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1

Introduction

When a circuit’s switching activity, which is a function of the input patterns, changes

abruptly, sudden drop or rise in power supply voltage may be caused. This change is

known as power supply noise and may be the origin of too large switching delays. The

situation can be aggravated by capacitive cross-talk in signal lines. The combined ef-

fect may cause an IC to fail. Nowadays, such failures cannot be screened during testing

as conventional fault models do not account for combination of signal integrity prob-

lems. In this work a technique for screening such failures is presented. The technique

is based on the application of long sequences of input patterns. The work focuses on

the test pattern generation algorithm which is based on the classical D-algorithm.

State-of-the-art high-performance digital ICs manufactured in deep-submicron technolo-
gies tend to draw considerable amounts of power during operation. Sharp changes in
power consumption are possible within only few clock cycles. For example, a micropro-
cessor that, after being in the idle mode for several cycles, has to start complex calculations
involving simultaneous use of multiple fixed-point and floating-point units may achieve a
difference in power consumption of more than 100 W.

The term power droop is defined in [1] and describes the impact of power con-
sumption transients on logic values of signal lines of a circuit and thus the correctness
of the circuit’s operation. There are two types of power droop, low-frequency and
high-frequency power droop. In this work a method for testing for power droop is
presented. The method applies a long sequence of input patterns that creates worst-case
power droop conditions by combining the effects of low-frequency and high-frequency
power droop. After presenting the method the work focuses on the necessary automatic
test pattern generation (ATPG) algorithm which is based on the classical D-algorithm
and is capable of generating new constraints on-the-fly based on previous assignments.
The generated sequence can be used for evaluating early silicon for design flaws such as
an insufficient sizing of the power grid (which may be a cause for high-frequency power
droop, see Subsection 3.1.2) and in manufacturing test. Since power droop belongs to
the class of circuit marginalities ([5]), some ICs may be affected stronger than
others. By applying the generated sequence, the ICs which are vulnerable to power droop
can be identified and either rejected or binned as low-performance parts.

9



10 1. INTRODUCTION

The writing is organised as follows. The next chapter introduces some conventions for
this work. In Chapter 3 the power droop phenomenon is introduced and the test method
is presented. In Chapter 4 the ATPG problem is formulated formally. The following two
chapters introduce the ATPG procedure and implementation issues. Experimental results
are reported in Chapter 7. Chapter 8 concludes the work.
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Conventions

In this chapter we fix the terminology used in this writing and, by means of a small
example (see Figure 2.1), we show how circuits are represented graphically throughout
this work.

Since the benchmarks we used to test the designed ATPG procedure are gate-level
net-lists given in the format the circuit representation library test circ understands,
this library was used for basic circuit representation. The way test circ manages
the representation of a circuit’s internal structure has been the basis for the following
conventions which we observe throughout this work.

• Logic gates, input and output pins, and also secondary inputs and outputs are called
cells . Each cell in the circuit is identified uniquely by an integer between 0 and
k−1, where the circuit contains k cells. That identification number is called c ord .
Instead of speaking about the cell with c ord i, one can simply say cell i.

• Input pins are also simply called inputs, output pins outputs. The shorthands P IN,
P OUT, S IN and S OUT may replace the terms primary input, primary output,
secondary input and secondary output, respectively.

• Each cell not being an input or an output is of one of the following types: AND2,
AND3, . . . , AND11, NAND2, NAND3, . . . , NAND11, OR2, OR3, . . . , OR11,
NOR2, NOR3, . . . , NOR11, INV or BUF. Instead of talking about a cell having
type INV, one can simply say the cell to be an INV.

• Lines are called signals . Like cells, signals are identified uniquely by an integer
between 0 and l−1, where the circuit contains l signals. That identification number
is called s ord . Instead of speaking about the signal with s ord i, one can simply
say signal i.

• For each fanout stem and all its corresponding fanout branches there is only one
signal. That means, in the circuit there is only one signal object representing the
stem and all branches, not an object for each of them. Fanout branches of a signal
i are referred to as signal i’s 0-th branch, signal i’s 1-st branch and so on. (An
example for this concept is signal 14 in Figure 2.1.)

11



12 2. CONVENTIONS

0

1

2

3

2

1 4

8

7

7

14

14
14

9

9

9

10

6
5

6

15
19

13

20

14

18
17

16

9

15
11

16
12

5

7

13

12

11
0

7

8

10

inverter AND−gate

OR−gateNOR−gate NAND−gate

secondary
input

of signal 14
0−th branch

output
primary

signal with
s_ord 9

cell with
c_ord 16

1−st branch
of signal 14

2−nd branch
of signal 14

secondary
output

14

15

15

4

primary input

3

Figure 2.1: Example circuit s00027

• Each signal has exactly one drain cell per branch and one source cell in all.

• Inputs have exactly one output signal and no input signals, outputs have exactly
one input signal and no output signals. Cells not being inputs or outputs have one
or more input signals and exactly one output signal.

• Cells not being P OUTs have one or several successors , cells not being P INs
have one or several predecessors . Successors are the cell’s output signal’s drain
cells. Predecessors are the cell’s input signals’ source cells.

• Since S INs and S OUTs are outputs and inputs of memory elements, respectively,
there are always as many S INs as S OUTs. Each S IN corresponds to exactly one
S OUT. Thus each S OUT has got exactly one successor (the corresponding S IN)
and each S IN has got exactly one predecessor (the corresponding S OUT), although
this is not visible in Figure 2.1.

Additionally, the following definitions are necessary:

• Performing automatic test pattern generation implies having to carry out logic value
simulation in two different modes. Basically, first the simulation has to be performed
assuming the circuit to be fault-free. Once the values thus obtained have been
saved, simulation has to be performed assuming the circuit to have a certain fault
f . Comparing the new obtained values to the ones saved before makes clear what
signals are affected by the presence of the fault f .
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The necessity of managing two different logic values for each signal can be
avoided by using an extended range of logic values known as Roth’s Algebra (see
[2, Chapter 6]). This algebra consists of the values 0, 1, D, D’ and X.

A signal is said to
have the value

if its value in
the fault-free cir-
cuit is

and its value in
the faulty circuit
is

1 1 1
0 0 0
D 1 0
D’ 0 1
X X X

Table 2.1: Roth’s Algebra

The logic value X in the faulty and the fault-free circuits stands for unspe-
cified or don’t-care . D and D’ are called error values .

• Let c1 and c2 be cells. Let s be any input signal of c1. If s is also an input signal
of c2, we say that c2 is a sibling cell of c1. For example, cells 15 and 20 are
siblings of cell 14 in Figure 2.1.

• Let s be a signal and let c be its source cell. Then, the input signals of c are called
predecessor signals of s. For example, signals 15 and 9 are predecessors of
signal 10 in Figure 2.1.
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3

Power Droop Testing

3.1 On power droop

Power droop (defined in [1]) describes the impact of power consumption transients on
logic values of signal lines and thus on the correctness of the circuit’s operation. There is
low-frequency and high-frequency power droop.

3.1.1 Low-frequency power droop

Low-frequency power droop occurs when the voltage regulator module (VRM) is
unable to handle large transients in the power consumption of the whole device due to
non-negligible inductance of the interconnect. During a very short period of time the VRM
isn’t able to deliver enough current, this circumstance resulting in power starvation
(drop of voltage on certain lines). Because of capacitive effects it takes a number of clock
cycles until low-frequency power droop creates the largest impact.

Figure 3.1 shows the circuit under test (CUT) connected to power supply (VRM).
The parasitic inductance of the interconnect is denoted by L. The term dI

dt
event denotes

a sudden increase in current I demanded per unit time t, which is equivalent to a sudden
increase in power consumption. After a dI

dt
event, the CUT’s power supply voltage VDD

is reduced by L·dI
dt

. For a current transient of 100 A (equivalent to a power transient
of 100 W if VDD ≈ 1 V) taking place within 10−9 seconds (three cycles on a 3.3 GHz
machine), this value is dramatic even for a small inductance L < 1 nH.

CUT
L

VRM

Figure 3.1: CUT connected to VRM, and parasitic inductance

15



16 3. POWER DROOP TESTING

L
VRM CUTC

Figure 3.2: CUT, VRM and capacitor that diminishes effects of dI
dt

event

This effect can be diminished by adding a capacitor C, as shown in Figure 3.2, to
cover the CUT’s short-term demand for current after a dI

dt
event. Since the inductance of

the line between the capacitor and the CUT is much lower than L, the VDD drop is less
severe. However, if C is discharged before the VRM is ready to supply the full amount
of needed current, a VDD drop still takes place, albeit of a smaller extent and some time
after the initial dI

dt
event. Figure 3.3 sketches this circumstance. The red dashed curve

indicates VDD’s development over time in absence of a capacitor, the blue solid curve in
presence of a capacitor. The curves are for illustration only and have not been obtained
by measurement or simulation.

Whether the VDD drop is large enough to cause a logic or delay failure depends on
the extent of the dI

dt
event, i.e. on how much more current is demanded over how small

a period of time, and on the values of L and C as well as on the characteristics of the
VRM. In any case, it is especially important to remark that the impact is most critical
several clock cycles after the actual dI

dt
event.

VDD

dI
dt

event

t

Figure 3.3: Development of VDD after a dI
dt

event

3.1.2 High-frequency power droop

The reason for high-frequency power droop is the limited capability of the power distribu-
tion network on-chip to deliver power quickly. The power grid stretches over several
metallisation layers which are connected by vertical vias. An example 4-layer grid is il-
lustrated in Figure 3.4. The topmost layers are often reserved for power rails while lower
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GND

V

network
DD network

}via

power rail ground rail

}
segment

Figure 3.4: 4-layer power grid

layers are shared with logic signal lines. In general, the power delivery capacity of a power
rail is given by its width, which tends to decrease on lower layers. There is pressure to
limit the width of power rails as the area consumed by them is not available to logic signal
lines. The vias connecting power rails of different layers are relatively small and hence are
an obvious bottleneck for power delivery. The layer on which the logic cells are attached
to the power grid can be very low, which means that there are six or seven metallisation
layers above and power must be delivered through a corresponding amount of vias. A
part of power rail located between two vias is called segment .

High-frequency power droop occurs when multiple cells drawing current from the
same power grid segment suddenly increase their current demand. If the current cannot
be provided quickly enough from other parts of the chip, power starvation results in
a voltage drop. In contrast to low-frequency power droop, this is a highly localised and
transient phenomenon: one of the involved cells is slowed down for one clock cycle. Details
on the electrical modelling of high-frequency power droop can be found in [1].

High-frequency power droop is very hard to debug or diagnose because it is nearly
impossible to reproduce the error if the power droop conditions are not targeted explicitly.
However, identified high-frequency power droop points to either a design issue (inadequate
power rail sizing) or to a failed via of the power grid, i.e. a systematic manufacturing defect
rather than random noise. Thus, it is important to target power droop systematically.
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3.2 A test method for power droop

The test procedure is performed by applying a sequence of input patterns that imposes
worst possible power droop and exposes its presence. First, low-frequency power droop
is induced by creating a global dI

dt
event stretching over several cycles. When the voltage

droop is most severe due to power starvation caused by the low-frequency power droop,
high-frequency power droop is imposed on a victim signal . Combined power star-
vation due to both low-frequency and high-frequency power droop leads to an increased
switching delay on the victim. Finally, the last input vector of the sequence must be able
to sensitise a path from the victim to an observable output such that the faulty effect can
be observed.

In order to create a global dI
dt

event, the amount of current the circuit draws from the
VRM must change rapidly. This global current demand is a function of the inputs applied
to the circuit. In deep-submicron CMOS, current is consumed for switching events of the
gates and for leakage. However, the extent of pattern-dependent variation in leakage
current is so small that we ignore it in this work and assume that the leakage current
is a constant offset which cannot be influenced. In contrast, the switching current is
completely determined by the input sequence, as it is given by the number of switching
events in the circuit, i.e. signals changing their logic value from 0 to 1 or vice versa.
The test sequence for imposing worst-case low-frequency power droop is composed of
two sub-sequences l1l2 . . . lM (called low-activity sequence ) and h1h2 . . . hN (called
high-activity sequence ). Applying the low-activity sequence should minimise the
global switching activity while the application of the high-activity sequence should max-
imise it. The global switching activity between two cycles can be measured by S

l
· 100%,

where S is the number of switching events and l is the number of signals in the circuit. In
general, switching events on different lines consume different amounts of power. This can
be modelled by weighting the switching activity on a node, e.g. by the load it drives. In
this work no such weighting is employed, but it can be easily integrated into the presented

0

1

1

(a)

1

1

0

(b)

0

0

1

(c)

1

0

1

(d)

Figure 3.5: Highest switching activity cannot be 100%
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framework. Note that, in general, a global switching activity of 100% cannot be reached
at all. Take for example the NAND2 gate illustrated in Figure 3.5. Figures 3.5(b), 3.5(c)
and 3.5(d) show that, starting at the state illustrated in Figure 3.5(a), at most two of the
three observed signals can switch in one cycle.

Worst-case high-frequency power droop will take place if the victim and several
aggressors , which are signals driven by logic cells that draw power from the same
segment of the power grid as the cell driving the victim, undergo the same transition
simultaneously. Then, a significant amount of current must be transported to or from
a single segment of the power grid through a series of resistive and inductive vias. How
aggressors can be determined and chosen will be precised later in this work. In general,
it may not be possible to impose the desired transition on all the aggressors simultane-
ously because of logic implications between them (e.g. if one of the aggressors feeds an
inverter driving another aggressor). Hence, it is required that as many aggressors
as possible switch in the same direction as the victim. High-frequency power droop
leads to a delay fault on the victim which must be propagated to an observable point.
Consequently, in order to test the high-frequency power droop, we require a test pair
t1t2 that induces the desired transitions on victim and aggressors and that detects the
transition fault on the victim.

The focus of this work is the generation of the test sequence. In the following chapter
the ATPG problem is formalised. The next two chapters introduce the designed algorithm
and implementation issues.
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4

ATPG Problem Formulation

An algorithm is to be designed and implemented that, being given the following
arguments:

• a combinational or a full-scan sequential circuit C (circuit net-list on gate level)
with kp ≥ 1 primary and ks ≥ 0 secondary inputs (cf. Figure 4.1),

• a victim signal and a set of aggressor signals,

• two integers M ≥ 1 and N ≥ 1,

• and the direction of a transition T (either 0→ 1 or 1→ 0);

victim

k

k k

p

s s

aggressor

aggressoraggressor

aggressor

Figure 4.1: Problem formulation: given circuit
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23

is able to generate a scan-in vector u of length ks and a sequence of M + N input vectors

l1 l2 l3 . . . lM−1︸ ︷︷ ︸
low-activity sequence

high-activity sequence︷ ︸︸ ︷
h1 h2 h3 . . . hN−1 t1 t2︸︷︷︸

test pair

each one of them of length kp, such that scanning in the generated vector u (if C is
sequential) and applying the generated sequence to C for M + N cycles brings forth the
following behaviour (cf. Figure 4.2):

Constraint 1: the victim undergoes the transition T in the last two time frames (due
to the application of the test pair);

Constraint 2: the error value (D if T is a rising transition, D’ else) high-frequency power
droop may cause on the victim in the last time frame is propagated to a P OUT or
an S OUT in that time frame (due to the application of test pattern t2);

Constraint 3: as many aggressors as possible undergo the transition T in the last two
time frames (due to the application of the test pair);

Constraint 4: the global switching activity is as low as possible between time frame 0
and time frame M − 1 (i.e. during the application of the low-activity sequence);

Constraint 5: the global switching activity is as high as possible between time frame
M − 1 and time frame M + N − 2 (i.e. during the application of the high-activity
sequence).

Constraints 1 and 2 ensure that the victim undergoes the desired transition and that
the delay imposed by power droop on the victim (transition fault) is detected. These two
constraints must be satisfied exactly as they are formulated.

Constraint 3 creates worst-case high-frequency power droop. Constraints 4 and 5
help to induce the largest possible dI

dt
event required for worst-case low-frequency power

droop. Fault detection takes place when the combined effects of low-frequency and high-
frequency power droop impact the delay on the victim. These constraints are flexible,
they only demand satisfaction in as many cases as possible. These constraints might also
be conflicting in that an assignment necessary to maintain high switching activity (Con-
straint 5) may prevent aggressor signals from getting values desired for the satisfaction
of Constraint 3. Consequently, the problem may have multiple solutions with different
degrees of satisfaction of Constraints 3, 4 and 5.
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5

Automatic Test Pattern
Generation

The procedure that generates the test sequence for power droop is based on the D-
algorithm, which is a well known ATPG method ([3], [2]). The main idea is that the
D-algorithm is run in order to generate a test pair that satisfies Constraints 1 and 2.
These two constraints have to be satisfied exactly as they are formulated on Page 23. The
algorithm is capable of generating new assignment tasks on-the-fly depending on previous
assignments. These additional dynamically generated assignments help satisfying Con-
straints 3, 4 and 5 in the best possible way. Due to its nature the algorithm has been
called dynamically constrained D-algorithm .

5.1 The conventional D-algorithm

The conventional D-algorithm is used to generate tests for stuck-at faults in a combi-
national circuit with controllable primary inputs and observable primary outputs. The
algorithm manages an assignment queue . Each element of the queue (assignment )
is a task the algorithm has to perform. Before starting the algorithm, initial assignments
are inserted into the queue. Then the algorithm removes the assignments from the queue
one by one and processes them by assigning values to signals as directed by the assign-
ments, and by calculating implications, which may lead to the insertion of new assignments
into the queue. The algorithm is successful when the queue becomes empty, i.e. when all
original tasks and all dynamically generated new tasks have been performed successfully.

An assignment is a triple (s, v, d), where s is a signal, v a logic value (0, 1, D or D’)1

and d a propagation direction (← or →). For example, the assignment (s, 1,←) means
that the algorithm has to justify the value 1 on signal s; the assignment (s′, D’,→)
means that the algorithm has to propagate the value D’ on signal s′ towards a P OUT.
Assignents of the form (s, D,←) and (s, D’,←) are invalid and therefore not accepted by
the algorithm because it is neither possible nor required to justify error values.

1For the meaning of the error values D and D’, please refer to Chapter 2.
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Justifying a signal s’s value v means setting the values of s’s predecessors (the input
signals of the cell driving s) such that s gets the value v. The values s’s predecessors get
have to be justified, too. This action is repeated until the values of one or several P INs
are set such that the justified values are guaranteed. Sometimes, choosing the values for
s’s predecessors may require making a decision. For example, if s is driven by an ANDn
and the value 0 has to be justified, only one of the cell’s n inputs needs to get the value
0. The algorithm has to decide which input to assign the value 0.

Propagating a signal s’s value v means setting s’s value to v and calculating all
implications of that assignment. If v is an error value (D or D’), it is also necessary to
sensitise a path from s to a P OUT, such that an error value can be observed on that
P OUT. For example, if s feeds a cell c of type ANDn, the value 1 has to be justified on
all other inputs of c, such that only s’s value can influence c’s output value. If c’s output
signal is a P OUT, nothing has to be done any more. Otherwise, this procedure has to be
repeated until a P OUT is reached. Propagating a signal’s value may also require making
decisions. In general, only one path between the signal s and a primary output needs to
be chosen, but if s feeds more than one cell, there is more than one path the algorithm
can try to sensitise. The algorithm has to decide which drain cell of s to try first.

Whenever the algorithm makes a decision, the algorithm continues its job in the way
described above, until either the assignment queue is empty and no further decisions are
to be made, or until an inconsistency is identified. In the latter case, one of the earlier
decisions is taken back and the search is continued after making a different decision
(choosing a different cell input in the justification case, or a different drain cell in the
propagation case). This behaviour is called backtracking . If no decisions are left to
backtrack, at least one of the tasks the algorithm has to perform remains unachieved,
which means that the set of initial conditions is contradictorial. Therefore, the fault is
proven to be untestable.

Testing for a stuck-at 0 fault on a signal s requires the creation of an input vector
that justifies the logic value 1 on s and that propagates the faulty effect D on s to a
primary output by sensitising a path. This means, the initial assignments (s, 1,←) and
(s, D,→) have to be inserted into the queue. Analogously, testing for a stuck-at 1 fault
on s requires inserting the initial assignments (s, 0,←) and (s, D’,→). After that, the
algorithm processes the assignment queue as described above.

As was said at the beginning of this section, the conventional D-algorithm was de-
signed for combinational circuits with controllable primary inputs and observable primary
outputs. Nevertheless, the algorithm can also be applied to sequential circuits that have
been designed using the full-scan DFT2 methodology. Applying the scan methodology
means that the flip-flops or latches are designed and connected in a manner that enables
two different modes of operation. In the normal mode , the flip-flops are connected to
the combinational logic block exactly as the design of the circuit requires it. In the test
mode, the flip-flops are reconfigured such as to form one or more shift-registers called

2Design for Testability (DFT) is a name for design techniques that add certain features to the
designed IC, the aim of this being making it easier to develop and to apply manufacturing tests. For
more on this topic see, for example, [4, Chapter 11].
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scan chains . During the normal mode, the response at the state outputs is captured
in the flip-flops. These values can be observed by switching the circuit to the test mode
by clocking the scan chains and observing the output of the last flip-flop in each chain.
Furthermore, values to be applied at the state inputs in the subsequent test may be simul-
taneously shifted into the flip-flops. Hence, for the purpose of test development, the state
or secondary inputs and outputs can be treated as being similar to primary inputs and
outputs, respectively. Scan is called full-scan if all flip-flops in the circuit are accessible
in this way. This makes it possible to apply the D-algorithm as explained in this section.

5.2 Dynamically constrained D-algorithm

The problem this work deals with is different from stuck-at test generation in combi-
national circuits, thus requiring modifications of the conventional D-algorithm. These
are not drastic modifications since the problem can be basically solved by letting the
D-algorithm process a set of assignments that are given as they were defined in Section
5.1. Thus, first of all, the D-algorithm has to be implemented such that it just processes a
given assignment queue. Before starting the D-algorithm itself, the assignment queue can
be initialised independently with any number of assignments and with any combination
thereof. This provides the flexibility to handle a wide range of different fault models.

The circuit is sequential and a sequence of M+N vectors is required for testing. Using
an adequate representation of the M +N time frames of the circuit also reduces the need
for large modifications of the D-algorithm. This is handled by creating an (M +N)-time-
frame unfolding of the circuit. The primary inputs are all controllable in every time
frame. Since full-scan is assumed but can be operated only for setting the initial state
and observing the final state, secondary inputs (flip-flops) are controllable only in the first
time frame and observable only in the last time frame. The fault effect emerges in the
last time frame, so it can be observed on a primary or a secondary output of that time
frame. Altogether, the (M + N)-time-frame unfolding of the circuit can be handled as
one big combinational circuit. The S INs of the first time frame can be handled as P INs
of the unfolding, the S OUTs of the last time frame can be handled as P OUTs of the
unfolding. Unfolding is the standard approach for sequential test generation ([2]). Please
refer to Section 6.1 for implementation notes.

Finally, the D-algorithm has to be modified in a way that it can handle the five
additional constraints listed on Page 23. Satisfying the first two constraints is easy and
can be achieved without modifying the D-algorithm more than explained two paragraphs
before (i.e. as to process a given assignment queue without questioning why the initial
assignments are there). For example, refer to the problem depicted in Figure 4.2 (Page
22) where the victim’s rising transition is tested. Constraints 1 and 2 can be satisfied
by inserting only three assignments into the queue and letting the D-algorithm process
them. The three assignments are:

1) (victim in time frame M + N − 2, 0, ←),
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2) (victim in time frame M + N − 1, 1, ←) and

3) (victim in time frame M + N − 1, D, →).

If the algorithm fails to process these three assignments it can stop completely, since
this failure means that either the tested transition cannot be imposed on the victim, or
the faulty effect cannot be propagated. Thus, the conditions for testing high-frequency
power droop are not given.

Constraints 3, 4 and 5 have to be handled differently as they are formulated in a
flexible way (keywords “as many/low/high as possible”). The handling of these constraints
is difficult because the achievable quality of a solution is not known. An assignment which
is useful for satisfying a constraint may imply that other constraints are violated elsewhere
in the circuit.

In theory, all these constraints can be approached by letting the D-algorithm process
an adequate set of initial justification assignments:

Initial assignments for Constraint 3: (Referring to the example of Figure 4.2.) In-
sert, for each aggressor a, the assignments (a in time frame M + N − 2, 0, ←) and
(a in time frame M + N − 1, 1, ←).

Initial assignments for Constraint 4: For each signal s in the circuit, insert the as-
signment (s in time frame i, v′, ←) if s has got the value v in time frame i + 1 and
i ∈ {M − 1, M, . . . , M + N − 3}.

Initial assignments for Constraint 5: For each signal s in the circuit, insert the as-
signment (s in time frame i, v, ←) if s has got the value v in time frame i + 1 and
i ∈ {0, 1, . . . , M − 2}.

However, the set of assignments for Constraint 3 is very large (2 · na assignments,
where na is the number of aggressors). Besides, in most cases, the aggressors will all
be in the physical neighbourhood of the victim which means that there is a possibly
high dependence between their logic values. Thus, the probability that no solution for
the problem of processing all these initial assignments doesn’t exist at all, is very high.
Concerning Constraints 4 and 5, the presented sets of initial constraints are not only
extremely large (M · l assignments for Constraint 4 and N · l for Constraint 5, where l is
the number of signals in the circuit). These cannot even be generated before launching the
D-algorithm since the generation of the assignments for signals in a time frame i depends
on the values those signals have got in time frame i+1. Before launching the D-algorithm
those values are still not defined.

Thus, the D-algorithm has to be modified once more. The approach starts with only
few necessary initial assignments, thus increasing the probability that a solution for the
problem exists. Then, the modified D-algorithm must be provided with a mechanism
that permits on-the-fly generation of new assignments that should be performed, given
the assignments that have been made before. However, these dynamically generated
assignments don’t need to be performed at any cost. Whenever an assignment is to be
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inserted that either satisfies or violates a desired constraint, the satisfying assignment is
tried first. Only if this assignment leads to an inconsistency will the ATPG procedure try
the violating assignment. In particular, the following three rules have to be observed:

Rule 1:

(a) Assume a rising transition on the victim. When a decision is made on an
aggressor in time frame M + N − 2 (under vector t1), assigning that aggressor
the logic value 0 is always tried first. In time frame M + N − 1 (under vector
t2) logic 1 is always assigned first.

(b) Assume a falling transition on the victim. When a decision is made on an
aggressor in time frame M + N − 2 (under vector t1), assigning that aggressor
the logic value 1 is always tried first. In time frame M + N − 1 (under vector
t2) logic 0 is always assigned first.

Rule 2: For justification: when selecting which signal to make a decision on, signals in
later time frames are to be preferred.

Rule 3:

(a) Suppose that the decision is made on a signal s in time frame i,
i ∈ {M − 1, M, . . . , M + N − 3}. If s has already got the logic value
v in time frame i + 1, insert the assignment (s in time frame i, v′, ←) into
the queue. Only if this assignment leads to a conflict, try the assignment
(s in time frame i, v, ←). If this leads to a conflict, too, leave signal s unas-
signed.

(b) Suppose that the decision is made on a signal s in time frame i,
i ∈ {0, 1, . . . , M−2}. If s has already got the logic value v in time frame i+1,
insert the assignment (s in time frame i, v, ←) into the queue. Only if this
assignment leads to a conflict, try the assignment (s in time frame i, v′, ←).
If this leads to a conflict, too, leave signal s unassigned.

The rationale of Rule 1 is to satisfy Constraint 3 as well as possible. Rule 2’s purpose
is to facilitate the application of Rule 3. Rule 3 helps satisfying Constraints 4 and 5.

The proposed approach is heuristic, i.e. it may not yield the optimal result. However,
it is not clear what the optimal solution is anyway, because Constraints 3 through 5 may
be conflicting in that an assignment necessary to maintain high switching activity (Con-
straint 5) may prevent aggressor signals from getting values desired for the satisfaction
of Constraint 3. Consequently, the problem may have multiple solutions with different
degrees of satisfaction of Constraints 3, 4 and 5.
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Figure 5.1: ATPG, an example
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5.3 Handling large M and N values

This section not only introduces a heuristic for the handling of large M and N values. It
also explains in detail how the implemented program works.

Although the algorithm is adequate for mid-size circuits, its scalability may require
an improvement to handling large circuits and large M and N values. There is a variety
of improved techniques in the basic ATPG algorithm and add-ons such as diverse learn-
ing strategies. One further option is to consider subsequences of the global test sequence
l1l2 . . . lM−1h1h2 . . . hN−1t1t2. For instance, let the sequence be l1l2l3l4h1h2h3h4t1t2. One
could first generate a sequence for l1l2l3 and the scan-in vector u taking all the relevant
constraints into account. Let u3 be the circuit state after three cycles. Then, test gen-
eration is run for subsequence l4h1h2, with secondary inputs set to u3 rather than being
controllable. Let u6 be the resulting state. Finally, test generation is run for h3h4t1t2
with secondary inputs set to s6. This technique reduces one ATPG run for a large num-
ber of time frames to several runs for shorter numbers of time frames. In general, this
approach could fail to generate a sequence the originally proposed ATPG procedure could
produce, or the quality of the obtained sequence may be worse. The reason for this is
that, when the D-algorithm is working on a certain set of time frames, it cannot backtrack
over previously processed sets of time frames.

A variation of this strategy was used when implementing the prototype for this work.
By means of an example it is easier to explain how this procedure works. For instance, let
us test the rising transition on the victim. The different steps are illustrated in Figures
5.1 and 5.2.

5.3.1 Step 1

The first step is illustrated in Figure 5.1(a). In this step the algorithm tries to satisfy
Constraints 1 and 2. Only three initial assignments have to be inserted into the queue:

1) (victim in time frame M + N − 2, 0, ←),

2) (victim in time frame M + N − 1, 1, ←) and

3) (victim in time frame M + N − 1, D, →).

After that the D-algorithm is run, but the algorithm only works on a two-time-frame
unfolding of the circuit that corresponds to the last two time frames. The secondary inputs
in time frame M +N−2 are thus treated as primary inputs. Some aggressors might get, in
one or both time frames, a value that prevents them from undergoing the same transition
as the victim (see Figure 5.1(b)), but performing the three initial assignments listed above
has got the higher priority. However, whenever possible, the algorithm will try to let the
aggressors unassigned or to assign them a value according to Rule 1. In this step the
algorithm also respects Rule 2.
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If the algorithm isn’t able to perform the three assignments mentioned above, it
terminates unsuccessfully since the conditions for testing for high-frequency power droop
are not given if the tested transition cannot be justified on the victim or if the error effect
cannot be made visible.

5.3.2 Step 2

In the second step the D-algorithm is started again on the same two-time-frame unfolding
as in the first step. The D-algorithm has been implemented such that the assigned values
are managed by an instance that is independent of the D-algorithm. That means that
the new D-algorithm instance will respect all specified signal values that were determined
in the first step. This is equivalent to having one single instance of the D-algorithm
performing both the first and the second step and being able to dynamically generate the
start assignments for the second step. The implementation was done this way because
having several short-running instances instead of one long-running instance of the D-
algorithm permits a better management of memory resources. Besides, if working like
this, the original D-algorithm has to be modified only slightly in order to make it capable
of satisfying the additional constraints the problem this work deals with presents.

This step’s job is trying to satisfy Constraint 3. The algorithm tries to justify the
tested transition (in this example, the rising one) on all free aggressors. Free aggressors
are those the first step hasn’t assigned a value that prevents them from undergoing the
tested transition (in this example, logic 1 in time frame M + N − 2 or 0, D or D’ in time
frame M + N − 1). For each free aggressor a, two assignments have to be inserted into
the queue: (a in time frame M + N − 2, 0, ←) and (a in time frame M + N − 1, 1, ←).
Figure 5.1(c) shows the set of all these assignments (referring to the current example). As
was said before, Constraint 3 is flexible. If one or several of these assignments cannot be
performed, the algorithm will still run and try to perform as many of them as possible.

Not all these assignments can be inserted at once before starting the new D-algorithm
instance. The problem could be overconstrained and get thus unsolvable. There is a
wide range of approaches of what combinations of start assignments to try at all and
what combinations to try first. It would even be possible to employ different learning
techniques or a genetic algorithm. Here, since the overall test generation procedure has
still a lot of work to do, a simple greedy heuristic has been used. The D-algorithm tries
to justify the desired transition on only one free aggressor at a time. If the D-algorithm
is successful for one aggressor, the new determined signal values are recorded in order
to respect them. Then the D-algorithm is started again for the next free aggressor. If
the D-algorithm fails to justify the desired transition on one aggressor, the old circuit’s
state is recovered and the D-algorithm is started again for the next free aggressor. This
is repeated until all aggressors have been tried.

If the algorithm isn’t able to justify the tested transition on any of the aggressors, it
terminates unsuccessfully since the conditions for testing for high-frequency power droop
are not given.
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5.3.3 Step 3

In the third step the high-activity sequence is generated and the algorithm tries to satisfy
Constraint 5. Since the sub-sequence generated in this step is intended for the test of low-
frequency power droop, the algorithm doesn’t need to treat the victim and the aggressors
in a special way any more (which implies that Rule 1 does also not need to be observed
any more).

During the generation of the high-activity sequence the algorithm never works on
more than two time frames at a time. The algorithm begins working on a two-time-frame
unfolding of the circuit representing time frame M + N − 3 and time frame M + N − 2
(see Figure 5.2(a)). Since the first two steps are applied only on time frame M + N − 2
and time frame M + N − 1, the signals in time frame M + N − 3 are all still unassigned.
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(b) Last step, trying to satisfy Constraint 4

Figure 5.2: ATPG, an example
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But the signals in time frame M +N−2 are initialised with the values that were recorded
after the execution of the first two steps.

First, the algorithm tries to set all free signals in time frame M + N − 2 to 1 or 0.
Free signals are those that haven’t got logic 1 or logic 0 in that time frame. For each
such signal the value v′ is tried if the signal’s got the value v in time frame M + N − 1 (if
the signal is free in time frame M + N − 1, v is chosen at random). If performing that
assignment is not possible, the value v is tried such that the majority of signals gets a
specified value. If performing this second assignment is also not possible, the signal is let
unassigned.

After this has been done, it can be assumed that as many signals as possible have
got a specified value in time frame M + N − 2. Now, for each signal s that isn’t free
in time frame M + N − 2 (let v be the value of s in that time frame), the assignment
(s in time frame M +N − 3, v′, ←) should be inserted into the queue before launching a
new instance of the D-algorithm. Since those are too many assignments, the same greedy
heuristic used in Step 2 is applied here: only one such assignment is tried at a time. While
trying to justify all these assignments, the D-algorithm always observes Rules 2 and 3.

After this procedure has been applied to time frames M +N − 3 and M +N − 2, the
algorithm repeats the job on a two-time-frame unfolding of the circuit representing time
frame M + N − 4 and time frame M + N − 3; after that, on a two-time-frame unfolding
representing time frame M + N − 5 and time frame M + N − 4. The algorithm goes on
like this until the two-time-frame unfolding representing time frames M − 1 and M has
been processed.

5.3.4 Step 4

In the last step the low-activity sequence is generated and the algorithm tries to satisfy
Constraint 4. First, a two-time-frame unfolding of the circuit representing time frame
M − 2 and time frame M − 1 is processed in a similar way as time frames M +N − 3 and
M + N − 2 were processed in Step 3. Then the job is repeated for the two-time-frame
unfolding of the circuit representing time frames M − 3 and M − 2. The algorithm goes
on like this until the two-time-frame unfolding representing time frames 0 and 1 has been
processed (see Figure 5.2(b)). There are three differences between the third step and this
one.

1) In contrast to the third step, this step tries to assign a signal s in a time frame i
(i ∈ {0, 1, . . . , M − 2}) the value v if the value of that signal is v in time frame
i + 1.

2) If the given circuit is combinational, the algorithm processes the two-time-frame
unfolding of the circuit representing time frame M − 2 and time frame M − 1. This
is necessary in order to guarantee that as many signals as possible get a specified
value in time frame M − 1. But, after that, no such processing is needed any more.
All signal values in time frame M − 2 are simply copied without modification into
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all time frames 0 through M − 3: the algorithm sets each signal’s value to v in all
time frames 0 through M −3, where v is the value that signal has got in time frame
M − 2. After doing so the algorithm can terminate.

3) If the given circuit is sequential, after a two-time-frame unfolding representing time
frames i and i+1 has been processed (i ∈ {0, 1, . . . , M−2}), the algorithm checks
if all signals have got the same value in time frame i and in time frame i+1. If that
is the case, all signal values in time frame i are simply copied without modification
into all time frames 0 through i−1, exactly as done for combinational circuits. After
doing so the algorithm can terminate. If not all signals have got the same value in
time frame i and in time frame i+1, the algorithm goes on processing the unfolding
composed of time frames i− 1 and i in the normal way.



36 5. AUTOMATIC TEST PATTERN GENERATION



6

Implementation of the ATPG
Procedure

In order to obtain experimental results, the method proposed in Chapter 5 was imple-
mented using C++ and the circuit representation library test circ . It is not possible
to write about all implementation details in this work, so we can introduce only the basic
concepts of the two most important parts of the implementation. Those are the repre-
sentation of unfolded circuits and the modifications of the D-algorithm. For more details,
please refer to the source files which are delivered on the attached CD-ROM, they are full
of extensive commentaries that will help understanding how the different classes’ member
functions work. The header files (also on the CD-ROM) contain complete user documen-
tation.

6.1 Unfolded circuits

As was already said in Chapter 5, the main difficulty of the test pattern generation is
that not just one test pattern per fault has to be created, but a sequence of M + N test
patterns per fault. Generating only two input vectors is already a complicated task. In
this work, where the number M + N can easily become very large, the used approach
is to unfold the circuit M + N times and to perform well-known sequential ATPG while
observing the additional constraints introduced on Page 23. Since the test generation is
based on the D-algorithm which works on combinational circuits, there must be a way of
representing unfolded circuits and treating them as big combinational circuits.

Since the benchmarks we used to test the ATPG algorithm are given in the format
the circuit representation library test circ understands, this library was used for basic
circuit representation. An object of class test circ represents a combinational or a
sequential circuit. Chapter 2 contains a short explanation of how the library test circ
manages the internal representation of circuits. Recall that each cell is identified uniquely
by an integer number called c ord and that each signal is identified uniquely by an integer
number called s ord . The small fictive example circuit in Figure 6.1(a) illustrates this
concept once more.
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int NUMBER OF INSTANCES = 2;

sig value SIGNAL VALUES[6*2];

short SIGNAL FLAGS[6*2];

short CELL FLAGS[8*2];

(c) Internal representation of the circuit in (b)

Figure 6.1: Circuit representation with test circ and unfcirc
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The class test circ ’s member functions can carry out a wide variety of different
tasks. The most important functions are those which permit traversing the circuits by:

• returning a given cell’s type, its number of inputs and outputs;

• returning a given signal’s number of branches, its source cell and its drain cells;

• a given cell’s input and output signals, its successors and its predecessors.

For the representation of unfolded circuits, instead of using the built-in circuit cre-
ation mechanisms of test circ , we opted to develop a new circuit representation
class called unfcirc which is based on that library. Working on F time frames of a
test circ circuit C implies loading F copies C1, C2, . . . , CF of that circuit and trying
to manage all of them separately and managing how they are related to each other. This
process can be automated by working with the new class unfcirc . Besides, working
with the new class also makes it possible to manage the same job without having to load
more than one copy of C into the memory. Therefore, this solution is more memory
efficient.

The class’s constructor takes the test circ circuit C to work on and the number
F of time frames that are to be managed. The circuit C is called reference circuit
and the time frames or copies of C are called instances . The created object manages
the different instances and how they are related to each other. The main properties of
the class are:

• The unfcirc object is a big combinational circuit that is made up of F instances
of the reference circuit C. Figure 6.1(b) illustrates this for two instances of the
reference circuit shown in Figure 6.1(a).

• Each cell in the unfcirc circuit corresponds to a cell in the reference circuit in
a certain time frame. Thus cells can be identified uniquely by a pair of integers
(I, c ord ), where I is the number of the instance (time frame) the cell belongs
to and c ord is the cell’s identification number in the reference circuit. The F
instances of the reference circuit are numbered from 0 to F − 1.

• Like cells, signals are identified uniquely by a pair of integers (I, s ord ), where
s ord is the signal’s identification number in the reference circuit.

• The reference circuit’s outer S INs (those belonging to the 0-th instance) and outer
S OUTs (those belonging to the (F − 1)-th instance) are presented as P INs and
P OUTs of the unfcirc circuit, respectively. (examples: cells (0, 4) and (1, 3) in
Figure 6.1(b)).

• The reference circuit’s inner S INs (all but those belonging to the 0-th instance) and
inner S OUTs (all but those belonging to the (F − 1)-th instance) are presented as
BUFs of the unfcirc circuit (examples: cell (1, 4)/(0, 3) in Figure 6.1(b)).
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In this case, an instance’s S OUT and its corresponding S IN belonging to the
next instance are both replaced by one single cell of type BUF which can be ad-
dressed using two different identification pairs. Identification pairs are only needed
to create new cell objects while members processing cells work on real cell objects,
not on identification pairs. So this circumstance doesn’t represent an inconsistency
or ambiguity in the definition of the class.

Now let us point out the major advantage of working on an unfcirc circuit. Like
in class test circ , there are member functions that provide information necessary to
traverse the unfcirc circuit. The user can work directly on the unfcirc circuit over
an interface similar to that offered by test circ , without having to access the reference
test circ circuit.

Let us illustrate these ideas by means of a simple example. The example is based
on the circuit depicted in Figure 6.1(b). If signal (0, 5) has the logic value 0 (which is
equivalent to signal 5 having the value 0 in the 0-th time frame) and signal (1, 0) has
the logic value 0, too, an appropriate unfcirc member function can be called to obtain
the drain cell of signal (0, 5). Cell (0, 3) is returned. Requesting that cell’s output signal
will return signal (1, 2). Since cell (0, 3)’s type is BUF, signal (1, 2) must be assigned
the logic value of signal (0, 5), i.e. logic 0. Going on like this it is possible to find out
that signal (1, 5) must have the value 1. Altogether the algorithm has found out how a
signal’s value relates to its own value in the following time frame, but the algorithm has
not noticed that different time frames were involved. The example also illustrates why
the signal and cell identification system introduced above has been chosen: It is possible
to discern unfcirc signal (i, k) from unfcirc signal (j, k) for those are fully different
objects; at the same time, it is easy to know that both unfcirc signals represent the
same signal in the reference circuit (signal k), but in different time frames.

An unfcirc circuit does not only manage the reference circuit and its different
instances. It also maintains an array of logic values (0, 1, D, D’, X or U) that records the
logic value of each unfcirc signal in the circuit. At the beginning of Subsection 5.3.2 it
has been pointed out that it may be useful for certain algorithms to let the circuit manage
its own signal values. An unfcirc circuit also maintains eight multi-purpose binary flags
for each signal and for each cell. This system of flags is used by the D-algorithm in order
to implement the application of Rules 1 and 3 (defined on Page 29).

Let us particularise how an unfcirc circuit is represented internally (cf. example
in Figure 6.1(c)). The only data that are stored by the unfcirc object are:

• a private copy of the reference test circ circuit C,

• the number F of managed instances (var. NUMBEROF INSTANCESin the figure),

• and the arrays of logic values and flags.

A cell object is a pair composed of an integer (the number of instance the cell belongs
to) and a pointer to the corresponding test circ cell in the reference circuit. Analo-
gously, a signal object is a pair composed of an integer (the number of instance the signal
belongs to) and a pointer to the corresponding test circ signal in the reference circuit.
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The advantages of such an implementation are that memory is saved because only
one copy of the reference circuit has to be loaded, and that the initialisation of a new
unfcirc circuit is very fast.

6.2 Implementation of the D-algorithm

6.2.1 Basic implementation

The implementation of the D-algorithm made for this work is based on the version pre-
sented in [2, Chapter 6], but let us remark that this implementation works only on
unfcirc circuits. Since the D-algorithm is well-known, in this section, only the modifica-
tions necessary to satisfy the constraints defined on Page 23 are explained in detail. Once
more, the attached CD-ROM contains all source files which are full of implementation
commentaries.

In Section 5.1 we have already explained in detail how the conventional D-algorithm
works in order to generate tests for stuck-at faults in a combinational circuit with con-
trollable primary inputs and observable primary outputs. The main differences between
the classical D-algorithm and the implementation for this work are:

• In this implementation the assignment queue can be initialised independently with
any number of assignments and with any combinations thereof. This provides the
flexibility to handle a wide range of different fault models.

• The classical D-algorithm terminates unsuccessfully if no primary output gets an
error value. In this implementation the D-algorithm can be started as:

D-algorithm: in this case it behaves as explained above; or as

Justification algorithm: in this case the algorithm performs justification assign-
ments exactly in the way the D-algorithm does. But when processing forward
propagation assignments, the algorithm only calculates implications that follow
without making decisions. That means, the algorithm doesn’t try to propagate
error values using path sensitisation. The algorithm will be successful even if
there is no primary output with an error value.

• This implementation of the D-algorithm observes the three rules defined on Page
29.

Figure 6.2 shows in detail how the implemented D-algorithm works. As was said
before the algorithm works on an assignment queue. Assignments are processed one by
one. Processing an assignment means assigning a signal a value (if possible) and cal-
culating implications. This is done by sub-procedure imply and check() which is
described in Figure 6.3 using pseudo-code. As was explained in Section 5.1, performing
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1 D algorithm() BEGIN

2 Make private backup copies of the assignment queue,
of both frontiers and of variable ERROR AT P OUT.

3 Initialise a private signal-recovery queue and
store the s ord of all signals with value X.

4 if imply and check() returns FAILURE ; then

5 set VICTORY = NO

6 else

7 if ERRORAT P OUT equals NO ; then

8 if propagation() is SUCCESSFUL ; then

9 set VICTORY = YES

10 else

11 set VICTORY = NO

12 fi

13 else

14 if justification() is SUCCESSFUL ; then

15 set VICTORY = YES

16 else

17 set VICTORY = NO

18 fi

19 fi

20 fi

21 if VICTORY equals NO ; then

22 Restore, according to the backup data, the
assignment queue, both frontiers, variable
ERRORAT P OUT and the logic value of all
signals that have been assigned a new value.

23 fi

24 Delete backup data.

25 if VICTORY equals YES ; then

26 return SUCCESS

27 else

28 return FAILURE

29 fi

30 END

Figure 6.2: Recursive D-algorithm
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1 imply and check() BEGIN

2 if assignment queue is empty ; then

3 return SUCCESS

4 fi

5 repeat

6 Remove first assignment (SIG, VAL, DIR) from the queue.

7 if SIG’s current logic value is not X and not VAL ; then

8 return FAILURE

9 fi

10 Set SIG’s logic value to VAL.

11 if DIR equals <-- ; then

12 Let CELL be SIG’s source cell.

13 Depending on CELL’s type and on the current values
of CELL’s input signals and CELL’s output signal,
imply new assignments and insert them into the
assignment queue. If necessary, remove CELL
from the D- or the J-frontier, or add it to the
D- or the J-frontier.

14 else (i.e. DIR equals -->)

15 for each drain cell CELL of SIG ; do

16 Depending on CELL’s type and on the current values
of CELL’s input signals and CELL’s output signal,
imply new assignments and insert them into the
assignment queue. If necessary, remove CELL
from the D- or the J-frontier, or add it to the
D- or the J-frontier.

17 done

18 fi

19 until assignment queue is empty.

20 return SUCCESS

21 END

Figure 6.3: D-algorithm, sub-procedure imply and check()
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1 propagation() BEGIN

2 if D-frontier is empty ; then

3 return FAILURE

4 fi

5 repeat

6 Remove first cell CELL from the D-frontier.

7 for each input S of CELL with value X ; do

8 Insert the assignment
(S, NON CONTROLLINGVALUEOF CELL, <--)
into the assignment queue.

9 done

10 if D algorithm() is SUCCESSFUL ; then

11 return SUCCESS

12 else

13 Remove from the assignment queue all
assignments inserted in Lines 7 - 9.

14 fi

15 until D-frontier is empty.

16 return FAILURE

17 END

Figure 6.4: D-algorithm, sub-procedure propagation()

1 justification() BEGIN

2 if J-frontier is empty ; then

3 return SUCCESS

4 fi

5 Remove first cell CELL from the J-frontier.

6 Sort the inputs of CELL such that trying the different inputs
in the resulting order guarantees that Rules 1, 2 and 3
(see Page 29) are applied.

7 According to the sorting made in Line 6, for each input S of CELL with value X ; do

8 Insert the assignment (S, CONTROLLING VALUEOF CELL, <--)
into the assignment queue.

9 if D algorithm() is SUCCESSFUL ; then

10 return SUCCESS

11 else

12 Remove assignment (S, CONTROLLING VALUEOF CELL, <--)
from the queue and insert the assignment
(S, NON CONTROLLINGVALUEOF CELL, <--) instead.

13 fi

14 done

15 return FAILURE

16 END

Figure 6.5: D-algorithm, sub-procedure justification()
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a justification assignment may require deciding which input signal of a cell c to assign
c’s controlling value1. But this decision is not made by imply and check() , it is
made by sub-procedure justification() (Figure 6.5) after imply and check()
is ready; imply and check() inserts cell c into a queue called J-frontier such
that justification() knows what cells to perform decisions on. Analogously, per-
forming propagation assignments may require deciding which path from an error sig-
nal to a P IN to sensitise. The decision is not made by imply and check() , it is
made by sub-procedure propagation() (Figure 6.4) after imply and check() is
ready; imply and check() inserts all cells with an error input into a queue called
D-frontier such that propagation() knows what cells can be made part of a sen-
sitised path. The algorithm exits successfully if:

• the assignment queue becomes empty (which means that all assigning tasks have
been performed); and

• the J-frontier is empty (which means that all justification tasks which require making
decisions have been performed); and

• variable ERRORAT P OUTis true (which means that an error value has been prop-
agated to a primary output). This variable is set by imply and check() or by
propagation() if a signal feeding a cell of type P OUT is assigned an error value.

Please note that, while sub-procedure imply and check() never makes decisions,
propagation() and justification() never modify signal values. These two sub-
procedures only insert new assignments into the queue. These new assignments are pro-
cessed by the imply and check() sub-procedure belonging to the recursively called
D-algorithm instance (see Line 10 in Figure 6.4 and Line 9 in Figure 6.5).

An instance of the D-algorithm is composed of an execution of imply and check()
(see Line 4 in Figure 6.2) and, if imply and check() is successful, either an ex-
ecution of propagation() (Line 8) or an execution of justification() (Line
14). propagation() and justification() are never executed in the same in-
stance of the D-algorithm. Which of both is executed depends on the value of variable
ERRORAT P OUT(Line 7). This makes the implementation of the justification algorithm
defined on Page 41 very easy. It suffices to set the variable ERRORAT P OUTto YES
before launching the normal D-algorithm. Thus no processing of the D-frontier takes
place.

Some final remarks must be made on the pseudo-code presented in Figures 6.2
through 6.5. On Line 3 in Figure 6.2, signal-recovery queues are mentioned. Such a
queue is used simply to store the identification numbers of signals whose logic values may
be modified by the call of imply and check() in Line 4. This is necessary because
the old signal values must be restored if imply and check() or propagation()

1The term controlling value denotes logic 0 if the cell in question is an ANDn or a NANDn,
logic 1 if the cell is an ORn or a NORn.
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or justification() are unsuccessful. Restoring the old state of the different data
structures is part of undoing a decision (backtracking).

The other remarks concern Line 6 in Figure 6.3, Line 6 in Figure 6.4 and Line
5 in Figure 6.5, where an assignment is taken from the assignment queue and a cell
is taken from the D-frontier and a cell is taken from the J-frontier, respectively. The
assignment queue and the J-frontier may be implemented as FIFO queues. In which
order the assignments are processed and in which order the cells are taken from the J-
frontier will, in general, not influence the algorithm’s output. All assignments in the
queue and all cells in the J-frontier must eventually be processed. In contrast to this, in
which order the cells are taken from the D-frontier does not only influence the output of
the classical D-algorithm (since, in general, not all paths starting at the output of a cell
which is in the D-frontier need to be sensitised in order to propagate the error value to
a primary output). Particularly, in which order the D-frontier cells are tried influences
the output of the dynamically constrained D-algorithm, in that choosing a certain path
to sensitise when trying to satisfy Constraint 2 may impede the satisfaction of Constraint
3. The sub-procedure presented in Figure 6.4 may remain unchanged if the D-frontier is
implemented as a priority queue. In the next subsection we will discuss how to define the
priority of a D-frontier cell in an adequate manner.

6.2.2 Applying Rules 1, 2 and 3

Finally, it is necessary to explain how the D-algorithm was modified such that it observes
Rules 1, 2 and 3 (defined on Page 29). Rule 2 dictates how to behave when having
to decide what signal to make a decision on. Rules 1 and 3 dictate which value to try
first when having to decide which value a certain signal must get. The D-algorithm
only makes cell-selecting (when propagating an error value) and signal-selecting decisions
(when justifying certain values). That means, the D-algorithm never reaches a situation
in which it must decide which value to assign to a certain signal. Nevertheless, it is still
possible to modify the D-algorithm such that it can observe Rules 1 and 3. In fact, only
two simple modifications suffice to guarantee that all three rules are observed. The first
modification is in sub-procedure justification() (Lines 6 and 7 in Figure 6.5).

There is only one kind of signal-selecting decision the D-algorithm ever makes. If the
output signal of a cell c of type ANDn or ORn has got c’s controlling value, or if c is of
type NANDn or NORn and its output signal has got the negation of c’s controlling value,
in order to justify c’s output value, at least one of c’s input signals needs to be assigned
c’s controlling value. The algorithm has to decide which input signal of c gets that value.
If that decision leads to a conflict, a different signal has to be tried. The classical D-
algorithm is allowed to try the different signals in any order. This implementation tries
the different input signals in a special order. Just by selecting the signals in this order the
three rules are applied. Before introducing this ordering it is better to first understand
how the three different rules can be applied.
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Figure 6.6: Application of Rule 2

6.2.2.1 The application of Rule 2

Rule 2 dictates to prefer a signal in a later time frame when selecting which signal to
make a decision on. As was explained above, the D-algorithm only selects signals when
having to decide which input signal of a cell c to assign c’s controlling value. All input
signals of a cell are always in the same time frame. However, there is a case in which
Rule 2 can be applied. An example (Figure 6.6) illustrates this case. The output of cell
c has got the value 0 and this value has to be justified. Hence one of both input signals
of cell c must be assigned the value 0. Both signals are in the same time frame (as is
always the case). However, since signal (i, s1) and signal (i − 1, s3) are connected by a
pseudo-BUF2, the value of (i, s1) depends exclusively on the value of (i − 1, s3) which is
not in the same time frame as c. Thus, selecting signal (i, s1) instead of (i, s2) would be
equivalent to making a decision on signal (i− 1, s3). If the algorithm observes Rule 2, it
must select signal (i, s2) because, when comparing (i − 1, s3) and (i, s2), (i, s2) is in the
later time frame.

Altogether, in order to respect Rule 2, it suffices to try signals which are not driven
by a pseudo-BUF before signals which are driven by one.

2Recall that this implementation of the D-algorithm works only on unfcirc circuits. Recall also that
class unfcirc presents the reference circuit’s inner S INs and inner S OUTs as BUFs. These unfcirc
cells are called here pseudo-BUFs for they do not correspond to test circ BUFs in the reference
circuit. Checking if an unfcirc cell of type BUF is a pseudo-BUF is easy: it is one if and only if its
input signal (i1, j1) and its output signal (i2, j2) belong to different instances, i.e. if i1 6= i2.
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6.2.2.2 The application of Rules 1 and 3

Rule 1 states which logic value to try first on the aggressors in the last two time frames
when having to decide which value to assign to them. Rule 3 states exactly the same, but
it refers to all signals in the circuit and to all but the last two time frames. Therefore,
Rules 1 and 3 do never need to be applied at the same time. Since both rules are similar
in what they dictate one single modification of the D-algorithm suffices to guarantee
that each one of these rules is applied whenever appropriate. As was said before, the
D-algorithm never reaches a situation in which it must decide which value to assign to a
certain signal. Despite this, it is possible to guarantee the application of Rules 1 and 3.

Let us explain by means of an example how Rule 1 can be applied. Suppose the
algorithm is working on the last two time frames of the unfolding and that it has to
select one of the input signals of a cell c and assign c’s controlling value to that signal.
Let s0, s1, . . . , sk be c’s input signals. For instance, let us assume that only s0 and sk

are aggressors and that Rule 1 dictates that the value v should be preferred for those
aggressors. If c’s controlling value is the value v (which means that at least one of the
signals s0, s1, . . . , sk must be assigned the value v), Rule 1 is applied by selecting signals
s0 and sk before signals s1, . . . , sk−1. On the other hand, if c’s controlling value is the
value v′ (which means that at least one of the signals s0, s1, . . . , sk must be assigned the
value v′), Rule 1 is applied by selecting signals s1, . . . , sk−1 before signals s0 and sk.

Rule 3 can be applied in exactly the same way as Rule 1. Suppose the algorithm is
working on a time frame i and has to select one of the input signals of a cell c and assign
c’s controlling value to that signal. Let s0, s1, . . . , sk be c’s input signals. For instance,
let us assume that Rule 3 dictates that the value v should be preferred for signal s0

and that the value v′ should be preferred for signal sk. Additionally, let us assume that
signals s1, . . . , sk−1 haven’t got a specified value in time frame i + 1 which means that no
value has to be preferred for these signals in time frame i. If c’s controlling value is the
value v (which means that at least one of the signals s0, s1, . . . , sk must be assigned the
value v), Rule 3 is applied by selecting signal s0 before signals s1, . . . , sk−1 (for s0 should
preferably get the value v) and by selecting signals s1, . . . , sk−1 before signal sk (for sk

should preferably not get the value v). On the other hand, if c’s controlling value is the
value v′ (which means that at least one of the signals s0, s1, . . . , sk must be assigned the
value v′), Rule 3 is applied by selecting signal sk before signals s1, . . . , sk−1 and these
signals before signal s0.

Altogether, Rules 1 and 3 can be applied by letting the signal-selecting procedure
select signals in an appropriate order. The ordering can be made according to a pair
of flags that is recorded for each signal (and for each time frame) in the circuit. Each
signal may me marked with up to one of two flags called logic 1 preferred , meaning
that Rule 1 (or Rule 3) dictates that on the marked signal logic 1 should be tried first,
and logic 0 preferred . The different time frames of the circuit are processed in a
reverse order, i.e. beginning with the last one and ending with the first time frame. Before
launching the D-algorithm on a certain time-frame, the overall ATPG procedure sets these
flags for all signals in that time frame according to Rules 1 and 3.
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6.2.2.3 Signal ordering for the signal-selecting procedure

Let v be a cell c’s controlling value. When deciding which input signal of c should get the
value v, c’s input signals are tried in the following order:

1) Signals which are not driven by a pseudo-BUF and that are marked with flag
logic v preferred .

2) Signals which are not driven by a pseudo-BUF and that are not marked with any
flag.

3) Signals which are not driven by a pseudo-BUF and that are marked with flag
logic v’ preferred .

4) Signals which are driven by a pseudo-BUF and that are marked with flag
logic v preferred .

5) Signals which are driven by a pseudo-BUF and that are not marked with any flag.

6) Signals which are driven by a pseudo-BUF and that are marked with flag
logic v’ preferred .

In this listing the v and v’ in the flag names are metasyntactic variables. That means,
logic v preferred stands for logic 1 preferred and logic v’ preferred
stands for logic 0 preferred if c’s controlling value is logic 1; or for
logic 0 preferred and logic 1 preferred , resp., if c’s controlling value is logic
0. This ordering has been constructed according to the observations made in 6.2.2.1 and
6.2.2.2. It gives Rule 2 precedence over Rules 1 and 3. This is acceptable since Rule 2’s
purpose is to facilitate the application of Rule 3, as was explained in the end of Section
5.2.

6.2.2.4 The cell-selecting procedure and the application of Rule 1

So far, we have discussed how the justification() sub-procedure has to be modified
such that all three Rules can be applied. But the propagation() sub-procedure does
also make decisions. As was already explained in Section 5.1, propagating the error value
of a signal s requires making a decision if s feeds more than one cell. imply and check()
inserts all these drain cells into the D-frontier and propagation() decides which path
to try first by choosing the cells from the D-frontier in a certain order.

At the end of Subsection 6.2.1 we pointed out that choosing the cells from the D-
frontier in a certain order may affect the task of satisfying Constraint 3. Let us illustrate
this with an example (see Figure 6.7). Suppose the ATPG procedure must try to impose
the falling transition on as many aggressors as possible and suppose that there are only
two cells c1 and c2 in the D-frontier.



50 6. IMPLEMENTATION OF THE ATPG PROCEDURE

• Let both cells be of type AND2 and let their output signals feed primary outputs
of the last time frame.

• Let s1,0 and s1,1 be the input signals of c1, s2,0 and s2,1 be the input signals of c2.

• Let s1,0 and s2,0 have an error value, let s1,1 be an aggressor and let s2,1 be a
non-aggressor signal.

• Suppose that both assignments (s1,1, 1,←) and (s2,1, 1,←) can be performed suc-
cessfully.

If propagation() tries cell c1 first, the D-algorithm performs the assignment
(s1,1, 1,←). Thus, c1’s output gets an error value which means that cell c2 doesn’t need
to be tried any more. However, s1,1 has got the logic value 1, and this is bad because
the generated test sequence should cause as many aggressors as possible to undergo the
falling transition in the last two time frames. If propagation() chooses cell c2 instead,
it is signal s2,1 and not signal s1,1 that gets the logic 1. Since s2,1 is not an aggressor,
this assignment doesn’t affect the task of satisfying Constraint 3. Furthermore, since c2’s
output signal also feeds a primary output, the error input of c1 doesn’t need to be propa-
gated any more and the ATPG procedure is free of trying to assign the aggressor s1,1 the
desired value 0. Altogether, just by trying c2 before c1, Rule 1 is being applied implicitly.

Hence, if propagation() is provided with a mechanism that causes that adequate
cells are tried first, Rule 1 is respected. Instead of modifying the classical propagation()
sub-procedure, it suffices to implement the D-frontier as a priority queue. The priority
of a cell c with controlling value v (Recall that propagation() will try to assign the
value v′ to all free inputs of c.) may be defined as n+ − n−, where n+ is the number of
free inputs of c marked with flag logic v’ preferred and n− is the number of free
inputs of c marked with flag logic v preferred . If propagation() tries cells with
higher priority first, Rule 1 is respected.
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Figure 6.7: The cell-selecting procedure and the application of Rule 1
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Note that the application of Rules 2 and 3 is not affected by the cell selection since
Rule 2 only applies to the justification of signal values and since error value propagation
only takes place in the last time frame, which Rule 3 doesn’t apply to.
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7

Experimental Results

7.1 The benchmarks

In order to obtain experimental results, the method described in Chapter 5 was applied to
ISCAS 85 and ISCAS 89 benchmark circuits. Table 7.1 shows the combinational circuits
that were used. The second and third columns contain the number of primary inputs
and primary outputs of the circuits, respectively. The fourth column lists the number
of signals. In all tables of this chapter the circuits have been ordered by their number
of signals which is a direct measure of the test generation’s complexity. Finally, the last
two columns show the s ord of the signal the test sequence was generated for and the
number of branches that signal has got.

Circuit P INs P OUTs Signals Victim Branches

c0017 5 2 11 2 2
c0095 5 7 32 19 5
c0880 60 26 443 52 8
c1908 33 25 913 300 16
c3540 50 22 1719 226 16
c6288 32 32 2448 7 16
c5315 178 123 2485 1429 13
c7552 207 108 3719 1623 15

Table 7.1: Combinational ISCAS 85 circuits

Table 7.2 shows the sequential circuits that were used. As in Table 7.1, the second
and third columns contain the number of primary inputs and outputs. Additionally, the
fourth column lists the number of secondary inputs of the circuits. The last three columns
contain the same data as the last three columns in Table 7.1.
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Circuit P INs P OUTs S INs Signals Victim Branches

s00027 4 1 3 17 7 2
s00208 10 1 8 122 13 6
s00298 3 6 14 136 4 12
s00386 7 7 6 172 20 19
s499 1 22 22 175 5 6
s00382 3 6 21 182 15 10
s00344 9 11 15 184 39 8
s00349 9 11 15 185 57 8
s00400 3 6 21 186 15 10
s00444 3 6 21 205 13 10
s00526 3 6 21 218 5 12
s00510 19 7 6 236 24 12
s00420 18 1 16 252 29 6
s00832 18 19 5 310 47 36
s00820 18 19 5 312 20 35
s635 2 1 32 320 8 3
s00641 35 24 19 433 209 9
s00953 16 23 29 440 20 10
s00713 35 23 19 447 208 9
s00838 34 1 32 512 61 6
s938 34 1 32 512 61 6
s01238 14 14 18 540 4 18
s01196 14 14 18 561 2 16
s01494 8 19 6 661 51 54
s01488 8 19 6 667 22 53
s01423 17 5 74 748 554 12
s1512 29 21 57 866 329 25
s3271 26 14 116 1714 276 24
s3384 43 26 183 1911 590 24
s3330 40 73 132 1961 783 19
s4863 49 16 104 2495 4 16
s05378 35 49 179 2993 970 9
s6669 83 55 239 3402 544 34
s09234 36 39 211 5844 780 16

Table 7.2: Sequential ISCAS 89 circuits
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7.2 Settings

Determining an appropriate victim signal and appropriate aggressors is out of the scope
of this work. The victim can be obtained by analysis presented in [1]1. The aggressors
can be determined by the analysis of the power grid: the segment which supplies the
victim’s driver with current is identified. Aggressors are driven by cells powered by the
same segment. M and N should be chosen such as to maximise the voltage drop and
can be derived analytically from the electrical parameters of the circuit, the VRM, the
capacitor, etc.; or they can be obtained by measurement. Since the used benchmarks
contain no layout information or technology data, it was not possible to perform such
analysis to obtain the victim node and the aggressors. Since the aim of these experiments
was not testing the efficiency of the proposed test method but testing the automatic test
pattern generation procedure, it was sufficient to let the algorithm generate only one test
sequence per circuit. Thus only one victim was chosen for each circuit. As victim we
chose the signal with the largest number of branches as this node is likely to have the
largest load. If there were several such signals, one of these was selected at random. We
worked with five aggressors which were selected at random either from anywhere in the
circuit or from among the victim’s neighbours.

7.2.1 Choosing the aggressors

The implemented program can choose 5 aggressors at random from anywhere in the circuit
or from among the victim’s neighbours.

If the signals chosen as aggressors draw power from sources the victim is not connected
to, high-frequency power droop will most probably not take place because of lack of power
starvation. That is why, in general, power droop cannot be tested using randomly chosen
aggressors. Nevertheless, for the test of the ATPG procedure random aggressors can be
seen as optimal because this provides the possibility of testing the procedure under a
great variation of the input parameters. Since a signal’s s ord lies between 0 and l − 1,
where l is the number of signals, choosing 5 aggressors at random is reduced to repeatedly
generating random integers between 0 and l− 1 and putting them into an array of length
5 until the array is full. A new s ord gets into the array only if it is not already there
and if it doesn’t equal the victim’s s ord .

In order to test how well the test sequences generated by the designed ATPG pro-
cedure satisfy Constraint 3 (see Page 23), it is helpful to test the ATPG procedure with
aggressors chosen from among the victim’s neighbours since there is a higher dependence
between logic values of neighbouring signals. Furthermore, there is a high probability
that aggressors chosen from among the neighbours coincide with the aggressors won by
the analysis of the power grid. Since there was no layout information on the circuits an

1An interesting finding of [1] is that the number of possible sites for power droop is very limited: less
than 100 for a microprocessor of 128 000 standard cells.



56 7. EXPERIMENTAL RESULTS

approximating approach had to be used in order to determine suitable neighbours. If a
victim had more than 5 neighbours, 5 were chosen at random to become aggressors.

The set of direct neighbours is defined as the set of input signals of the victim’s
drain cells (with exception of the victim itself). These are adequate neighbours since these
signals may be physically close to the victim and because their logic values and the victim’s
value will be rather independent from each other. However, if all aggressors are direct
neighbours at the same time, during the propagation of the victim’s error value, many
of them might be assigned a value that affects the satisfaction of Constraint 3. In order
to dispose of additional differently natured neighbours to choose the aggressors from, we
define the set of indirect neighbours as the set of output signals of c’s sibling cells
(see Page 13 for this term’s definition) where c is the cell driving the victim. Finally, the
set of suitable neighbours (see Figure 7.1) consists of the set of direct neighbours together
with the set of indirect neighbours.

Other signals in the victim’s vicinity are not suitable. Choosing signals whose logic
values depend on the victim’s value or vice versa could affect the task of satisfying Con-
straint 3.

victim

’s sibling cellc

c ’s sibling cell direct neighbours

indirect neighbours

The victim’s logic
value depends on
these signals’ values.

Not suitable aggressors.
Not suitable
aggressors. These
signals’ logic
values depend on
the victim’s value.

c

Figure 7.1: The victim’s suitable neighbours
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7.3 Results

All measurements were performed on a 2×1280 MHz UltraSPARC-IIIi machine with 6 GB
RAM running SunOS. The method was applied to all mentioned circuits several times
trying different parameter combinations, where the varying parameters are M , N , the
tested transition (rising or falling) and whether the aggressors were generated randomly
or chosen from among the neighbours. An overview of the shown data follows:

Column Heading “Ag.”: This column is only present if the program was requested
to choose the aggressors from among the neighbours. Then it shows how many
aggressors were chosen.

Column Heading “Low”: This column shows the percentage of signals that switch in
the low-activity part. Let Si be the number of signals that switch between time
frame i and i+1. Then, the average number of signals switching in the low-activity
part is

Sl :=

M−2∑
i=0

Si

M − 1
.

The listed number is Sl

l
· 100%, where l is the total number of signals in the circuit.

Here lesser figures represent better results.

Column Heading “High”: This column shows the percentage of signals that switch in
the high-activity part. The average number of signals switching in the high-activity
part is

Sh :=

M+N−3∑
i=M−1

Si

N − 1
.

The listed number is Sh

l
· 100%. Here larger figures represent better results.

Column Heading “Tr.”: This column shows how many aggressors (max. 5) undergo
the same transition as the victim in the last two time frames. Here larger figures
represent better results.

Column Heading “Time”: This column shows the time that was needed for test gen-
eration on the machine mentioned above.

Sometimes it is not possible to induce the tested transition on any of the neighbours.
As was explained in Subsection 5.3.2, in such a case the program quits without trying
to generate the low-activity and the high-activity sequences. This means that no test
sequence exists for the victim together with the chosen set of aggressors. But there might
exist test sequences for a different set of aggressors. In order to gain the experimental
results, the program was started, with fixed parameter constellation (i.e. fixed victim,
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fixed M and N and fixed decision whether the aggressors are chosen from among the
neighbours or from anywhere in the circuit), up to 13 times for each circuit until the test
sequence generation was successful. If the program was unsuccessful more than 13 times,
no data were recorded and the job was resumed on the next circuit. In such cases the
tables show a row of hyphens.

The impact of a dI
dt

event is most critical several clock cycles after the dI
dt

event has
taken place (see Subsection 3.1.1). Therefore, there was a particular interest in finding
out how efficient the generation of the low-activity and the high-activity sequence is for
large M and N values. We started with M = N = 10. Test sequences were generated for
both the rising and the falling transitions; and both random and neighbouring aggressors
were tried. Detailed results are listed in Tables 7.4 and 7.5, their average figures are
summarised in Table 7.3.

For M = N = 10, the program was started several times in the random-aggressors-
mode. The results from those different starts are not listed, but the obtained figures for
one specific circuit were nearly the same in all cases. The figures listed in Tables 7.4
and 7.5 for the random-aggressors-mode are the best results that were achieved for each
circuit. Looking at Table 7.3 it is remarkable that the achieved results are nearly the
same in both the neighbouring-aggressors and random-aggressors cases. Altogether, we
can say that the ATPG procedure seems to be stable with respect to variations of the
set of aggressors. Analysing the figures in Tables 7.4 and 7.5 brings forth the following
observations:

• Let us first try to evaluate how well the sub-routine that generates the test pair has
done its job. The application of the test pair should cause as much aggressors as
possible to undergo the same transition as the victim in the last two time frames.
There are only three circuits whose chosen victim has less than 5 neighbours. In all
the other circuits there are at least five neighbours so we can base our observations
on the simplifying assumption that there are always 5 aggressors. We see that the
generated test pair has caused, in average, half of the aggressors to undergo the
desired transition. For several circuits the transition was induced on all aggressors.
It can also be observed that the results are slightly better if the aggressors are
chosen at random. This was more or less expected since many neighbours (especially
the direct ones, cf. Subsection 7.2.1) are not controllable any more after having
propagated the victim’s error and after having justified the victim’s transition.

Settings Low High Tr. Time

rising transition, neighbour aggressors 7.92% 41.64% 2.28 0:03:43
rising transition, random aggressors 6.44% 42.15% 2.37 0:03:53
falling transition, neighbour aggressors 6.88% 40.19% 2.19 0:01:41
falling transition, random aggressors 8.32% 42.63% 2.32 0:03:17

Table 7.3: Experimental results: M = N = 10, average figures
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Circuit
Aggressors: up to 5 neighbours Aggressors: 5 at random

Ag. Low High Tr. Time Low High Tr. Time
c0017 2 0% 87% 2 0:00:00 0% 87% 3 0:00:00
c0095 - - - - - 0% 71% 3 0:00:00
c0880 5 0% 51% 5 0:00:02 0% 50% 3 0:00:01
c1908 5 0% 59% 4 0:00:02 0% 57% 4 0:00:01
c3540 2 0% 42% 1 0:00:08 0% 46% 3 0:00:05
c6288 5 0% 43% 5 0:00:05 0% 47% 3 0:00:39
c5315 5 0% 54% 3 0:00:14 0% 53% 4 0:00:14
c7552 5 0% 52% 4 0:00:42 0% 52% 5 0:00:42
s00027 - - - - - 11% 69% 2 0:00:00
s00208 - - - - - 0% 36% 1 0:00:00
s00298 - - - - - 10% 50% 1 0:00:01
s00386 5 0% 37% 2 0:00:02 4% 30% 2 0:00:02
s499 5 4% 18% 1 0:00:02 - - - -
s00382 5 12% 42% 1 0:00:03 4% 32% 2 0:00:02
s00344 5 14% 49% 5 0:00:01 16% 47% 3 0:00:02
s00349 5 17% 49% 1 0:00:02 3% 40% 1 0:00:01
s00400 5 6% 39% 1 0:00:04 5% 37% 2 0:00:02
s00444 5 11% 43% 1 0:00:09 0% 39% 1 0:00:07
s00526 5 13% 29% 2 0:00:02 3% 24% 1 0:00:01
s00510 5 14% 37% 1 0:00:04 0% 29% 1 0:00:04
s00420 5 3% 31% 1 0:00:03 3% 26% 2 0:00:02
s00832 5 3% 39% 3 0:00:09 0% 37% 3 0:00:04
s00820 5 5% 40% 1 0:00:03 0% 43% 2 0:00:01
s635 2 0% 12% 1 0:00:02 0% 13% 1 0:00:02
s00641 5 2% 49% 3 0:00:27 0% 50% 4 0:00:06
s00953 5 0% 21% 1 0:04:30 1% 19% 1 0:05:06
s00713 5 2% 45% 2 0:00:18 2% 49% 2 0:00:15
s00838 5 1% 30% 1 0:00:07 0% 27% 3 0:00:04
s938 5 3% 30% 1 0:00:10 0% 28% 1 0:00:05
s01238 5 10% 34% 2 0:00:18 13% 36% 1 0:00:23
s01196 5 6% 34% 1 0:00:17 18% 38% 3 0:00:21
s01494 5 23% 33% 2 0:00:40 29% 34% 1 0:00:32
s01488 5 3% 35% 1 0:00:23 9% 33% 1 0:00:56
s01423 5 15% 32% 1 0:00:51 5% 26% 1 0:00:46
s1512 - - - - - 0% 29% 1 0:00:15
s3271 5 29% 57% 2 0:01:01 32% 55% 5 0:00:55
s3384 5 23% 59% 5 0:02:22 23% 58% 4 0:01:39
s3330 5 11% 61% 4 0:00:57 9% 52% 3 0:01:06
s4863 5 20% 41% 5 0:23:31 24% 40% 3 1:34:17
s05378 - - - - - 6% 53% 2 0:08:38
s6669 5 23% 46% 4 0:13:03 18% 45% 4 0:06:25
s09234 5 12% 39% 2 1:23:11 16% 41% 4 0:35:08
AVG: 4.75 7.92% 41.64% 2.28 0:03:43 6.44% 42.15% 2.37 0:03:53

Table 7.4: Experimental results: M = N = 10, rising transition
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Circuit
Aggressors: up to 5 neighbours Aggressors: 5 at random

Ag. Low High Tr. Time Low High Tr. Time
c0017 - - - - - - - - -
c0095 - - - - - 0% 65% 1 0:00:00
c0880 - - - - - 0% 56% 1 0:00:01
c1908 5 0% 59% 2 0:00:02 0% 61% 4 0:00:02
c3540 2 0% 40% 1 0:00:04 0% 38% 2 0:00:04
c6288 - - - - - 0% 44% 2 0:00:08
c5315 5 0% 54% 1 0:00:11 0% 53% 3 0:00:10
c7552 5 0% 53% 2 0:00:24 0% 52% 5 0:00:25
s00027 2 9% 73% 1 0:00:00 1% 73% 3 0:00:00
s00208 5 0% 38% 3 0:00:00 5% 38% 1 0:00:01
s00298 5 10% 35% 2 0:00:01 12% 43% 2 0:00:00
s00386 5 15% 41% 2 0:00:01 - - - -
s499 5 1% 22% 2 0:00:03 2% 29% 1 0:00:05
s00382 5 6% 42% 2 0:00:03 10% 33% 2 0:00:03
s00344 5 11% 39% 1 0:00:01 0% 45% 1 0:00:01
s00349 5 5% 42% 1 0:00:01 7% 42% 1 0:00:01
s00400 5 4% 38% 2 0:00:02 10% 42% 3 0:00:02
s00444 5 4% 42% 3 0:00:03 9% 36% 1 0:00:04
s00526 5 5% 33% 3 0:00:02 3% 25% 2 0:00:02
s00510 5 11% 34% 1 0:00:04 18% 30% 1 0:00:06
s00420 5 3% 33% 4 0:00:02 2% 29% 4 0:00:02
s00832 5 4% 35% 1 0:00:08 11% 43% 1 0:00:04
s00820 5 0% 39% 2 0:00:04 20% 40% 1 0:00:12
s635 - - - - - - - - -
s00641 - - - - - 4% 47% 1 0:00:34
s00953 5 1% 25% 1 0:05:54 2% 30% 1 0:05:11
s00713 - - - - - 4% 45% 1 0:00:17
s00838 5 1% 26% 4 0:00:06 0% 28% 2 0:00:06
s938 5 1% 28% 4 0:00:06 1% 28% 1 0:00:05
s01238 5 18% 37% 4 0:00:22 17% 35% 3 0:00:26
s01196 5 15% 40% 3 0:00:19 15% 33% 2 0:00:21
s01494 5 15% 36% 2 0:00:43 20% 42% 1 0:00:24
s01488 5 17% 38% 1 0:00:32 11% 43% 2 0:00:31
s01423 5 3% 34% 2 0:00:48 8% 30% 4 0:00:54
s1512 5 2% 31% 1 0:00:16 - - - -
s3271 5 30% 56% 4 0:00:53 33% 58% 4 0:00:47
s3384 - - - - - 25% 58% 4 0:02:13
s3330 5 10% 51% 2 0:01:18 11% 55% 4 0:01:28
s4863 - - - - - 12% 35% 4 1:53:41
s05378 5 9% 52% 5 0:10:47 7% 51% 4 0:10:23
s6669 - - - - - 22% 44% 5 0:07:42
s09234 5 10% 40% 1 0:30:18 14% 41% 3 0:41:40
AVG: 4.81 6.88% 40.19% 2.19 0:01:41 8.32% 42.63% 2.32 0:03:17

Table 7.5: Experimental results: M = N = 10, falling transition
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• The switching activity in the low-activity part is satisfyingly low. 0% of a combina-
tional circuit’s signals switching in the low-activity part is an expected result. But
there are also some sequential circuits for which the same result has been achieved.
There are only very few cases in which the percentage of switching signals is greater
than 10%. Nevertheless, the average percentage of switching signals lies between
6% and 8% which is very good considering that the ATPG procedure tries to assign
as much signals as possible a specified logic value.

• Before evaluating the switching activity in the high-activity sequence, recall that
a global switching activity of 100% cannot be reached in general (see Section 3.2).
Table 7.6, in which ARS stands for “Average Random Switching”, shows an estimate
of the average switching activity in the circuits under normal working conditions.
These data were gained by applying 5000 random input patterns to the circuits and
measuring the amount of signals switching between each pair of cycles. The values
don’t vary much between different circuits, the average value is of about 30%. After
comparing this value to the achieved high-activity average values of about 41% (note
that there are several values greater than 50% and even 60%) it can be said that
the high-activity sequence has managed to increase the average switching activity
by about 33%. It is not feasible to deterministically find out the highest reachable
switching activity. However, an overall high switching average of more than 50% or
60% may be considered impossible to achieve if taking into account the following
facts:

� The algorithm tries to leave as less signals as possible having an unspecified
logic value.

� These circuits contain many complex cells (AND, OR, NAND, NOR gates with
more than five and even up to nine inputs) which means that there is a high
local dependence between signal values.

� Many of the used sequential circuits have got many more secondary than pri-
mary inputs. Hence, there is a high degree of reconvergence in these circuits.

� Only the primary inputs are controllable for so many subsequent cycles.

• Finally, let us analyse the needed times. Average times of about three minutes are
reasonable. It is interesting that the needed time can vary acutely for one circuit
(e.g. s4863, s09234). The hardness of the problem seems to depend on the specific
problem instance (controllability and observability of aggressors and victim, etc.)
rather than simply on M and N . This dependency seems to show up quite randomly.
Sometimes, the justification algorithm in charge of performing the assignments in-
tended for the satisfaction of the flexible constraints, may become very deep before
realising that the assignment leads to a conflict. This behaviour is neither perfectly
predictable nor controllable, it is unavoidable given the heuristic procedure that is
used for the generation of the low-activity and high-activity sequences.
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Circuit ARS Circuit ARS Circuit ARS Circuit ARS

c0017 46.72% s00386 35.58% s00820 30.10% s01423 32.26%
c0095 39.33% s499 27.01% s635 10.08% s1512 24.07%
c0880 34.09% s00382 34.31% s00641 30.66% s3271 49.18%
c1908 39.73% s00344 34.97% s00953 17.08% s3384 45.72%
c3540 33.07% s00349 34.87% s00713 29.49% s3330 36.33%
c6288 38.01% s00400 33.68% s00838 10.25% s4863 42.45%
c5315 39.91% s00444 31.45% s938 10.23% s05378 35.00%
c7552 40.86% s00526 28.35% s01238 25.65% s6669 38.39%
s00027 37.19% s00510 23.98% s01196 26.77% s09234 28.67%
s00208 19.25% s00420 13.20% s01494 30.77%

AVG: 31.33%
s00298 36.43% s00832 29.62% s01488 30.94%

Table 7.6: Average switching activity, 5000 cycles, random input patterns

After having applied the method to the benchmarks for M = N = 10, we tried
M = N = 30 (Table 7.8), M = N = 50 (Table 7.9), M = N = 100 (Table 7.10) and
M = N = 150 (Table 7.11). We generated test sequences only for the rising transition
(falling transition in the case M = N = 150) since we already found out that the results
don’t vary much when switching from rising to falling transitions. Also, after realising that
the results we are interested in aren’t affected too much by the choice of the aggressors,
it wasn’t necessary to start the program more than once in the random-aggressors-mode
for each circuit and for each parameter combination.

M N Aggressors Low High Tr. Time

10 10
neighbours 7.92% 41.64% 2.28 0:03:43
random 6.44% 42.15% 2.37 0:03:53

30 30
neighbours 5.81% 41.06% 2.25 0:12:27
random 5.6% 43% 2.38 0:13:11

50 50
neighbours 5.91% 40.97% 2.16 0:11:33
random 4.43% 43.24% 2.27 0:10:26

100 100
neighbours 4.72% 42.91% 2.06 0:05:47
random 4.56% 43.03% 2.28 0:17:13

150 150
neighbours 5.06% 42.44% 2.06 0:15:25
random 5.61% 41.79% 2.32 0:22:08

Table 7.7: Experimental results: average figures
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Table 7.7 summarises the average results for different M and N values, Figure 7.2
contains the same data again, but normalised to the average data for M = N = 10
and rising transition and in graph form. As was already said before, we had particular
interest in finding out how efficient the generation of the low-activity and the high-activity
sequence is for large M and N values. According to Prof. Sandip Kundu it may be
necessary, in many cases, to have hundreds of cycles of electrical noise before low-frequency
power droop can develop fully. The average figures largely remain as good as they were
for M = N = 10. The switching activity in the low-activity part even appears to become
better (it decreases) with increasing M and N . The time requirements are higher but,
if we compare the average time needed for M = N = 10 with the average time needed
for M = N = 150, we see that the time has increased by a factor of only 6 or 7. The
time increase seems to be sublinear in M and N . The solution quality seems to be
relatively stable with respect to M and N and some of the statistical noise is attributed
to the random sets of aggressors being not the same throughout the experiments. Since
the algorithm does never work on more than two frames at a time, if memory freeing is
carefully implemented, memory requirements only increase if the circuit’s size does so,
not if M and N become larger.
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Figure 7.2: Experimental results: normalised average results
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Circuit
Aggressors: up to 5 neighbours Aggressors: 5 at random

Ag. Low High Tr. Time Low High Tr. Time
c0017 2 0% 90% 2 0:00:00 0% 90% 3 0:00:00
c0095 - - - - - 0% 71% 1 0:00:00
c0880 5 0% 42% 5 0:00:02 0% 46% 4 0:00:02
c1908 5 0% 58% 3 0:00:03 0% 63% 3 0:00:03
c3540 2 0% 43% 1 0:00:09 0% 42% 3 0:00:23
c6288 5 0% 45% 5 0:00:12 0% 41% 1 0:01:07
c5315 5 0% 54% 4 0:00:32 0% 55% 3 0:00:32
c7552 5 0% 49% 3 0:01:13 0% 50% 3 0:01:14
s00027 - - - - - 3% 68% 2 0:00:00
s00208 - - - - - 1% 38% 2 0:00:01
s00298 - - - - - 6% 47% 1 0:00:02
s00386 5 1% 34% 2 0:00:06 16% 34% 1 0:00:07
s499 5 0% 20% 1 0:00:06 - - - -
s00382 5 7% 30% 1 0:00:10 4% 27% 1 0:00:09
s00344 5 12% 43% 5 0:00:05 4% 43% 2 0:00:05
s00349 5 3% 44% 1 0:00:03 0% 28% 1 0:00:02
s00400 5 4% 33% 1 0:00:08 7% 34% 2 0:00:09
s00444 - - - - - 4% 36% 4 0:00:14
s00526 5 3% 29% 1 0:00:05 5% 32% 1 0:00:06
s00510 - - - - - 4% 35% 2 0:00:08
s00420 5 0% 27% 1 0:00:03 1% 32% 2 0:00:04
s00832 5 0% 37% 1 0:00:17 0% 41% 2 0:00:28
s00820 5 4% 40% 2 0:00:13 0% 41% 1 0:00:10
s635 2 0% 17% 1 0:00:06 - - - -
s00641 5 0% 49% 2 0:00:23 0% 50% 1 0:01:30
s00953 5 1% 29% 1 0:15:34 0% 24% 2 0:00:59
s00713 5 1% 48% 1 0:00:22 0% 49% 5 0:00:17
s00838 5 0% 25% 1 0:00:11 0% 26% 1 0:00:12
s938 5 0% 25% 1 0:00:13 0% 26% 3 0:00:12
s01238 5 13% 36% 2 0:01:22 11% 31% 3 0:01:37
s01196 5 11% 39% 2 0:00:58 13% 37% 2 0:01:14
s01494 5 23% 37% 1 0:01:47 20% 33% 2 0:02:29
s01488 5 12% 38% 1 0:02:08 17% 39% 1 0:01:46
s01423 - - - - - 11% 34% 1 0:02:16
s1512 - - - - - 2% 31% 2 0:00:56
s3271 5 31% 57% 5 0:02:45 30% 58% 4 0:02:27
s3384 5 22% 58% 5 0:06:20 23% 60% 5 0:07:08
s3330 5 6% 52% 4 0:04:31 12% 58% 5 0:03:24
s4863 - - - - - 7% 41% 3 2:04:33
s05378 - - - - - 3% 50% 5 0:30:36
s6669 5 20% 47% 5 0:41:29 7% 38% 4 3:25:10
s09234 5 12% 39% 1 5:16:51 13% 41% 1 2:15:13
AVG: 4.72 5.81% 41.06% 2.25 0:12:27 5.6% 43% 2.38 0:13:11

Table 7.8: Experimental results: M = N = 30, rising transition
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Circuit
Aggressors: up to 5 neighbours Aggressors: 5 at random

Ag. Low High Tr. Time Low High Tr. Time
c0017 2 0% 72% 2 0:00:00 0% 90% 2 0:00:00
c0095 - - - - - 0% 71% 1 0:00:00
c0880 5 0% 42% 5 0:00:04 0% 46% 3 0:00:04
c1908 5 0% 61% 2 0:00:05 0% 60% 4 0:00:05
c3540 2 0% 43% 1 0:00:18 0% 41% 3 0:00:17
c6288 5 0% 46% 5 0:00:17 0% 41% 2 0:00:27
c5315 5 0% 54% 3 0:00:50 0% 52% 3 0:00:50
c7552 5 0% 49% 3 0:01:46 0% 53% 5 0:01:45
s00027 - - - - - 0% 69% 1 0:00:00
s00208 - - - - - 0% 35% 1 0:00:01
s00298 - - - - - - - - -
s00386 5 5% 29% 2 0:00:07 0% 28% 1 0:00:12
s499 - - - - - - - - -
s00382 5 8% 33% 1 0:00:12 4% 39% 3 0:00:13
s00344 5 0% 46% 5 0:00:04 4% 46% 4 0:00:06
s00349 5 10% 47% 1 0:00:09 0% 45% 2 0:00:06
s00400 5 7% 29% 1 0:00:16 7% 29% 1 0:00:14
s00444 - - - - - 2% 35% 2 0:00:28
s00526 5 6% 31% 1 0:00:09 3% 31% 1 0:00:08
s00510 5 5% 37% 1 0:00:23 1% 35% 2 0:00:19
s00420 5 0% 29% 1 0:00:06 0% 27% 3 0:00:07
s00832 5 1% 42% 3 0:00:09 9% 46% 1 0:00:17
s00820 5 3% 43% 1 0:00:14 0% 45% 2 0:00:06
s635 2 0% 21% 1 0:00:14 2% 19% 2 0:00:18
s00641 5 0% 49% 2 0:00:32 0% 48% 1 0:00:29
s00953 5 1% 25% 1 0:28:36 - - - -
s00713 5 0% 50% 3 0:00:30 0% 52% 2 0:00:37
s00838 5 0% 25% 1 0:00:18 0% 26% 2 0:00:20
s938 5 0% 27% 1 0:00:21 0% 26% 2 0:00:19
s01238 5 16% 35% 2 0:01:46 15% 35% 2 0:02:08
s01196 5 16% 36% 1 0:02:12 12% 40% 3 0:01:41
s01494 5 18% 39% 3 0:02:49 16% 40% 1 0:02:26
s01488 5 11% 35% 1 0:04:32 8% 37% 2 0:04:36
s01423 5 11% 29% 2 0:05:16 0% 33% 2 0:02:43
s1512 - - - - - 0% 27% 1 0:01:20
s3271 5 31% 59% 3 0:04:18 31% 58% 2 0:04:33
s3384 5 21% 57% 5 0:13:19 24% 57% 3 0:12:46
s3330 5 5% 50% 4 0:05:19 9% 49% 5 0:05:59
s4863 - - - - - - - - -
s05378 - - - - - 4% 49% 4 1:48:33
s6669 - - - - - - - - -
s09234 5 14% 41% 1 4:54:10 13% 40% 3 3:51:18
AVG: 4.72 5.91% 40.97% 2.16 0:11:33 4.43% 43.24% 2.27 0:10:26

Table 7.9: Experimental results: M = N = 50, rising transition
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Circuit
Aggressors: up to 5 neighbours Aggressors: 5 at random

Ag. Low High Tr. Time Low High Tr. Time
c0017 2 0% 81% 2 0:00:00 0% 72% 2 0:00:00
c0095 - - - - - 0% 71% 1 0:00:00
c0880 5 0% 58% 5 0:00:08 0% 41% 2 0:00:07
c1908 5 0% 59% 3 0:00:09 0% 61% 4 0:00:09
c3540 2 0% 41% 1 0:00:37 0% 46% 1 0:00:32
c6288 5 0% 43% 5 0:00:33 0% 46% 3 0:00:40
c5315 5 0% 51% 3 0:01:35 0% 51% 5 0:01:36
c7552 5 0% 51% 3 0:03:04 0% 51% 5 0:03:06
s00027 - - - - - 1% 69% 1 0:00:00
s00208 - - - - - - - - -
s00298 5 5% 40% 1 0:00:06 5% 42% 3 0:00:07
s00386 5 0% 32% 3 0:00:11 - - - -
s499 - - - - - - - - -
s00382 5 4% 30% 1 0:00:25 6% 28% 2 0:00:29
s00344 5 0% 45% 5 0:00:12 0% 47% 3 0:00:09
s00349 5 3% 47% 1 0:00:13 1% 43% 2 0:00:10
s00400 5 6% 28% 1 0:00:34 4% 29% 1 0:00:28
s00444 5 2% 38% 1 0:01:02 2% 38% 2 0:01:22
s00526 - - - - - 6% 31% 1 0:00:19
s00510 5 2% 36% 1 0:00:27 1% 34% 1 0:00:32
s00420 5 0% 29% 1 0:00:11 0% 28% 1 0:00:11
s00832 5 0% 40% 2 0:00:30 1% 41% 3 0:00:34
s00820 5 0% 44% 2 0:00:23 0% 43% 1 0:00:17
s635 2 1% 20% 1 0:00:30 0% 20% 1 0:00:26
s00641 5 0% 55% 2 0:00:54 0% 48% 2 0:01:01
s00953 - - - - - 1% 22% 1 1:11:26
s00713 5 0% 50% 2 0:01:18 0% 48% 1 0:01:19
s00838 5 0% 26% 1 0:00:40 0% 25% 2 0:00:37
s938 5 0% 26% 1 0:00:37 0% 25% 1 0:00:38
s01238 5 15% 39% 1 0:03:27 13% 38% 2 0:03:24
s01196 5 15% 37% 2 0:03:20 16% 37% 2 0:04:01
s01494 5 2% 37% 1 0:03:20 12% 40% 1 0:03:54
s01488 5 13% 43% 1 0:06:14 16% 39% 3 0:05:51
s01423 5 8% 32% 1 0:06:29 0% 33% 2 0:05:16
s1512 - - - - - 0% 29% 1 0:02:45
s3271 5 33% 59% 1 0:09:24 33% 60% 3 0:09:47
s3384 5 22% 58% 4 0:28:45 21% 58% 4 0:27:51
s3330 5 6% 50% 3 0:10:44 8% 56% 3 0:12:56
s4863 - - - - - 7% 41% 3 2:00:00
s05378 - - - - - 1% 56% 5 1:30:57
s6669 5 14% 48% 4 1:38:54 14% 49% 5 2:20:56
s09234 - - - - - 9% 42% 3 2:37:47
AVG: 4.72 4.72% 42.91% 2.06 0:05:47 4.56% 43.03% 2.28 0:17:13

Table 7.10: Experimental results: M = N = 100, rising transition
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Circuit
Aggressors: up to 5 neighbours Aggressors: 5 at random

Ag. Low High Tr. Time Low High Tr. Time
c0017 - - - - - - - - -
c0095 5 0% 71% 1 0:00:01 0% 71% 1 0:00:00
c0880 - - - - - 0% 48% 2 0:00:11
c1908 5 0% 59% 1 0:00:14 0% 56% 3 0:00:14
c3540 2 0% 44% 1 0:00:49 0% 39% 3 0:00:50
c6288 - - - - - 0% 48% 1 0:01:34
c5315 5 0% 53% 2 0:02:17 0% 52% 5 0:02:16
c7552 5 0% 54% 2 0:04:05 0% 53% 4 0:04:05
s00027 2 0% 70% 1 0:00:00 0% 70% 4 0:00:00
s00208 5 0% 35% 3 0:00:05 0% 37% 3 0:00:04
s00298 5 6% 40% 3 0:00:10 7% 40% 1 0:00:10
s00386 5 0% 39% 1 0:00:11 - - - -
s499 5 0% 27% 3 0:00:43 0% 25% 2 0:00:40
s00382 5 4% 34% 2 0:00:37 4% 27% 1 0:00:43
s00344 5 0% 46% 1 0:00:15 0% 45% 3 0:00:16
s00349 5 0% 41% 1 0:00:14 9% 45% 3 0:00:21
s00400 5 5% 34% 2 0:00:37 8% 30% 3 0:00:58
s00444 - - - - - 2% 39% 1 0:01:19
s00526 5 5% 30% 4 0:00:29 6% 31% 2 0:00:26
s00510 5 3% 36% 2 0:00:50 - - - -
s00420 5 0% 29% 1 0:00:16 0% 30% 1 0:00:15
s00832 5 1% 39% 2 0:01:22 0% 42% 3 0:00:28
s00820 5 0% 40% 1 0:01:32 0% 41% 1 0:00:49
s635 - - - - - 0% 15% 1 0:00:28
s00641 5 0% 49% 1 0:01:32 - - - -
s00953 5 3% 22% 1 0:35:21 1% 30% 1 1:37:22
s00713 5 0% 46% 1 0:01:17 0% 45% 1 0:02:12
s00838 5 0% 26% 4 0:00:58 0% 26% 1 0:00:54
s938 5 0% 26% 4 0:00:59 0% 25% 1 0:00:57
s01238 5 16% 35% 3 0:06:39 15% 38% 2 0:06:29
s01196 5 16% 39% 4 0:06:20 12% 39% 2 0:05:30
s01494 5 17% 42% 1 0:05:52 20% 41% 1 0:07:29
s01488 5 13% 43% 2 0:08:32 15% 39% 1 0:10:37
s01423 5 2% 32% 1 0:10:37 8% 31% 3 0:08:59
s1512 - - - - - 0% 28% 1 0:03:55
s3271 5 32% 58% 4 0:14:28 33% 59% 4 0:15:35
s3384 5 20% 59% 1 0:37:19 21% 60% 3 0:36:25
s3330 5 6% 48% 3 0:24:21 10% 59% 5 0:17:28
s4863 - - - - - 7% 43% 4 1:47:47
s05378 5 5% 52% 5 3:09:31 3% 51% 4 2:34:22
s6669 5 18% 45% 1 2:45:29 22% 48% 4 2:47:12
s09234 - - - - - 10% 42% 2 3:01:47
AVG: 4.82 5.06% 42.44% 2.06 0:15:25 5.61% 41.79% 2.32 0:22:08

Table 7.11: Experimental results: M = N = 150, falling transition
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7.4 Larger sequential circuits

We also worked on a few other larger ISCAS 89 sequential circuits which haven’t been
mentioned before in this chapter. Their data are displayed in Table 7.12. This table’s
last column shows the average switching activity under normal working conditions. The
figures were gained by applying 5000 random input patterns. Due to the high amount of
memory the program required when applied to these sequential circuits, the measurements
for these circuits were performed on a 2600 MHz AMD Opteron machine with 16 GB RAM
running Debian Linux. The results obtained for M = N = 10 are depicted in Table 7.13.

Unfortunately, the shown execution times are not necessarily correct since the men-
tioned machine was used for other measurements simultaneously which may have lead to
inaccurate time measurements. The switching activity in the high-activity part is as good
as it was for the other circuits, the number of aggressors undergoing the same transition
as the victim in the last two time frames even better. The average switching activity in
the low-activity part is slightly higher than it was for the smaller circuits. However, it is
only the results for s35932 that push up the average value this badly (s35932 possesses
the highest amount of S INs and only very few P INs.) The results obtained for the other
circuits are in the same range as the results obtained for the small circuits.

Circuit P INs P OUTs S INs Signals Victim Br. Avg Rnd Swt

s13207 62 152 638 8651 5989 30 26.72%
s15850 77 150 534 10383 3513 33 25.48%
s35932 35 320 1728 17828 5095 128 42.23%
s38584 38 304 1426 20717 12356 88 32.34%
s38417 28 106 1636 23843 1726 49 25.89%

AVG: 30.53%

Table 7.12: Larger sequential ISCAS 89 circuits

Circuit
Aggressors: up to 5 neighbours Aggressors: 5 at random

Ag. Low High Tr. Time Low High Tr. Time

s13207 5 11% 43% 3 1:11:36 9% 42% 3 2:18:01
s15850 5 9% 35% 5 7:21:58 10% 34% 3 1:28:18
s35932 5 25% 48% 3 18:34:25 25% 48% 3 20:02:28
s38584 - - - - - 19% 46% 2 6:01:27
s38417 5 13% 31% 2 2:31:34 12% 32% 5 2:01:55
AVG: 5 14.5% 39.25% 3.25 7:24:53 15% 40.4% 3.2 6:22:25

Table 7.13: Experimental results: larger sequential circuits, M = N = 10,
rising transition
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Conclusions

Power droop is a power integrity phenomenon which arises under specific conditions and
leads to power starvation and erroneous circuit operation. If power droop is not targeted
directly, its effects could be confused with that of random noise, leading to potentially
counterproductive mitigation strategies. In contrast, if power droop is identified as such,
the parts of the design which need improvements are determined easily.

We presented a test method consisting of the application of a long sequence of input
patterns which creates worst-case power starvation by maximising the effects of low-
frequency and high-frequency power droop. Furthermore, we presented an automatic test
pattern generation method which has to apply sequential test generation even for circuits
with scan. The classical D-algorithm is enhanced by a dynamic constraint generation
technique in order to produce the test sequence while satisfying non-trivial constraints
for power droop maximisation. A prototype was implemented using C++ and the circuit
representation library test circ . Basic implementation issues have been introduced
and explained in this writing, while all the sources are delivered on a CD-ROM. Finally,
experiments were executed on ISCAS 85 and ISCAS 89 circuits. The results have been
presented and their quality has been discussed extensively.

While the proposed implementation is adequate for mid-size blocks and clearly demon-
strates the feasibility of the approach in this context, scalability may be limited for larger
devices in combination with longer test sequences. Possible solutions include the use of
a basic algorithm more appropriate for sequential test generation such as PODEM, in
connection with advanced techniques such as static and dynamic learning.
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Appendix A

Contents of the Attached
CD-ROM

Directory tree: Contents of directory:

Studienarbeit
|-- bin Makefile and executable files
|-- etc configuration files needed for compilation
|-- include header files and documentation on
| implemented classes
|-- lib compiled library and object files
|-- share miscellaneous files like lists of
| | benchmark circuits, chosen victims
| | and official proposal for Studienarbeit
| |-- Benchmarks benchmark files
| |-- experiments experimental results in tabular form
| | ‘-- program outputs generated test sequences and process logs
| |-- number of signals lists of the number of signals of
| | each circuit
| |-- report written work
| | ‘-- RawData pdfTeX sources
| | ‘-- graphics included pdf-graphics
| | ‘-- RawData fig and eps sources
| |-- signals and branches lists of signals and their number of
| | branches
| |-- test inputs inputs for test routines for libraries
| ‘-- test logs outputs of test routines for libraries
‘-- src source files

|-- apps ATPG procedure and help routines
|-- libczu libraries
‘-- tests test routines for libraries
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