aided Design, pages 534–537, 1993.

[5] Michael Buro and Hans Kleine-Büning. Report on a SAT competition. Bulletin of
the European Association for Theoretical Computer Science, (49):143–151, 1993.

[6] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the 3rd ACM Symposium on Theory of Computing, pages 151–158, 1971.

[7] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the Association for Computing Machinery
(ACM), 5(7):394–397, 1962.

[8] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the Association for Computing Machinery (ACM), 7(3):201–215, 1960.

[9] Andreas Eggers, Natalia Kalinnik, Stefan Kupferschmid, and Tino Teige. Challenges
in constraint-based analysis of hybrid systems. In CSCLP, pages 51–65, 2008.

[10] Martin Fränzle, Christian Herde, Stefan Ratschan, Tobias Schubert, and Tino Teige.
Efficient solving of large non-linear arithmetic constraint systems with complex
boolean structure. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT) – Special Issue on SAT/CP Integration, 1:209–236, 2007.

[11] Evgueni Goldberg and Yakov Novikov. Berkmin: a fast and robust sat-solver. In
Proceedings of the Design Automation and Test in Europe (DATE 2002), pages 142–
149, 2002.

[12] John N. Hooker and V. Vinay. Branching rules for satisfiability. Journal of Automated
Reasoning, 15:359–383, 1995.

57

Bibliography

[13] Robert J. Jeroslow and Jinchang Wang. Solving propositional satisfiability problems.
Annals of Mathematics and Artificial Intelligence, 1:167–188, 1990.

[14] Henry A. Kautz and Bart Selman. Planning as Satisfiability. In 10th European
Conference on Artificial Intelligence, pages 359–363, 1992.

[15] Henry A. Kautz and Bart Selman. Pushing the Envelope: Planning, Propositional
Logic, and Stochastic Search. In 13th AAAI National Conference on Artificial Intel-
ligence, pages 1194–1201, 1996.

[16] Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability
problems. In Proceedings of the fifteenth International Joint Conference on Artificial
Intelligence IJCAI’97, pages 366–371, Nagayo, Japan, 1997.

[17] João P. Marques-Silva. The impact of branching heuristics in propositional satisfia-
bility algorithms. In In 9th Portuguese Conference on Artificial Intelligence (EPIA),
pages 62–74, 1999.

[18] João P. Marques-Silva and Karem A. Sakallah. GRASP - A New Search Algorithm for
Satisfiability. In Proceedings of IEEE/ACM International Conference on Computer-
Aided Design, pages 220–227, 1996.

[19] João P. Marques-Silva and Karem A. Sakallah. Boolean Satisfiability in Electronic
Design Automation. In IEEE/ACM Design Automation Conference, pages 675–680,
2000.

[20] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design
Automation Conference (DAC ’01), pages 530–535, 2001.

[21] Ofer Strichman. Accelerating bounded model checking of safety properties. Formal
Methods in System Design, 24(1):5–24, 2004.

[22] Grigori S. Tseitin. On the complexity of derivations in the propositional calculus.
Studies in Mathematics and Mathematical Logic, 2:115–125, 1968.

[23] Hantao Zhang. SATO: an efficient propositional prover. In Proceedings of the In-
ternational Conference on Automated Deduction (CADE ’97), volume 1249 of LNAI,
pages 272–275, 1997.

[24] Lintao Zhang, Connor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. Ef-
ficient conflict driven learning in a boolean satisfiability solver. In Proceedings of
the International Conference on Computer Aided Design (ICCAD), pages 279–285,
November 2001.

58

List of Figures

2.1 A complete binary tree representing the search space in the search for an
assignment with 5 Boolean variables. One leaf is picked as a demonstration
example of how leaves represent assignments. 6

2.2 DPLL example: The progress in the search space and the implication graph
after assigning false to x1 at decision level 1. The assignment for x2 is
implied. 7

2.3 DPLL example: The progress in the search space and the implication graph
after assigning false to x3 at decision level 2. 9

2.4 DPLL example: The progress in the search space and the implication graph
after assigning false to x4 at decision level 3 and false to x5 at decision level
4. 10

2.5 DPLL example: Assigning false to x6 at decision level 5 causes a conflict. . 10

4.1 Split candidate example: initial interval of x: [−10, 10] 33
4.2 Split candidate example: new interval of x: [−10,−4.9) making all upper

bound candidates true . 35
4.3 Split candidate example: new interval of x: [10, 10] making all upper bound

candidates false . 35
4.4 Split candidate example: new interval of x: (4.1, 10] making all lower bound

candidates true . 36
4.5 Split candidate example: new interval of x: [−10, 2.4) making all lower

bound candidates false . 36

59

List of Tables

5.1 The 4 best heuristic combinations regarding the sum of all 40 benchmarks’
overall computation times. Values of “natural” (no heuristic) are given for
comparison. 45

5.2 Heuristic combinations on position 5 to 12 of our ranking regarding the sum
of all 40 benchmarks’ overall computation times. Values of “natural” (no
heuristic) are given for comparison. 46

5.3 Heuristic combinations on position 13 to 20 of our ranking regarding the
sum of all 40 benchmarks’ overall computation times. Values of “natural”
(no heuristic) are given for comparison. 47

5.4 An exemplary extract of our coverage table, showing that ae test min 3.hys
is solved by VSIDS, that bouncing ball euler.hys with BMC-depth 57 is
solved by natural, and that ae test min 3.hys is solved by natural, BMC-
forward, and VSIDS. 50

5.5 An exemplary extract from the matrix representing the correlations be-
tween benchmark instances. The correlation of 0.80 between freezer.hys
with BMC-depth 26 and h3 train jun isat.hys with BMC-depth 17, for ex-
ample, indicates that these two benchmarks are solved by a similar set of
heuristics. A low correlation, on the other hand indicates that two bench-
marks are rarely solved by the same heuristic. 51

61

