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Abstract

Modern technologies have enabled the semiconductor industry to enter a new
era of integrated-circuit manufacturing. Modern ICs are not only smaller and
signi�cantly more high-performing than they used to be only a few years ago; they
are also considerably more energy-e�cient thanks to the use of new materials with
convenient electric properties. However, the use of new materials is also making
the fabrication process more di�cult to control, and the new chips are more prone
to defects. In consequence, the role of fault models that allow to describe complex
forms of faulty behaviour is becoming increasingly important in hardware test and
diagnosis.

Without doubt, automatic test pattern generation (ATPG) is the most important
test task. ATPG algorithms need to be not only run-time-e�cient and to produce
compact test sets, given the large number of faults that need to be targeted in multi-
billion-transistor ICs; they also need to keep pace with the development of new
mechanisms for the description of faulty behaviour.

Traditionally, ATPG algorithms used in industrial applications are structural, i.e.
their reasoning is based on the circuit’s structure. However, SAT-based algorithms,
i.e. methods that map the ATPG problem to the problem of Boolean satis�ability
(SAT), have recently started to gain relevance because they perform better than
structural methods on important classes of faults.

�is doctoral thesis covers the work on SAT-based test pattern generation per-
formed by the thesis’s author between 2008 and 2012. It presents the SAT-based
ATPG tool Tiguan and explains in detail all important aspects that were considered
in order to make Tiguan a highly e�cient test pattern generator capable of calculat-
ing provably optimal solutions for complex ATPG problems. �e most important
contributions of the work presented in this thesis can be summarised as follows:

▸ �e general run-time e�ciency of SAT-based ATPG was increased through
intelligent mapping of the ATPG problem to SAT, through the optimal utilisa-
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ABSTRACT

tion of multiple computing cores, and through the employment of advanced
SAT solving techniques.

▸ Dynamic compaction was integrated into SAT-based ATPG. �is allowed
Tiguan to test all stuck-at faults in iscas and itc’99 circuits using less test
patterns than a commercial, structural tool. Regarding the application to
industrial circuits, the compaction e�ciency gap between SAT-based and
structural ATPG was signi�cantly diminished.

▸ Generic fault models were de�ned which allow to represent complex defect
behaviour. In addition, a �exible SAT-based framework for the generation
of provably optimal test patterns for complex fault models was implemen-
ted. �e applicability of the framework was illustrated by several example
applications whose replication using structural methods is not trivial.

▸ �e performed research and the created so�ware code base opened the path
to advanced research in small-delay test, variability and fault tolerance.

Each chapter of the thesis focuses on one key aspect, provides a thorough motivation
for the work on that aspect, discusses all relevant algorithmic details, presents and
analyses extensive experimental results, and points out important directions for
future research. To conclude, the thesis reviews selected works by other authors
which have bene�ted from Tiguan’s development.
Finally, a�er a brief summary of the presented topics, the thesis closes with a dis-
cussion of the role that SAT-based ATPG is expected to play in future industrial
applications.
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Zusammenfassung

Dank moderner Technologien be�ndet sich die Halbleiterindustrie in einer neuen
Ära der Herstellung von integrierten Schaltungen (integrated circuits — IC). Mo-
derne ICs sind nicht nur kleiner und deutlich performanter als vor nur wenigen
Jahren; sie sind dank des Einsatzes neuer Werksto�e mit günstigen elektrischen
Eigenscha�en auch wesentlich energiee�zienter geworden. Allerdings ist das Her-
stellungsverfahren durch die Verwendung von neuen Werksto�en auch schwieriger
steuerbar geworden, was zur Folge hat, dass die neuen Chips defektanfälliger sind.
Vor diesem Hintergrund ist in der Hardwaretest-Forschung insbesondere die Rolle
von Fehlermodellen, mit denen komplexe Formen von Fehlverhalten beschrieben
werden können, zunehmend wichtiger geworden.

Ohne Zweifel ist die automatische Testmustererzeugung (automatic test pattern gen-
eration — ATPG) die wichtigste Testaufgabe. ATPG-Algorithmen müssen nicht nur
laufzeite�zient sein und kompakte Testmengen erzeugen, angesichts der großen
Zahl von Fehlern, die in ICs mit mittlerweile mehreren Milliarden Transistoren
betrachten werden müssen. Sie müssen auch mit der Entwicklung neuer Verfahren
für die Beschreibung von Fehlverhalten Schritt halten.

Traditionell sind die ATPG-Algorithmen, die in industriellen Anwendungen einge-
setzt werden, strukturell. Das heißt, ihr Suchverhalten wird von der Schaltungs-
struktur diktiert. Allerdings haben vor relativ kurzer Zeit auch SAT-basierte Al-
gorithmen angefangen, an Bedeutung zuzunehmen, da sie bei Anwendung auf
bestimmte, wichtige Klassen von Fehlern eine bessere Leistung als strukturelle
Methoden erbringen. SAT-basiert bedeutet, dass diese Methoden das ATPG-Pro-
blem auf das Problem der Boolschen Erfüllbarkeit (Boolean satis�ability — SAT)
reduzieren.

Diese Dissertation umfasst die Arbeit, die der Autor im Forschungsbereich der
SAT-basierten Testmustererzeugung zwischen 2008 und 2012 geleistet hat. Die
Arbeit stellt das SAT-basierte ATPG-Werkzeug Tiguan vor und erklärt im Detail
alle wichtigen Aspekte, die berücksichtigt werden mussten, um aus Tiguan ein
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ZUSAMMENFASSUNG

hoche�zientes Testmustererzeugungswerkzeug zu machen, das in der Lage ist,
beweisbar optimale Lösungen für komplexe ATPG-Probleme zu berechnen. Die
wichtigsten Beiträge der in dieser Dissertation vorgestellten Arbeit können wie folgt
zusammengefasst werden:

▸ Die allgemeine Laufzeite�zienz von SAT-basiertem ATPG wurde durch
die geeignete Abbildung des ATPG-Problems auf SAT, durch die optimale
Nutzung mehrerer Rechenkerne, und durch den Einsatz von fortgeschrittenen
SAT-Techniken verbessert.

▸ Ein Verfahren zur dynamischen Kompaktierung wurde in den SAT-basierten
ATPG-Algorithmus integriert. Dies ermöglicht Tiguan, alle Stuck-at-Fehler
in iscas- und itc’99-Schaltungen mit weniger Testmustern zu testen als
ein kommerzielles strukturelles ATPG-Werkzeug. Was die Anwendung auf
industrielle Schaltungen betri¯, so wurde die Klu�, die es zwischen SAT-
basierten und strukturellen Methoden hinsichtlich der Testmengenkompakt-
heit gab, deutlich verkleinert.

▸ Generische Fehlermodelle wurden de�niert, mit deren Hilfe sich komplexes
Defektverhalten darstellen lässt. Darüber hinaus ist ein �exibles SAT-basiertes
Werkzeug entstanden, mit dem die Erzeugung von beweisbar optimalen Test-
mustern für komplexe Fehlermodelle möglich ist. Die Anwendbarkeit des
Konzeptes wurde anhand von mehreren Beispielanwendungen bewiesen, die
sich mit strukturellen Methoden schwer realisieren lassen.

▸ Die durchgeführte Forschung und die entstandene So�ware-Codebasis er-
ö�neten den Weg für weitere Forschung über Verzögerungsfehler, Variabilität
und Fehlertoleranz.

Jedes Kapitel der Dissertation konzentriert sich auf einen zentralen Aspekt. Es bietet
dabei eine gründliche Motivation für die realisierte Arbeit, erklärt alle relevanten
algorithmischen Details, präsentiert und analysiert umfangreiche experimentelle
Ergebnisse und erarbeitet Ideen für zukün�ige Forschung. Am Ende der Arbeit
werden ausgewählte Werke von anderen Autoren kurz vorgestellt, die von der Ent-
wicklung von Tiguan pro�tiert haben.
Nach einer kurzen Zusammenfassung der vorgestellten �emen widmet sich die
Arbeit schließlich einer Diskussion über die Rolle, die man von der SAT-basierten
Testmustererzeugung in zukün�igen industriellen Anwendungen erwarten darf.
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If he had a needle to �nd in a haystack, he would proceed at once
with the diligence of the bee to examine straw a�er straw until he
found the object of his search…
I was a sorry witness of such doings, knowing that a little theory and
calculation would have saved him ninety per cent of his labour.
— Nikola Tesla
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Preface

During the last decade, modern semiconductor technologies have progressed to a
level that allows the fabrication of high-performance integrated circuits (IC) that can
be deployed into a wide variety of devices of daily use, like mobile phones, “smart
watches” and even door locks. In large, this development has been made possible by
the increased ability to miniaturise circuit components. In CMOS (Complementary
Metal-Oxide-Semiconductor [254]) designs, feature sizes of 45 nanometres and
less have become common. But newer technologies have also managed to deal with
other important issues. �e HKMG (High-k/Metal Gate [105, 35]) technology, for
example, is a CMOS variant that replaces silicon dioxide with materials with a higher
permittivity, which results in ICs with considerably higher energy e�ciency and
less heat dissipation. For instance, the heat dissipation of the Exynos 4 processor, a
32nm HKMG chip with four computing cores that can be operated at 1.6 GHz, is
so low that the IC is being used in Samsung’s newest high-end mobile phones [6].
In comparison, an Intel Pentium 4 (single-core) CPU deployed in desktop PCs in
the year 2000 could be operated at a maximum speed of 1.5 GHz and could reach
temperatures around 100°C [4].
�e downside of these technologies, however, is that the fabrication process is
becoming increasingly di�cult to control, as the new materials have di�erent prop-
erties. In consequence, new chips are more prone to defects. �e 2011 International
Technology Roadmap for Semiconductors lists the emergence of new technologies
as one of the three key driver areas that will shape the future development of test
methods and test equipment [10]. Hardware test is one of the most important tasks
in the semiconductor production process. And its relevance is not characterised
only by the necessity to identify faulty devices. Test and diagnosis are also crucial
in that they produce feedback without which the semiconductor industry would
not be able to improve their manufacturing processes.

1



In principle, the test of a digital circuit consists of an experiment in which a set of
value combinations (test patterns) are applied to each manufactured circuit. If the
values produced by a circuit under test (CUT) di�er from the expected responses
at any time, then the CUT is known to be defective. In addition, further analysis
known as diagnosis can be performed on each CUT that fails the test in order to
determine the cause of failure.
Expressed in this form, the test experiment may sound simple, but a long path
needs to be walked until the test experiment can be performed. �e �rst step is the
abstraction of physical reality by means of formal models. First, the digital circuit,
a device that processes input vectors over {0, 1} and produces output vectors over
the same set, is modelled at a certain level of abstraction. In this thesis, combina-
tional circuits are modelled at the gate level, and thus regarded as directed acyclic
graphs, where the nodes can be either input pins, output pins or logic gates, and the
edges are the connections between these components. Each logic gate has a speci�c
functionality described by a primitive Boolean function. �us, the functionality
of the whole circuit corresponds to a well-de�ned Boolean function that maps the
circuit’s input vectors to the circuit’s responses.
Circuits can also have memory elements. Such circuits are called sequential and
can be modelled as �nite-state machines. In many cases, however, it is convenient
to ignore the memory elements and to only consider the combinational core. �is
representation also allows to model the circuit’s function over several clock cycles.
In this case, several copies of the circuit’s combinational core are connected in series,
and the sequential expansion of the circuit is regarded as one large combinational
circuit. In this context, a copy of the circuit at a certain point in time is called a time
frame.
Also erroneous behaviour needs to be modelled at a certain level of abstraction.
�is is necessary because the range of possible physical defects is in�nite and non-
discrete. �erefore, instead of real defects, formal models of defective behaviour are
considered during the preparation of the test experiment. Each model of defective
behaviour is called a fault model. It comprises a set of assumptions that specify the
amount of faults that need to be considered and the e�ect that their occurrence
induces in a circuit. �e most important property of fault models is that they reduce
the complexity of the problem. For instance, particle-induced defects cannot be
listed exhaustively, as there are in�nitely-many possible particle shapes and the
exact location of the particle is a continuous parameter [179]. In contrast, fault
models de�ne a �nite or at least countable number of faults.
�e most-used fault model is the (single) stuck-at fault model [72, 90], which as-
sumes that a circuit’s faulty behaviour stems from exactly one line being either
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1. PREFACE

stuck-at 0 or stuck-at 1, i.e. the line permanently has the logic value 0 or 1, respect-
ively, independently of the value driving the line. �e stuck-at fault model is the
dominant fault model used in practical applications because test patterns generated
for stuck-at faults usually cover many permanent defects, and because the model
has the advantage that it de�nes a relatively small number of faults. However, it has
been shown that the stuck-at fault model does not accurately re�ect several defect
types encountered in the currently dominant CMOS technology [91, 110, 161, 11].
For example, shorts and opens account for a large portion of physical defects in
CMOS ICs [91, 49], but the stuck-at fault model provides only a very rough ap-
proximation to the behaviour caused by these defects, especially considering that
a substantial fraction of shorts and opens are resistive [200]. As a consequence,
sophisticated non-standard fault models have been introduced, especially in order
to allow modelling of very complex e�ects involving multiple lines, like capacitive
crosstalk [149, 42, 261, 143], ground bounce [236] or power supply noise [228, 229].
Regarding complex fault models, there are two main approaches. �e �rst con-
sists in modelling speci�c situations individually. However, this approach usually
requires the implementation of dedicated algorithms for each individual model,
e.g. [77, 182, 118, 92]. Aside from the cost of implementing di�erent algorithms,
also the integration of di�erent methods is complicated because each algorithm
may need to model the problem at its own abstraction level. For this reason, also a
trend towards generic fault models has emerged [64, 144, 119, 158].

Once the models used to represent the circuit and erroneous behaviour have been
�xed, automatic test pattern generation (ATPG) can take place. Due to the large
number of test patterns that would need to be applied if all possible input com-
binations were considered (2n for a combinational circuit with n input pins), the
dedicated generation of test patterns to cover the set of modelled faults is the most
important task in testing.

For a �xed fault model, a test pattern p is said to detect a fault f if the response of
the fault-free circuit di�ers from the response of the circuit with the fault f when
p is applied to the circuit’s inputs. A fault is called detectable if a test pattern exists
that detects it. If no such pattern exists, the fault is called undetectable. ATPG is the
process of calculating a test pattern that detects a fault f if f is detectable. An ATPG
algorithm is called complete if it is guaranteed to �nd a test pattern if one exists. If
a complete algorithm does not �nd a pattern that detects a fault f , that proves f ’s
undetectability.

Although the fault detection problem for combinational circuits is NP-complete
[128], the average complexity of most ATPG instances found in practice is only
O(n3) [256, 189]. However, ATPG still remains one of the most challenging tasks
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in testing. In order to overcome the problem’s complexity, test pattern generation is
usually combined with fault simulation. A�er the generation of a certain number of
test patterns, these are simulated in order to determine which not yet targeted faults
are also detected by them. Faults detected by simulation can be removed from the
target fault list, thus reducing the number of test generation instances to be solved.
�is technique is known as fault dropping. Another positive e�ect of fault dropping
is the reduction of pattern count.

Since the cost of test application depends strongly on the number of test patterns to
be applied, test compaction techniques are employed to further reduce the number
of generated tests without loss of fault coverage. Test compaction can be either
dynamic, in which case the test search is guided such that each generated test is
suitable for the detection of a higher number of faults, or static, in which case the
size of the generated test set is reduced a�er the test generation process has been
completed.

ATPG algorithms that perform the search based on the circuit’s structure are called
structural. �e �rst steps in structural testing of logic circuits were made by Eldred
in 1959 [72], but it was Roth’s work at IBM which resulted in the �rst systematic
and complete ATPG method for stuck-at faults — the D-Algorithm [201, 202]. �e
algorithm uses a �ve-valued logic known as Roth’s logic. �is logic comprises the
following values: the logic values 0 and 1, the error values D (assigned to lines that
should have the value 1 but have the value 0 due to the presence of the fault) and
D′ (assigned to lines that should have the value 0 but have the value 1), and the
unspeci�ed value x, which is used to represent lines that have not yet been assigned
a value by the algorithm. �e algorithm assigns the value D or D′ to the fault site
depending on whether the target fault is a stuck-at-0 or a stuck-at-1 fault, and
computes the values that that assignment implies on other lines. When no further
implications can be derived, this branch-and-bound algorithm makes decisions,
i.e. it assigns values to yet unspeci�ed lines such that the fault e�ect is propagated
towards a primary output and such that the values that have been assigned to lines
driven by yet unspeci�ed values can be justi�ed. If a decision leads to a con�ict, the
algorithm backtracks, i.e. it corrects wrong decisions and computes the implications
of the correction. �e algorithm terminates when a fault e�ect becomes visible at a
primary output and all assignments are justi�ed, in which case the fault is detectable,
or when the complete search space has been exhausted without �nding a solution,
in which case the fault is proved to be undetectable.

Two important structural algorithms that can be seen as derivatives of the
D-Algorithm are PODEM (Path-Oriented Decision Making) [98] and FAN (Fan-
out Oriented Test Generation) [89, 87], which speed up the process by restricting the
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locations at which decisions can be made, thus reducing the number of backtracking
operations. Some structural algorithms implemented in commercial and propriet-
ary ATPG tools are known to be based on FAN, which is an e�cient algorithm able
to solve a large number of easy-to-solve ATPG instances very fast. Most proposed
enhancements of these basic ATPG algorithms [140, 218, 93, 159, 250, 108] are
structural as well and rely on learning techniques in order to improve the perform-
ance of structural ATPG on hard-to-solve ATPG instances.
An alternative to structural ATPG algorithms are SAT-based methods, i.e. meth-
ods that map the ATPG problem to the problem of Boolean satis�ability. �is
is the problem of deciding whether a Boolean formula is satis�able, i.e. whether
its variables can be assigned the values 0 or 1 such that the whole formula eval-
uates to 1. So�ware tools used to determine the satis�ability of SAT formulae
are called SAT solvers. Currently, SAT solvers are used in many �elds like plan-
ning [136, 96], electronic design automation [166], and veri�cation and test of
digital systems [219, 27, 46, 224, 114, 77, 164, 69, 55, 209, 207], especially because
many search problems can be converted into SAT problems very e�ciently [151].
Given a combinational circuit and a fault f , SAT-based ATPG consists in generating
a SAT formula that represents the structure of the circuit both in absence and in
presence of the fault. �e SAT instance is formulated such that it is satis�able
if and only if f is detectable. If the SAT solver proves that the SAT formula is
unsatis�able, that proves f ’s undetectability. Conversely, if the SAT solver �nds
a Boolean assignment that satis�es the SAT formula, f is detectable. �en, the
values assigned to the Boolean variables that represent the circuit’s primary inputs
constitute a test pattern that detects f .
�e �rst approaches to reduce the ATPG problem to a SAT problem were proposed
several decades ago [220, 147, 148, 237], but structural algorithms continued to be
the standard used in industrial applications due to their better run-times. However,
it was shown recently that SAT-based ATPG outperforms structural methods when
applied to hard-to-detect and to undetectable faults [242]. �e reason for this is
that the advances made in SAT solving a�er the year 2000 were mostly driven by
formal-veri�cation problems, i.e. problems in which the equivalence of two models
of the same system is to be proved, or in which speci�c behavioural properties of a
system are to be checked. In such problems, the typical workload consists of few,
but very hard and usually unsatis�able SAT instances.
�is doctoral thesis covers the contributions to the �eld of SAT-based test pattern
generation made by the thesis’s author between 2008 and 2012. E�cient algorithms
aimed at enhancing the e�ciency of SAT-based ATPG in terms of run-time and
test compactness were developed and incorporated into the SAT-based ATPG tool
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Tiguan (Thread-parallel Integrated test pattern Generator Utilising satis�ability
ANalysis), which was implemented from scratch paying special attention to the
creation of a particularly e�cient and extensible code base. In combination with
a pattern-parallel fault-simulator [73], Tiguan is able to classify all stuck-at faults
in three suites of well-known academic benchmark circuits. In particular, Tiguan
classi�es all stuck-at faults in a suite of industrial circuits without aborts1, whereas
a commercial, structural tool was not able to classify all faults, even using a high
con�ict limit. In addition, Tiguan outperforms the SAT-ATPG tool PASSAT de-
veloped at the University of Bremen in regard to run-time, number of aborts and
test compactness.

A further important contribution is a new dynamic compaction technique speci�c-
ally designed for the integration into a SAT-ATPG framework, as the rather high
pattern count was traditionally considered to be a major drawback of SAT-based
methods. �anks to the new technique, Tiguan is able to generate smaller test sets
than a commercial, structural ATPG tool for all academic benchmark circuits.

Like the fault simulator, the two SAT solving engines incorporated into Tiguan
were developed within the author’s research group, which allowed to implement
customisations into the SAT solvers, and to tune their internal parameters so that
they could solve the type of SAT instances generated by Tiguan more e�ciently.
Moreover:

▸ �e SAT solver MiraXT [152, 151] supports thread parallelism. �at means
that it can distribute the e�ort of SAT solving among several computation
threads that can run in parallel on multi-processor or multi-core systems. �e
optimal utilisation of this feature was analysed systematically and a two-stage
method was developed, where faults are processed using di�erent SAT solving
parameters depending on the hardness of the produced SAT instances.

▸ �e SAT solver antom [217] supports modern, advanced SAT solving
techniques:

◾ Incremental SAT solving with and without assumptions — this means
that several SAT instances can be solved using only one instantiation of
the SAT solver, and that con�ict knowledge learnt during the solving
of each SAT instance can be shared with subsequent instances, thus

1In order to prevent an excessive grow of the total run-time, it is usual for both structural and
SAT-based algorithms to abort the processing of single faults when a timeout or a con�ict limit has
been reached. In that case, those faults remain unclassi�ed. A lower number of aborts stands for a
higher algorithm quality.
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speeding up the solving process. In addition, initial partial assignments
(assumptions) can be passed to the SAT solver. Based on this, a fault
clustering technique was implemented into Tiguan, which allowed to
further reduce the total time needed to classify all stuck-at faults in a
suite of nineteen industrial benchmark circuits by 47.7%. For some
circuits a reduction of up to 65.3% was achieved.

◾ SAT solving with qualitative preferences [95, 96, 65] — this is a formal
mechanism that allows the user to specify a set of Boolean variables that
should be assigned to a preferred value; also the relative importance of
those preferences can be laid down. �at makes it possible to control
with precision the quality of the solutions computed by the SAT solver,
and also to formally de�ne solution optimality. �is mechanism was
employed to implement a SAT-based framework for the generation
of test patterns that satisfy user-de�ned optimisation goals, and the
generated test patterns are guaranteed to be optimal. �is constitutes a
problem class that cannot be solved trivially using structural algorithms.

One of the most important contributions of this thesis is the de�nition of two gen-
eric fault models, the conditional multiple stuck-at fault model (CMS@FM) and the
enhanced conditional multiple stuck-at fault model (ECMS@FM), and the incorpora-
tion of their support into the SAT-ATPG tool Tiguan. As was explained previously,
the stuck-at fault model no longer su�ces to cover all types of defects that occur
increasingly in newer technologies. Using the CMS@FM, it is possible to describe
defects that induce faulty behaviour on an arbitrary number of victim lines, and
to specify the activation conditions for the defect by imposing speci�c values on a
number of aggressor lines. A particular feature of CMS@-based SAT-ATPG is its
�exibility, which allows the description of ATPG problems with varying degrees of
complexity without the need to modify the SAT-ATPG core engine. For example,
CMS@-ATPG was used to generate with equal comfort patterns for relatively simple
test concepts, like gate-exhaustive testing [169, 43], and for realistic defect-based
models like resistive-bridging faults [198, 199, 197, 75, 78]. In combination with the
expansion of sequential circuits, this model can also be used to describe dynamic
fault e�ects.

�e ECMS@FM goes even further and supports features not o�ered by previously
existing generic fault models. In combination with SAT solving using qualitative
preferences, ECMS@-based SAT-ATPG allows the imposition of so� constraints on
any number of lines, and thus to control the quality of the generated test patterns
with regard to a wide variety of needs. For instance, a set of lines can be chosen
and the number of 0 or 1-assignments made to those lines can be maximised or
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minimised. Some of the example applications based on this principle and discussed
in detail in this thesis include:

▸ �e generation of test patterns that maximise the number of primary outputs
towards which the fault e�ect is propagated. Such test patterns have been
shown to increase the coverage of transition delay faults [247].

▸ �e generation of test patterns that minimise the number of fault-a�ected
primary outputs, which �nds application e.g. in diagnosis [124].

▸ �e generation of test patterns that control precisely the switching activity
of a number of selected lines, or globally. For instance, slow-down-crosstalk
testing [30] requires that a number of aggressor lines switch in the opposite
direction in which the victim line switches, such as to increase the fault e�ect.

�e ECMS@-based SAT-ATPG framework was submitted to a hard test by employ-
ing it to generate test sequences for power droop testing [245, 177]. Triggered by two
di�erent mechanisms over a large number of clock cycles, power droop is a signal
integrity issue that leads to localised delay e�ects. ATPG for power droop consti-
tutes an extremely hard variation of sequential test generation, given that a large
number of times frames need to be modelled and that three di�erent optimisation
objectives need to be satis�ed simultaneously.

Finally, large parts of Tiguan’s implementation were optimised and documented
such as to provide a C++ library that allowed other researchers to use Tiguan as a
SAT-ATPG back-end for various applications.

Organisation of this thesis

Chapters 2 and 3 provide the reader with an introduction to all basic concepts
behind the work covered in the thesis. �e contents constitute pre-existing know-
ledge originated in the work of other authors, and references to the original works
have been included where appropriate. Chapter 2 concentrates on the basic prin-
ciples of testing and, in particular, of test pattern generation. Chapter 3 makes a
formal introduction of the SAT problem, and discusses the basic algorithms for the
solution of this problem. Special attention is given to techniques used by modern
SAT solving tools, as the knowledge of these techniques is fundamental to analyse
the experimental results presented in later chapters. �en, this chapter focuses on
the application of SAT solving to test pattern generation. It introduces the basic
principle and reviews previously existing works on SAT-based ATPG.
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Chapters 4–6 introduce the SAT-based test pattern generator Tiguan and discuss
the techniques that were developed in order to increase Tiguan’s run-time e�ciency
and compaction ability. Chapter 4 begins with a summary of Tiguan’s development
history. A�er the formal introduction of the CMS@FM, the chapter resumes with
an accurate description of Tiguan’s main algorithms, which operate internally on
the CMS@ model. Chapter 5 focuses on techniques to improve Tiguan’s run-time
e�ciency. �e �rst part of the chapter gives insight into the algorithms used by the
SAT engine MiraXT, and discusses the analysis that was performed in order to eval-
uate Tiguan’s performance on multi-core systems. �e second part of the chapter
introduces the SAT engine antom and explains the most important di�erences
between antom and MiraXT from the point of view of a SAT-ATPG application.
�en, a fault clustering technique that utilises antom’s incremental SAT solving
is presented and evaluated. Finally, Chapter 6 discusses the dynamic compaction
method that was developed for dedicated incorporation into Tiguan. �e chapter
also analyses the impact that fault list pre-sorting and a con�ict limit have on the
performance of the dynamic compaction algorithm.
Chapters 7 and 8 address the application of SAT-based ATPG to complex fault
models. Chapter 7 gives a thorough motivation for the need of complex fault models,
discusses applications of the CMS@FM, and introduces the ECMS@FM, which
enables the speci�cation of optimisation goals. �e implementation of ECMS@-
based SAT-ATPG is explained in detail, and two important applications of the
new ECMS@FM are discussed and evaluated. Chapter 8 discusses the previously
mentioned application of ECMS@-ATPG to power droop testing, and focuses on
strategies to map the original problem to ECMS@-ATPG such as to achieve the best
combination of test quality and run-time e�ciency.
To conclude the thesis, Chapter 9 discusses further application possibilities for SAT-
based ATPG. A C++ library was developed in order to allow client applications to
incorporate Tiguan’s functionality in the form of a SAT-ATPG back-end engine.
�e chapter discusses the principles of the interface design, which attempts to
achieve maximum �exibility for the client application and e�cient communication
between the client application and the SAT-ATPG back-end. �en, short summaries
of selected works by other authors are presented. �ese works employ Tiguan as
ATPG engine and have relevance in the research areas of process variations and
fault tolerance.
Finally, Chapter 10 closes the thesis with a brief summary of the presented topics
and a discussion of the role that SAT-based ATPG is expected to play in industrial
applications.
Appendix A provides details on the used benchmark circuits.
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Own publications

A complete list of all publications by the author of this thesis is provided on pages
223–226. References in the form of a capital letter followed by a number, both
enclosed in brackets (for example, [J2]), refer to this publication list.
Note that parts of the work covered in Chapters 4–9 have been previously published
in conference or workshop proceedings, as well as in scienti�c journals. A footnote
on the �rst page of each of these chapters informs the reader which of the author’s
publications share contents with that speci�c chapter.
�e author’s main works, which served as basis for this doctoral thesis, are the
following:

▸ [C16]: �is is the seminal work in which the SAT-based test pattern generator
Tiguan, the CMS@ fault model and various applications of this fault model
were introduced. �ese topics are covered in Chapter 4 and in Section 7.2.

▸ [J2]: �is is the journal version of [C16].
▸ [W7]: In this work, the performance of Tiguan based on the utilisation of

thread-parallel SAT solving on multi-core architectures was evaluated. �is
topic is covered in Section 5.1.

▸ [C13]: �is work presented a dynamic compaction method for SAT-based
ATPG. �is topic is covered in Chapter 6.

▸ [C7]: In this work, newest SAT solving techniques were incorporated into
Tiguan. �is allowed the development of a fault clustering technique for
the enhancement of Tiguan’s run-time performance (this topic is covered
in Section 5.2); and the introduction of ECMS@-based SAT-ATPG for the
solution of complex test generation problems with optimisation constraints
(this topic is covered in Chapter 7).

▸ [C5]: In this work, the capabilities of the new ECMS@-based ATPG frame-
work were explored by means of the application to test generation for power
droop testing. �is topic is covered in Chapter 8.

▸ [C18]: �is work (and its journal version [J3]) was originally performed for
the author’s undergraduate studies (Studienarbeit) and published prior to the
author’s time as a doctoral student. It provided the necessary background
knowledge for the work presented in [C5].

All other publication references (a number enclosed in brackets, e.g. [55]) included
in the text refer to the general bibliography list, to be found from page 227 onwards.

10



2

Introduction to the test of digital

circuits

�is chapter provides a preliminary introduction to the area of research covered in
this thesis. It is not intended to be an exhaustive introduction to the test of digital
circuits, but rather to provide the reader with the background knowledge required
to understand this thesis, and to establish the terminology used to refer to certain
concepts for which di�erent authors might use diverse terms. Further information
on the topics covered in this chapter can be found in well-known text books, for
example in [12, 34, 129].

2.1 The Boolean algebra

�e Boolean algebra is an algebra over the set B ∶= {0, 1}. In this algebra, one unary
and two binary operations are de�ned:

▸ the negation ¬, where ¬0 = 1 and ¬1 = 0,
▸ the conjunction ⋅, where 0 ⋅ 0 = 0, 0 ⋅ 1 = 0, 1 ⋅ 0 = 0 and 1 ⋅ 1 = 1,
▸ and the disjunction +, where 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1 and 1 + 1 = 1.

Along with these operations, the Boolean algebra is de�ned by the following axioms:

▸ commutativity — a + b = b + a and a ⋅ b = b ⋅ a for all a, b ∈ B,
▸ associativity — a+(b+c) = (a+b)+c and a ⋅ (b ⋅c) = (a ⋅b) ⋅c for all a, b, c ∈ B,
▸ and distributivity — a+(b ⋅ c) = (a+b) ⋅ (a+ c) and a ⋅ (b+ c) = (a ⋅b)+(a ⋅ c)

for all a, b, c ∈ B.
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2.2. CIRCUITS

By combination of the three basic operations, more operations can be de�ned. �e
most relevant combination is the exclusive disjunction⊕, a binary operation de�ned
by a⊕b = (a ⋅¬b)+(b ⋅¬a) for all a, b ∈ B. Note that commutativity and associativity
both hold for the exclusive disjunction. Also, 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1.
In addition, several important properties of the Boolean algebra can be derived
from the main axioms. Some examples follow:

▸ absorption — a ⋅ (a + b) = a and a + (a ⋅ b) = a for all a, b ∈ B,
▸ complement rule — a + ¬a = 1 and a ⋅ ¬a = 0 for all a ∈ B,
▸ and De Morgan’s law — ¬(a + b) = ¬a ⋅ ¬b and ¬(a ⋅ b) = ¬a + ¬b for all

a, b ∈ B.

2.2 Circuits

2.2.1 Modelling levels

At any level of abstraction, a digital circuit can be seen as a device that processes
input data and produces output data, where both the input and output data are
represented by vectors over B. �e circuit’s function is de�ned by the lengths of
the input and output vectors and by the mapping from the input to the output
domain. Hence, the simplest representation of a circuit is the truth table. For
example, Figure 1 shows the truth table of a half-adder, a circuit that takes two
arguments a and b and produces two outputs c and d such that the sequence cd is
the binary representation of a + b.

inputs outputs

a b c d

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Figure 1. Truth table of a half-adder

However, truth tables are of little practical use for large circuits and for tasks that
depend not only on the circuit’s function but also on its implementation. Hence,
numerous other ways of modelling a circuit are considered in the literature and
in practice. In order to organise the di�erent types of models, di�erent levels of

12



2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

abstraction (also called modelling levels) are distinguished, but di�erent authors
may de�ne di�erent numbers of modelling levels depending on what they want to
illustrate [179]. For instance, Hayes de�nes in [111] three design levels: processor
level, register level and gate level.

In [253], where the focus lies on design veri�cation and test, a hierarchy composed
of four design levels is given. �e design process is viewed as a series of trans-
formations that map design descriptions from higher levels to lower levels. �e
highest modelling level is the behavioural or architecture level which focuses on the
functionality of the modelled circuit or system. Given a design speci�cation, the
behaviour of the system is speci�ed using algorithmic notation, for example in the
form of a hardware description language. �e next lower level is the register-transfer
level, which contains more structural information in terms of the implemented
logic functions, data and control paths. �e implementation of logic functions is
modelled in the next lower level, the logical or gate level. In this level, a circuit is
composed of a number of logic gates, where each logic gate is a component with a
speci�c functionality that is de�ned by a Boolean function. For instance, an and
gate is a component with two inputs a and b and an output c, where c = a ⋅ b. Gates
are connected to each other by signal lines. By traversing the circuit in topological
order, it is possible to construct a Boolean function that represents the whole cir-
cuit. Finally, the lowest level is the physical or transistor level. In the same way in
which circuits can be modelled by gates and connections between gates, gates are
internally modelled by transistors and by connections between di�erent transistors
or between transistors and power sources (VDD) or ground. �e transistor level can
be seen as a re�nement of the gate level, and sometimes a mixture of both levels can
be used for testing. For instance, faults can be modelled at transistor level in order
to re�ect defects that are more realistic from a physical point of view, but the rest
of the circuit may be modelled at gate level such as to avoid unnecessary overhead,
for example during simulation tasks.

Some authors also consider a lower level, the layout level [129]. In this level, the cir-
cuit description encompasses line widths, inter-line and inter-component distances,
as well as device geometries.

�roughout this thesis, gate-level modelling is assumed. �e advantage of this level
is that it can be regarded as technology-independent. In most process technologies,
synthesis tools have readily available libraries containing mappings for the basic
logic gates. Hence, it is relatively easy to transform a gate-level description into a
(technology-dependent) transistor-level description.
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2.2.2 Gate-level net lists

A digital combinational circuit C is a device with n inputs and m outputs, whose
behaviour can be uniquely speci�ed by a Boolean function ϕC ∶ Bn → Bm.

At the gate level, a combinational circuit is represented by a gate-level net list, a
directed acyclic graph (N, L), where N is the set of nodes and L is the set of edges.
�e set of nodes is composed of the following sub-sets:

▸ G, the set of logic gates,

▸ F, the set of fan-out nodes,

▸ I, the set of inputs, and

▸ O, the set of outputs.

�e edges represent connections between nodes. �ey are called signal lines, wires
or nets. �e number of ingoing and outgoing edges of each node is determined by
the node’s type. �e node sets I and O represent the inputs and outputs of the circuit,
respectively. Hence, the former have no ingoing edges and exactly one outgoing
edge, while the latter have exactly one ingoing edge and no outgoing edges.

Logic gates have exactly one output (outgoing edge) and one or more inputs (ingoing
edges). In this thesis, the output of a gate together with the set of all its inputs are
referred to as that gate’s ports.

Each logic gate g ∈ G implements a Boolean function ϕg ∶ Bk → B, where k is the
gate’s number of inputs. Which function is implemented by g is speci�ed by g’s type.
For instance, a two-input and gate implements the logic conjunction, i.e. for every
pair of inputs a, b ∈ B, the output produced by the gate equals a ⋅ b.

Figure 2 lists all basic gate types considered in this thesis, along with the Boolean
function they implement and their symbol in graphical representations of circuits.
Although these gates su�ce to construct circuits that implement any Boolean func-
tion, versions of and, nand, or and nor gates with more than two inputs are also
considered by many authors. However, such gates do not require special attention
in the description of algorithms, because their functionality can be expressed in
generalised form independently of the number of gate inputs. �us, the functional-
ity of bu�ers and inverters can be expressed based on one single parameter called
inversion. Given an input v, the gate produces the output ¬v if it is inverting (inv),
or the output v if it is not inverting (buf).

Analogously, the functionality of an and, nand, or or nor gate g can be described
using only two parameters, the gate’s inversion and the gate’s controlling value cv(g).
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buf (bu�er)
a↦ a

inv (inverter)
a↦ ¬a

and
(a, b) ↦ a ⋅ b

or
(a, b) ↦ a + b

xor
(a, b) ↦ a ⊕ b

nand
(a, b) ↦ ¬(a ⋅ b)

nor
(a, b) ↦ ¬(a + b)

xnor
(a, b) ↦ ¬(a ⊕ b)

Figure 2. Gate types

�e Boolean inverse of cv(g) is called g’s non-controlling value (ncv(g)). If at least
one input of g has the logic value cv(g), then g produces the output value cv(g)
independently of the logic value on all other inputs (or the output ncv(g) if g is
inverting). g can only produce the output ncv(g) (cv(g) if g is inverting) if all its
inputs have the logic value ncv(g). Table 1 lists the inversion, and the controlling
and non-controlling values of these four types of gates.

Table 1

Gate parameters

gate type inverting controlling value non-controlling value

and no 0 1
nand yes 0 1
or no 1 0
nor yes 1 0

15
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�e functionality of xor and xnor gates cannot be expressed in this form. Hence,
while gate-level-net-list-based algorithms can process all other gate types using a
generic procedure that works only in function of the gate’s inversion and controlling
value, xor and xnor gates need to be processed separately.

Since a⊕ b = (a ⋅ ¬b) + (b ⋅ ¬a) and a⊕ b = ¬(¬(a ⋅ ¬(a ⋅ b)) ⋅ ¬(b ⋅ ¬(a ⋅ b))) for
all a, b ∈ B, xor and xnor gates can also be replaced by equivalent sub-circuits
composed of two inverters, two and gates and an or gate, or by equivalent sub-
circuits composed of four nand gates, without changing the logic functionality of
the circuit. However, this replacement can alter the timing of the circuit and should
thus be used only for algorithms that operate only on the logic functionality of the
circuit.

Going back to the de�nition of the graph (N, L), the set of fan-out nodes F is
composed of nodes with one ingoing edge and at least two outgoing edges. �e
ingoing edge and all outgoing edges of a fan-out node are regarded as one signal
that is branched to distribute the output of one gate to multiple other gates. �e
ingoing edge is called the fan-out’s stem, while the outgoing edges are called the
fan-out’s branches.

Figure 3 shows an example circuit and illustrates the naming conventions observed
in this work. Inputs and gates are denoted by lower case letters. For simplicity, lines
are given their own identi�ers only when strictly necessary. When that is not the
case, they are referred to using the identi�er of the gate at which they originate.
When necessary, the branches of a fan-out node are denoted by the stem’s identi�er,
but with an index. Circuit outputs are denoted by the identi�er of their ingoing edge.
�e shown circuit represents the functionality of a half-adder (see also Figure 1).
Gate c implements the Boolean function (a, b) ↦ a ⋅ b and gate d implements the
Boolean function (a, b) ↦ a ⊕ b. Hence, the whole circuit implements the Boolean
function B2 → B2, (a, b) ↦ (a ⋅ b, a ⊕ b).

Let a line connect the output of a gate g1 to one of the inputs of a gate g2. �en, g2 is
called a successor gate of g1, and g1 is called a predecessor gate of g2.

If the output of g1 is connected to a fan-out node, then all gates connected to the
fan-out branches of that node are g1’s successors, and g1 is a predecessor of all those
gates.

�e sequence of gates g1, . . . , gk is called a path from g1 to gk if gi+1 is a successor gate
of gi for all i = 2, . . . , k. A path is said to be complete if it starts at a circuit input and
ends at a circuit output. A path that is not complete is called partial. For a gate gi,
the input of gi that is connected to gi−1 is called the on-path input of gi, as that line
belongs to the path. All other inputs of gi are called o�-path inputs.
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inputs

outputs

fan-out node

a b

c d

a1

a2b1

b2

Figure 3. Gate-level half-adder

output cone OC(g)input cone IC(g)

influence region IR(g)

g

Figure 4. Cones of influence

17



2.2. CIRCUITS

�e output cone of a gate g (oc(g)) is de�ned as the set of all gates that belong to a
path between g and any circuit output, while the input cone of g (ic(g)) is de�ned as
the set of all gates that belong to a path between any circuit input and g. Let g1, . . . , gn
be all circuit outputs contained in oc(g). �en, the set ir(g) ∶= ic(g1)⋃⋯⋃ ic(gn)
is called g’s in�uence region (Figure 4).
�e number of fan-out nodes and the average number of fan-out branches per node
are a factor that strongly in�uences the run-time e�ciency of many algorithms
that work on gate-level net lists. Hence, some algorithms partition the circuit into
fan-out-free regions (FFR), i.e. sub-circuits without fan-out nodes, and then process
each FFR separately. Each FFR has the form of a tree, where its root gate is connected
either to a circuit output or to a fan-out node. �e partition of a circuit into FFRs is
unique.

a       
   

      b

c

Figure 5. A two-input multiplexer

To close this section, Figure 5 shows the symbol used in this thesis to represent
multiplexers. A two-input multiplexer is a circuit that implements the Boolean
function (a, b, c) ↦ (c ⋅ a) + (¬c ⋅ b), i.e. the control input c selects which of the two
inputs a and b is passed to the output.

2.2.3 Sequential circuits

A digital sequential circuit is a circuit that contains cycles due to the presence of
memory elements, mostly �ip-�ops. Flip-�ops are clocked, i.e. they are connected
to a device that generates a clock signal. �e clock signal oscillates between logic 1
and logic 0, normally with a 50% duty cycle, and is used to synchronise all �ip-�ops.
�ese are designed such that they can store a new value only while the clock is high
(or only when the clock is low, depending on the implementation). A clock cycle is
composed of one falling (a 1→0 transition) and one rising edge (a 0→1 transition)
of the clock and its length is called clock period. �is length is denoted by Tclk. In
normal operation mode, new input vectors are applied to the sequential circuit once
per clock cycle.
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a

b

clock

flip-flop combinational core

c
d

e

(a) sequential circuit

a

b

c

d

e

feedback when modelling several time frames

secondary input secondary output

(b) simpli�ed representation

Figure 6. Example sequential circuit

In contrast to combinational circuits, the functionality of sequential circuits cannot
be simply speci�ed by a Boolean function. Instead, a sequential circuit C with n
inputs, m outputs and k �ip-�ops can be regarded as an implementation of a �nite-
state machine [171] with 2k or less states. �e states are encoded by the data stored
in the �ip-�ops, while the combinational core of the circuit computes the output
function ϕC ∶ Bn ×Bk → Bm and the transition function τC ∶ Bn ×Bk → Bk, which
depend both on the inputs and on the present state. �e ϕC-values correspond to
the circuit’s outputs, while the τC-values are stored back into the �ip-�ops.
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time frame  time frame 

combi-
national

core

combi-
national

core

Figure 7. Sequential expansion

An example sequential circuit is shown in Figure 6 (a). In this example, n = 2, m = 1
and k = 1. �e corresponding state machine has two states, 0 and 1, encoded by c.
ϕC maps (a, b, c) to b + c and τC maps (a, b, c) to (a ⋅ c).

When fault simulation or test pattern generation are applied to sequential circuits,
it is o�en convenient to ignore the �ip-�ops and to only consider the combinational
core (Figure 6 (b)). �e outputs of �ip-�ops (c in the example) are then treated as
additional inputs of the combinational core. �ese are called pseudo-primary or
secondary inputs (SI). �e inputs of memory elements (d in the example) are treated
as additional outputs of the combinational core. �ese are called pseudo-primary
or secondary outputs (SO). Regular inputs and outputs (a, b and e) are then called
primary inputs (PI) and primary outputs (PO), respectively. Instead of the output
function ϕC and the transition function τC, only one global Boolean function is
considered: ϕseq

C ∶ Bn+k → Bm+k, which is computed by the combinational core. In
the example, ϕseq

C maps (a, b, c) to (b + c, a ⋅ c).

�is representation also allows to model the circuit’s function over several clock
cycles. In this case, several copies of the circuit’s simpli�ed representation are
connected in series, where the correspondence between secondary outputs and
secondary inputs that are connected to the same �ip-�op in the original circuit has
to be observed (Figure 7). In this context, a copy of the circuit at a certain point in
time is called a time frame.
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2.3 Fault models

2.3.1 Defects, faults and errors

In engineering, models bridge the gap between physical reality and mathematical
abstraction. �is is especially true in the test of digital circuits since the range of
possible physical defects is in�nite and non-discrete. For this reason, the modelling
of faulty behaviour is one of the most important issues that need to be considered
for the development and application of test algorithms.
Bushnell and Agrawal distinguish between three di�erent terms: defects, faults
and errors [34]. A defect is the unintended di�erence between the implemented
hardware and its intended design. However, in this case, the term only refers to
defects that result from the imperfection of the manufacturing process, not to design
defects. Some typical defects in VLSI chips are [122]:

▸ process defects — missing or broken contacts, parasitic transistors, shorts,
oxide breakdown, etc.,

▸ material defects — cracks, crystal imperfections, surface impurities, etc.,
▸ age defects — dielectric breakdown, electromigration, etc.,
▸ package defects — contact degradation, seal leaks, etc.

A fault is a formal representation of the defect, while the wrong response of a
defective system is an error. For example, assume that one of the inputs of an and
gate is shorted to ground. �e unintended short is the defect. It can be represented
by a stuck-at-0 fault, i.e. a formal model that assumes that the shorted line has always
the logic value 0 independently of the value produced by the gate driving the line.
An error occurs if the value 1 is applied to both inputs of the gate. �en, the gate
produces the erroneous output value 0 instead of the expected 1.
A fault model is a set of assumptions that specify the amount of faults that need to
be considered and the e�ect that their occurrence induces in a circuit. Not all fault
models try to re�ect physical reality with accuracy. In fact, the main aim of fault
models is to reduce the complexity of the problem. For instance, particle-induced
defects cannot be listed exhaustively, as there are in�nitely-many possible particle
shapes and the exact location of the particle is a continuous parameter [179]. For
this reason, a model that attempts to represent every possible particle-induced defect
is not feasible. Instead, fault models de�ne a �nite or at least countable number of
faults, where the behaviour of each fault corresponds roughly to the behaviour of a
set or a class of realistic defects.
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�e following list names some of the possible e�ects of manufacturing defects
[161, 109, 179]:

▸ �e Boolean function ϕC computed by C can be altered.
▸ �e function computed by the circuit may become non-Boolean, i.e. some

output of the circuit produces a voltage that cannot be clearly interpreted as
logic 0 or logic 1.

▸ Some lines in the circuit can show a memory behaviour, thus making a com-
binational circuit sequential.

▸ �e timing of the circuit can be a�ected.

2.3.2 The stuck-at fault model

�e most-used fault model is the (single) stuck-at fault model (SAFM) [72, 90]. �is
model assumes that a circuit’s faulty behaviour stems from exactly one line being
either stuck-at 0 (s-a-0) or stuck-at 1 (s-a-1), i.e. the line permanently has the logic
value 0 or 1, respectively, independently of the value produced by its driving gate or
the value on its source fan-out stem. Hence, the number of possible faults is linear
in the number of lines. Nevertheless, empirical experience has showed that a test
pattern set generated for the SAFM can achieve a high coverage of permanent de-
fects. A related fault model is the multiple stuck-at fault model, which allows several
lines to be simultaneously stuck at a certain value. However, test sets generated for
this fault model rarely achieve a considerably better coverage, while test pattern
generation is more complicated due to the larger number of faults.

2.3.3 Delay fault modelling

As explained at the end of Section 2.3.1, some defects do not modify the logical
behaviour of the circuit. Instead, they a�ect the timing of the circuit. Such defects
cannot be covered using the SAFM or other static fault models. In this section, the
most important delay fault models are introduced. �ese are the gate delay fault
model (GDFM) [37, 188], the path delay fault model (PDFM) [231, 155] and the
segment delay fault model (SDFM) [113].
�e GDFM assumes that a single gate is a�ected, and that the gate propagates either
rising (0→1) or falling (1→0) transitions too slowly. �e advantage of this model is
the very small number of faults it de�nes. However, the assumption that only one
site is a�ected while the rest of the circuit remains una�ected may not always be
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realistic, as delay faults o�en arise from variations in the manufacturing process,
and such variations tend to a�ect the whole circuit.

Under the PDFM, a complete path is assumed to be faulty. Here, a path is de�ned
as free of timing defects if, for every pair of test patterns that induces a falling (or
a rising) transition at the beginning of the path, the correct logic value stabilises
at the end of the path in less time than the duration of a clock cycle. �e slack of a
path is the di�erence between the longest possible delay of the fault-free path and
the clock period.

�e PDFM re�ects reality better than the GDFM, as it models the accumulated e�ect
of delay variations along a path. However, in the worst case, the number of paths
in a circuit is exponential in the number of fan-out nodes. Hence, the generation
of test patterns for every path is impractical. �e solution to this problem consists
in identifying a certain number of most critical paths, i.e. paths with a small slack,
and generating test patterns only for those paths [190, 208, 209, 130, 211]. As an
alternative solution, the SDFM has been proposed, according to which only partial
paths are considered. A comparative study on delay fault models was presented for
example in [160].

2.4 Test application and fault coverage

2.4.1 Definitions

Let C be a combinational circuit with n inputs and m outputs, and let ϕC be the
Boolean function implemented by C. Let f be a fault according to a fault model
that represents defects that a�ect the Boolean function computed by C. �en, the
faulty-case Boolean function is denominated by ϕf

C.

Let p ∈ Bn be an input vector2 (input vectors are also called input patterns, test pat-
terns or tests). p is said to detect f , if ϕC(p) /= ϕf

C(p). �at means, if a manufactured
circuit instance contains a defect that behaves like fault f , the defect’s presence can
be detected by applying the test pattern p to the circuit and observing whether the
circuit’s response is correct. Note, however, that this reasoning cannot be reversed.
A wrong response to the application of p does not automatically imply the presence

2For better readability, a test pattern p ∈ Bn will be written as a sequence b1⋯bn rather than as a
vector (b1, . . . , bn). Each component bi is called a bit.
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of f . It could be any fault that behaves in the same way as f under the application of
p, but that may behave di�erently under the application of other input patterns.
�is de�nition can be extended to a set of faults F ∶= {f1, . . . , frF} (usually called a
fault list) and a set of test patterns P ∶= {p1, . . . , prP} ⊆ Bn (called a test set). A fault
fi ∈ F is detected by P if P contains at least one test pattern that detects fi.
Let f be a fault, and let Pexh be the exhaustive test set, i.e. the set that comprises all
2n test patterns. If Pexh detects f , f is called a detectable fault. Faults that are not
detectable (i.e. no test pattern that detects them exists) are called undetectable or
redundant faults.
Two faults f1 and f2 are called equivalent if and only if ϕf1

C = ϕf2
C . �at means, if f1

and f2 are equivalent, then all patterns that detect f1 also detect f2 and vice versa.
�e fault coverage is a measure to grade the quality of a test set. In its most general
form, it is de�ned by

fault coverage of a test set P = number of faults P detects
number of faults de�ned by fault model

⋅ 100%.

�is section closes with the de�nition of two important terms that are o�en used
in this thesis and that shall not be confused with each other — fault activation
and fault excitation. A fault is said to be excited by a test pattern p if p satis�es the
conditions that allow a fault e�ect to become visible at the fault site. Fault excitation
is a necessary condition for fault detection. For instance, a stuck-at-1 fault is excited
if p induces the value 0 on the fault site. In contrast, if p induces the value 1 on
the fault site, the presence of the fault cannot be detected as the induced fault-free
behaviour does not di�er from the faulty behaviour.
�e term “fault activation” is used in the context of conditional fault models which
de�ne that a number of victim lines display erroneous behaviour only if a number of
aggressor lines satisfy certain conditions. One such model is the CMS@ fault model
which will be introduced in detail in Section 4.2. A fault is said to be activated by a
test pattern p if p satis�es the conditions on the aggressor lines which are necessary
to incite the victim lines to faulty behaviour. Note that a test pattern can activate
and yet not excite a fault.
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2.4.2 Test application

Figure 8 illustrates the basic test application scheme. �e automatic test equip-
ment (ATE) has a memory module in which the test set (obtained by test-pattern-
generation algorithms, see Section 2.7) and the expected fault-free responses (ob-
tained by simulation, see Section 2.6) are stored prior to the test start. �en, the
ATE applies every test pattern to each actual manufactured circuit (circuit under test
— CUT) and compares the expected fault-free response to the response produced
by the CUT. If a di�erence is observed, the CUT is identi�ed as faulty.
In addition to the test application, also diagnosis can be applied to the CUT.
Diagnosis is the process of locating the physical defect that caused the observed
erroneous behaviour. In a printed circuit board, for instance, chips identi�ed as
faulty can be replaced and open lines or shorts between pins can be repaired via
resoldering. In contrast, digital VLSI chips are usually unrepairable, but diagnosis
can be performed on a sample of faulty chips in order to determine the root causes
behind common failures or performance problems. Knowledge about the causes
can be used to modify one or more steps of the design or fabrication process such
as to increase the production yield or the performance of the fabricated chips. �e
logic diagnosis of failed chips consists in analysing the faulty responses. One type
of analysis methods uses fault dictionaries, i.e. a mapping between faulty responses
and the sets of faults that can cause each of the responses. For more information,
see e.g. [129].

CUT

expected
responses

test
patterns

memory

ATE

test pattern application

responses back to ATE
for comparison

Figure 8. Test application
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2.4.3 Two-pattern testing

Testing for delay faults requires two-pattern testing, i.e. the application of two suc-
cessive test patterns (a test pair) to the CUT. Given a test pair p, the �rst pattern
(initialisation pattern) is denoted by p(1) and the second pattern (propagation pat-
tern) is denoted by p(2). p(1) brings the CUT into a known and stable state. p(2)
excites the fault and propagates the fault e�ect to a circuit output by inducing a
rising or falling transition at one or more inputs of the CUT. Assuming that p(2) is
applied at time t, the circuit is defect-free if its internal state (�ip-�op contents) and
its outputs comply with the speci�cation at time t + Tclk.

For example, a test pair p must meet the following conditions in order to detect a
slow-to-rise GDF at a gate g:

▸ p(1) must induce the logic value 0 on g’s output.

▸ p(2) must induce the logic value 1 on g’s output, thus launching a rising
transition at the fault site.

▸ Both p(1) and p(2) must sensitise a path from the fault site to a circuit output,
thus making the fault e�ect observable.

A path is said to be sensitised by a test pair p if the application of p induces a
rising or a falling transition on the output of all gates that belong to the path. In
order for a path to be sensitised by p, p must induce speci�c values on the o�-path
inputs of each multiple-input gate that belongs to the path. Which values are to be
induced is determined by the used sensitisation condition and in�uences the quality
of the test pair p with respect to the probability that it detects the fault if another
delay defect is present simultaneously. Several authors have de�ned alternative
sensitisation conditions, which has resulted in a hierarchy that includes hazard-free
robust, robust, strong non-robust, weak non-robust, and functional sensitisation [129,
196, 207]. Hazard-free robust sensitisation requires that all o�-path inputs of each
gate g that belongs to the path have stable ncv(g)-values during the application
of p(1) and p(2). �is sensitisation condition results in a test of highest quality, as
the test is guaranteed to detect the fault independently of other delay defects that
may occur simultaneously. However, guaranteeing signal stability on all o�-path
inputs imposes speci�c conditions on a large amount of signals, thus reducing the
probability that a test pair with such a property exists. �e next-weaker sensitisation
condition is robust sensitisation which requires that p(1) and p(2) both induce the
value ncv(g) on every o�-path input of each gate g, but which allows instabilities in
form of short temporal signal changes on these lines. �e next type of sensitisation,
strong non-robust sensitisation, is even weaker, as it only requires that each o�-path
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input eventually stabilises to ncv(g) in order to ensure the propagation of the fault
e�ect under the application of p(2), but no conditions are imposed on p(1) regarding
the values induced on o�-path inputs. Hence, such a test pair is easier to �nd, but
the test can be invalidated if other delay defects are present simultaneously. Finally,
weak non-robust and functional sensitisation even relax the conditions imposed
on on-path lines, but these types of sensitisation are not further considered in this
thesis.
�e practical application of two-pattern tests to combinational circuits represents no
additional challenge as compared to single-pattern tests. In contrast, the application
of two-pattern tests to sequential circuits is considerably more di�cult. In the most
general case, the secondary inputs and secondary outputs of a sequential circuit
are not externally accessible, which may prevent secondary inputs from adopting
necessary values, i.e. values that are required to sensitise the path or to induce
the proper transition at the fault site. In addition, if the fault e�ect can only be
propagated to a secondary output, the fault e�ect becomes unobservable.
�e standard approach to allow the application of two-pattern testing to sequential
circuits is scan design3. Figure 9 illustrates the principle of scan design. A sequen-
tial circuit is given two additional primary inputs scanin and scanenable, and one
additional primary output scanout. Additional multiplexers are introduced in order
to control the way in which the �ip-�ops are utilised. When scanenable is inactive
(i.e. scanenable = 0), the multiplexers are switched such that the combinational core’s
secondary outputs are connected to the �ip-�op inputs and the �ip-�op outputs
to the core’s secondary inputs, which makes the circuit operate in normal mode.
When scanenable is activated, the �ip-�ops form a shi� register called the scan
chain. �en, arbitrary values can be shi�ed into the �ip-�ops via scanin, while their
content can be shi�ed out over scanout.
When all �ip-�ops are part of the scan chain (full scan), applying arbitrary initial-
isation patterns is possible. However, since the two patterns of a test pair have to be
applied in consecutive clock cycles, it is not possible to apply arbitrary propagation
patterns. Several solutions have been proposed in order to address this issue. �e
most important solutions are enhanced scan [63], skewed-load testing (also called
launch-on-shi�) [214] and broad-side testing (also called launch-on-capture) [215].
Enhanced scan uses special �ip-�ops that allow to shi� in arbitrary values for the
propagation pattern. In this case, test pattern generation can be easily done by
treating the secondary inputs and outputs like primary ones. But the hardware

3Design for test (DFT) stands for a number of techniques that modify the circuit’s design in order
to facilitate the test of the manufactured circuit. Scan design is the most important DFT technique.
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Figure 9. Scan design

overhead of this technique is very high. In skewed-load testing, the propagation
pattern is obtained by shi�ing the initialisation pattern by one position; and in
broad-side testing, the �ip-�op contents a�er the application of the initialisation
pattern serve as the propagation pattern. In these two cases, test generation has to
consider the constraints that relate the propagation pattern to either the initialisation
pattern or to the circuit’s response. �is usually makes the test generation problem
instances harder to solve.
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2.5 Resistive fault models

Defects that a�ect the interconnections of components are usually modelled as
opens and shorts. While opens correspond to broken lines, shorts are formed by
connecting lines not intended to be connected. �e logical fault that represents a
short between internal lines of the circuit is called a bridging fault. �e two most
simple types of bridging fault models are and bridges and or bridges. �e former
assumes that if two lines l1 and l2 driven by logical values v1 and v2, respectively, are
bridged, then both lines adopt the value v1 ⋅ v2, i.e. the line with a 0-value dominates
the other line; the latter model assumes that both lines adopt the value v1+v2, i.e. the
line with a 1-value dominates the other line [12].
However, these two bridging models are too simple to re�ect the behaviour of
realistic short defects. Hence, more advanced fault models have been proposed [15,
23, 85, 84, 167, 195], but these modelling approaches disregard the fact that a
substantial fraction of short defects are resistive [200] and assume a resistance of
0Ω. �e reason for this simpli�cation is that the resistance of a bridge is a continuous
parameter that is not known in advance and cannot be predicted as it depends on
highly variable characteristics of the particle causing the short, like its size, shape,
conductivity and exact location. Furthermore, the actual resistance of a resistive
bridge in�uences the behaviour of the defect. For instance, a defect that can be
detected by a given test pattern may remain undetected by the same pattern in a
di�erent circuit instance in which the resistance is di�erent. Hence, in order to
perform realistic test generation and fault simulation for resistive-bridging faults
(RBF), the concepts of detectability, undetectability and fault coverage need to be
adapted when non-zero resistances are modelled [179].
A solution to this problem was presented by Renovell et al. [198, 199, 197], who
introduced the concept of analogue detectability intervals (ADI). For each RBF f
and each test pattern p, an ADI [R1, R2] is de�ned such that p is guaranteed to
detect f if and only if R1 ≤ R ≤ R2, where R is the actual resistance of the bridge.
Hence, the detectability of f is de�ned individually for each test pattern that detects
f for a given resistance interval, and the overall detection probability of f can be
computed taking into account the probability distribution for the resistance R and
f ’s detectability for each of its ADIs.
�e analysis that is performed in order to determine a given RBF’s ADIs is explained
here by means of an example. Figure 10 (a) shows an example RBF that bridges two
nodes a and b, which are the output of the nand gate g and the output of the nor
gate h, respectively. �e fault is excited by imposing opposite logic values on a and
b, for instance by applying the value 0 to both inputs of gate g, and the value 1 to
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Figure 10. Analogue detectability intervals of resistive bridging faults

both inputs of gate h. In absence of the bridge, these input values lead to logic 1 on
a and logic 0 on b.
In presence of the bridge, the voltages Va and Vb measured on nodes a and b,
respectively, depend on the bridge’s resistance R. For R = 0Ω, there is some inter-
mediate identical voltage on both lines. For R = ∞, Va equals VDD and Vb equals
0V, as if the bridge were not present. �e solid curves in Figure 10 (b) depict a
possible distribution of Va and Vb. �e abscissa corresponds to di�erent values of
R, while the ordinate represents the voltages Va and Vb that are on nodes a and b
for di�erent values of R. �e curves for Va and Vb diverge for growing values of R,
and Va approaches VDD while Vb approaches 0.
In order to carry out test generation and simulation for this fault, it is necessary
to determine how the voltages Va and Vb are interpreted by the inputs of the gates
k and m, which are driven by a and b, respectively. �e model assumes that each
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gate input has a threshold ϑ ∈ [0, VDD], such that voltages between 0V and ϑ are
interpreted as logic 0, while voltages between ϑ and VDD are interpreted as logic
1. �e threshold depends on several factors like the gate type and the capacitive
load on the driven line; thus, usually each input of each gate has an own but exactly
de�ned threshold. In this example, the input of gate k which is driven by gate g has
the threshold ϑk, which is the voltage present on node a if the resistance R of the
bridge equals Rk. Rk is called a critical resistance because gate k interprets the voltage
Va as logic 0 if R < Rk or as logic 1 if R > Rk. Hence, the bridge induces a wrong logic
value on the input of k for R < Rk, while the fault remains undetected by k if the
bridge’s resistance is greater than Rk. At the same time, there is a critical resistance
Rm (for which Vb = ϑm) such that the input of m interprets a wrong logic value only
if R < Rm. �e intuition behind this model is that a bridge with a lower resistance
allows nodes a and b to in�uence each other more strongly than a high-resistance
bridge.

Figure 10 (b) also illustrates the situation in which the pattern 01 is applied to the
inputs of gate g instead of 00. Due to the internal structure of CMOS nand gates,
the output of gate g still produces logic 1, but it will be driven with less strength,
which results in a voltage V ′

a which is consistently lower than Va for all R-values.
In presence of the bridge, also the intermediate voltage that is present on both a
and b for R = 0Ω is lower than in the �rst case, which leads to a voltage V ′

b which
is consistently lower than Vb. �e voltages V ′

a and V ′

b are represented by dashed
curves. As can be seen in the diagram, the application of pattern 01 to gate g’s inputs
results in new critical resistances R′

k and R′

m that di�er from Rk and Rm.

Assume that the bridge’s resistance equals Ract in an actual circuit’s instance, and
that Rk < Ract < Rm (see Figure 10 (b)). �en, the input of k driven by g retains its
fault-free behaviour (i.e. it interprets Va as logic 1) while the input of m driven by
h displays faulty behaviour (i.e. it interprets Vb as logic 1) under the application
of 0011 to g and h. Under the application of 0111, the situation is inverted (then,
R′

m < Ract < R′

k): the input of k becomes fault-a�ected and the input of m remains
fault-free. �is shows that the same physical defect can behave di�erently at the
logic level depending on the applied test pattern.

Di�erent test generation and fault simulation tools based on this model have been
developed at the University of Freiburg [183, 184, 75, 76, 78, 77, 74]. Detailed
information can be also found in [179]. In addition, a similar model was also
used by the author of this thesis in order to compute the realistic fault coverage of
small-delay faults caused by resistive-open defects [51]. In that work, exact timing
simulation is performed in order to determine detectability intervals in the timing
domain, i.e. for each delay fault f and each test pair p, the algorithm determines
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the exact intervals within which the actual delay of the defect must lie in order to
guarantee the detection of f by p. �en, the determined intervals in the timing
domain are mapped to detectability intervals in the resistance domain, and the
fault’s overall detection probability is determined in function of the probability
distribution of the open’s resistance.

2.6 Fault simulation

Logic simulation is the process of determining the logic values implied on each
circuit line by the application of an input pattern to the circuit.

Given a combinational circuit, the zero-delay logic simulation of an input pattern
p ∶= b1⋯bn ∈ Bn assigns each bit bi of the pattern to the corresponding primary
input and computes the new logic value implied on each line, where the lines are
processed in topological order. �ese steps are repeated for every pattern to be
simulated.

A standard technique to reduce the run-time of a simulation algorithm is called
event-driven simulation. Given a set of patterns P ∶= {p1, . . . , prP}, the �rst pattern
is simulated as usual. For i = 2, . . . , rP, values are assigned to each circuit input
according to pi. If an input’s new value di�ers from its old value, all that input’s
successor gates are inserted into a priority queue that orders the contained gates
topologically. �en, it su�ces to recompute the logic values of the signals that are in
the queue. If the value of a line taken from the queue changes, that line’s successors
have to be inserted into the queue as well. �ese steps are repeated until the queue
becomes empty.

Fault simulation is the process of determining the set of faults that are detected by a
given test set. Two important applications of fault simulation are the computation
of fault coverage, and the combination with test pattern generation in order to
avoid the generation of tests for faults that can be detected by already generated test
patterns.

Algorithm 1 describes a simple fault simulation method that is independent of the
used fault model. Here, Cf stands for the faulty version of the circuit when it is
a�ected by fault f , bl stands for the logic value on a line l and bf

l stands for the logic
value on a line l in the faulty circuit.

�e fault-free simulation of a test pattern p (line 4) consists in determining the
logic values that stabilise on every line of the fault-free circuit a�er applying p to
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Algorithm 1

Simple fault simulation

Inputs: circuit C, fault list F, test set P
Output: list of detected faults F′

1: simple-fault-simulation(C, F, P) {

2: F′ ∶= ∅
3: for each test p ∈ P do {

4: simulation(C, p) ▷ fault-free simulation
5: record computed logic value bz for every circuit output z
6: for each fault f ∈ F do {

7: simulation(Cf , p) ▷ faulty-case simulation
8: if bz ≠ bf

z for any circuit output z then { ▷ if p detects f
9: move f from F to F′

10: }

11: }

12: }

13: return F′
14: }

its inputs. �e implementation is fault-model-dependent. In the case of the SAFM,
this simulation would correspond to the logic simulation introduced above.

Faulty-case simulation of a test pattern p (line 7) is the process of determining the
logic values that stabilise on every line of the circuit when it is a�ected by a fault f .
Usually, faulty-circuit simulation is performed using the same algorithm as for the
fault-free simulation, where the fault e�ect is injected at the fault site and propagated
to the circuit outputs in an event-driven manner.

Note that, in line 9, the detected fault f is not only copied to the output fault list,
but also removed from the input fault list. �is is done in order to avoid the unne-
cessary repeated simulation of a fault that has already been classi�ed as detected.
However, this is only valid when the fault model distinguishes solely between either
undetected and fully detected faults. As was explained in Section 2.5, the de�ni-
tion of detectability is more complex for certain fault models like resistive-bridging
faults or resistive opens. For instance, in [51], the detection probability of each
fault is computed depending on the probability distribution for the resistance of the
corresponding resistive-open defect and depending on what resistance intervals
are covered by each test pattern. In such cases, every fault needs to be simulated
for every test, as the detection probability of a fault is in general di�erent for each
pattern that detects it, and the overall detection probability results from the accu-
mulated detection probabilities computed for di�erent tests.
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�ere are several forms of advanced fault simulation aimed at improving the run-
time. �ese include deductive fault simulation [18], concurrent fault simulation [248],
critical-path tracing [14] and parallel-pattern single-fault propagation (PPSFP) [249].
PPSFP is a method that simulates n test patterns concurrently. �e logic values of
each line under n di�erent test patterns are stored in n-bit words. �en, for the eval-
uation of a logic gate, Boolean instructions are applied to the n-bit operands, which
generates output values for all n patterns in parallel. Obviously, the combination of
parallel-pattern and event-driven simulation is not trivial, because events may occur
only for some of the n patterns being simulated in parallel, but implementations of
event-driven PPSFP simulators with a good speed-up exist [73].

2.7 Test pattern generation

Automatic test pattern generation (ATPG) is the process of deciding whether a fault
f is detectable, and of computing a test pattern that detects f if that is the case.
Although the fault detection problem for combinational circuits is NP-complete
[128], the average complexity of most ATPG instances found in practice is only
O(n3) [256, 189]. However, ATPG still remains one of the most challenging test
tasks, especially due to the large number of instances that usually need to be con-
sidered. For example, in mid-sized industrial circuits with half a million gates,
millions of stuck-at faults may need to be targeted depending on the average num-
ber of branches per fan-out node. In order to overcome the problem’s complexity,
test pattern generation is usually combined with fault simulation. A�er the genera-
tion of a certain number of tests, these are simulated in order to determine which
not yet targeted faults are also detected by them. Faults detected by simulation can
be removed from the target fault list, thus reducing the number of test generation
instances to be solved. �is technique is known as fault dropping. Another positive
e�ect of fault dropping is the reduction of pattern count, which is of concern be-
cause the cost of test application depends strongly on the number of test patterns
to be applied. In order to further reduce the number of generated tests without loss
of fault coverage, test compaction techniques are also usually employed.
Typically, test generation processes consist of the following phases:

1. low-cost, fault-independent test generation,
2. fast identi�cation of undetectable faults,
3. high-cost, deterministic, fault-oriented test generation,
4. static test compaction.
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In Phase 1, usually random test patterns are generated and simulated in an iterat-
ive process that stops when adding more random patterns to the test set does not
signi�cantly improve the fault coverage. In Phase 2, undetectable faults are identi-
�ed, e.g. through the analysis of regions between fan-out nodes and reconvergent
gates [173, 172], and removed from the fault list. However, the employed algorithms
are usually not complete because they are meant to be fast and low-cost, while the
problem of identifying undetectable faults is co-NP-complete4. In Phase 3, still
undetected faults are targeted by a deterministic test generation algorithm. In order
to reduce the number of generated patterns, this algorithm may include dynamic
compaction techniques, i.e. techniques that guide the test search such that each
generated test is suitable for the detection of a higher number of faults. Finally, in
Phase 4, static compaction techniques are applied in order to further reduce the size
of the generated test set without loss of fault coverage.

2.7.1 Structural test pattern generation for stuck-at faults

In this section, deterministic ATPG algorithms for stuck-at faults in combinational
circuits are presented. �e focus is put on structural algorithms, as these are the
�rst kind of ATPG algorithms to have arisen, and since they continue to be the base
of ATPG tools used in industry. Structural means that these algorithms search for a
solution based solely on the circuit’s structure, i.e. the reasoning required to guide
the search is derived directly from the gate-level net list.

�e �rst steps in structural testing of logic circuits were made by Eldred in 1959 [72],
but it was Roth’s work at IBM which resulted in the �rst systematic ATPG method
— the D-Algorithm [201, 202]. �e algorithm allows multiple-path sensitisation,
i.e. fault e�ects can be propagated over several reconvergent paths. �is is an im-
portant feature, as there are faults that cannot be detected using only single-path
sensitisation [216]. In fact, the D-Algorithm is complete, i.e. it is guaranteed to
�nd a solution (a test pattern) if the given fault is detectable, or to prove the fault’s
undetectability.

Algorithm 2 describes a D-Algorithm version that gives propagation priority over
justi�cation. However, this assumption does not alter the algorithm’s complete-
ness [12]. �e algorithm uses a �ve-valued logic known as Roth’s logic (Table 2).
�e values in this logic are composite values that represent a line’s logic value in the

4�is topic is not relevant to this thesis and will not be explained in more detail. See [12, 34, 129]
for more information.

35



2.7. TEST PATTERN GENERATION

Algorithm 2

The D-Algorithm

Inputs: circuit C, fault f
Output: returns detectable if f is detectable, otherwise undetectable

1: D-Algorithm(C, f ) {

2: set all circuit lines to x
3: if f is a s-a-0 fault then {

4: assign D to the fault location ▷ excite the fault
5: } else {

6: assign D′ to the fault location ▷ excite the fault
7: }

8: return proceed-search( )
9: }

10: proceed-search( ) {

11: if imply-and-check( ) fails then {

12: return undetectable
13: }

14: if no primary output produces an error then {

15: return propagate( )
16: } else {

17: return justify( )
18: }

19: }

Table 2

Roth’s logic [202]

meaning

value fault-free case faulty case

0 0 0
1 1 1
x x x
D 1 0
D′ 0 1
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Figure 11. D-Algorithm — an example chain of implications

fault-free and in the faulty case. Logic operations on these values are computed by
applying the operations separately to the fault-free and faulty components and by
composing the results. �e value x (unspeci�ed) is used to represent lines that have
not yet been assigned a value by the algorithm, while the values D and D′ represent
errors.

First, the algorithm assigns an error value to the fault site depending on whether
the fault is a stuck-at-0 or a stuck-at-1 fault. �en, the algorithm calls a recursive
search function (line 8) that performs two basic tasks, propagation and justi�cation.
Propagation consists in driving the fault e�ect towards the primary outputs and
is stopped as soon as an error can be observed on at least one primary output.
Justi�cation is a process that justi�es values on gate outputs by values on the gate’s
inputs, i.e. the gate’s inputs are set such that the gate produces the desired value at
its output. Two data structures are used to manage propagation and justi�cation.
�e D-frontier contains all gates through which propagation can be driven, i.e. gates
whose output cannot be inferred from the current assignments, but with at least
one D or D′-input. �e J-frontier contains all gates with a speci�ed output value,
but where the current assignment of its inputs does not logically imply the value at
the gate’s output.

�e recursive search function �rst calls the imply-and-check-function (line 11),
which computes all implications that can be deduced from current assignments
without making any decisions. An example chain of implications is shown in Fig-
ure 11. �e example assumes that gate g is the only gate in the D-frontier. �en,
the need to propagate the D-value at g’s �rst input implies that g’s output has to
be set to D and that that value has to be propagated, for which g’s successor gate
has to be added to the D-frontier (not shown in the picture). �e D-values at g’s
�rst input and at g’s output imply a 1-value (the non-controlling value of g) at g’s
second input and the need to justify that value (step 2). �is justi�cation task im-
plies further propagation and justi�cation tasks along the stem and second branch
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Algorithm 3

Sub-routines of the D-Algorithm

1: propagate( ) {

2: if D-frontier is empty then { ▷ no further propagation posssible
3: return undetectable
4: }

5: while D-frontier is not empty do {

6: select a gate g from D-frontier ▷ decision
7: assign ncv(g) to every unspeci�ed input of g ▷ sensitisation condition
8: if proceed-search( ) returns detectable then {

9: return detectable
10: } else {

11: undo last assignments ▷ backtracking
12: }

13: }

14: return undetectable ▷ no further propagation posssible
15: }

16: justify( ) {

17: if J-frontier is empty then { ▷ all justi�cation tasks have been satis�ed
18: return detectable
19: }

20: take a gate g from J-frontier
21: while g has unspeci�ed inputs do {

22: select an unspeci�ed input i of g ▷ decision
23: assign cv(g) to i
24: if proceed-search( ) returns detectable then {

25: return detectable
26: } else {

27: assign ncv(g) to i ▷ backtracking
28: }

29: }

30: return undetectable ▷ justi�cation of g failed
31: }

of that fan-out node (step 3). �e imply-and-check-function fails if the current
assignments result in con�icting implications, for instance if a value is implied on a
line that has been previously assigned a di�erent speci�ed value.
A�er calling the imply-and-check-function, the main search function either calls
the propagation or the justi�cation sub-routine (Algorithm 3), which make propaga-
tion or justi�cation decisions and recursively call the main search function.
Propagation consists in selecting a gate from the D-frontier and setting its unspe-
ci�ed inputs to the gate’s non-controlling value in order to sensitise the gate to the
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fault e�ect. Since it su�ces to observe a fault e�ect on only one primary input,
usually not all gates in the D-frontier need to be processed, and the selection of a
speci�c gate can result in a con�ict. Backtracking is implemented by the while loop
(line 5). If the recursive search call within the loop is unsuccessful, a new run of the
while loop tries a di�erent propagation path. Propagation fails when the D-frontier
becomes empty and the fault e�ect is still not visible at a primary output.

Justi�cation consists in justifying the values of the gates in the J-frontier. In contrast
to the D-frontier, all gates in the J-frontier need to be processed, as all justi�cation
tasks are necessary to satisfy the propagation conditions. �e only case in which
the justi�cation procedure needs to make a selection is when justifying a gate’s
controlling value (non-controlling value if the gate is inverting). In this case, it
su�ces to set only one input of the gate to its controlling value, while all other
inputs may remain unspeci�ed. If the recursive search call is unsuccessful, a new
run of the while loop (line 21) tries a di�erent input of the gate. Justi�cation fails
if no input of the gate can be set to the gate’s controlling value, thus making it
impossible to justify the gate’s output value.

Two important ATPG algorithms that can be seen as derivatives of the D-Algorithm
are PODEM (Path-Oriented Decision Making) [98] and FAN (Fan-out Oriented
Test Generation) [89, 87]. In PODEM, decision making is restricted to the primary
inputs, thus reducing the complexity of the algorithm toO(2number of PIs), whereas
the D-Algorithm’s worst-case complexity isO(2number of lines). PODEM de�nes ob-
jectives (justi�cation tasks) to be satis�ed. �e �rst objective is given by the fault ex-
citation condition. Further objectives are dictated by the sensitisation of gates in the
D-frontier. A fast backtracing procedure [233] is used to select a PI assignment
likely to imply the currently targeted objective. If the implications that follow from
that assignment lead to no con�ict, the next objective can be targeted in the same
manner, and the algorithm continues to target objectives until a fault e�ect is visible
at a primary output. If the assignment to a PI leads to a con�ict, �rst that assign-
ment is reverted (backtracking). However, if the reverted assignment leads to a new
con�ict, also previously made assignments need to be reverted. If no backtracking
is possible any more, the fault is classi�ed as undetectable.

FAN is an extension of PODEM that further improves the e�ciency of structural
ATPG. In contrast to PODEM, FAN allows backtracing to stop at head lines. Head
lines are de�ned such that the sub-circuits driving them are fan-out-free. Hence,
values on head lines can be justi�ed without con�icting with values previously as-
signed to other lines in the circuit. �us, the need for backtracking is considerably
reduced, and FAN is signi�cantly more e�cient than PODEM [89]. In addition,
FAN uses a multiple-backtrace procedure that attempts to satisfy several objectives
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simultaneously. Some structural algorithms implemented in commercial and pro-
prietary ATPG tools are known to be based on FAN which is an e�cient algorithm
able to solve a large number of easy-to-solve ATPG instances very fast.
Most proposed enhancements of these basic ATPG algorithms [140, 218, 93, 159,
250, 108] are structural as well and rely on learning techniques in order to improve
the performance of structural ATPG on hard-to-solve ATPG instances.

2.7.2 Compaction

Test compaction is the process of reducing the size of a test set without a�ecting
the fault coverage achieved by it, thus diminishing both test application time and
tester memory demand, and hence the total test application cost. Two types of
compaction algorithms are known: static and dynamic techniques.
Static compaction acts on a previously generated test set and produces a smaller test
set that detects at least the same faults as the original one. Some static compaction
methods identify redundant test patterns using fault-simulation-based methods that
are especially e�ective when applied to test sets containing only deterministically
generated test patterns. For instance, reverse-order fault simulation (ROFS) [12]
consists in simulating the generated test patterns in the reverse order in which they
were generated. Test patterns that detect no new faults when they are simulated are
dropped from the test set. A�er reverse-order fault simulation, also random-order
fault simulation can be applied a number of times in order to further reduce the
pattern count.
Forward-looking reverse-order fault simulation (FLROFS) [187] is an extension of
ROFS. �is method records which test pattern was the �rst to detect which fault.
Since these data can be collected during the test generation process, the collec-
tion causes no signi�cant overhead. A�er the test generation, normal ROFS is
performed, but test patterns that have not been recorded as the �rst to detect any
of the remaining faults can be dropped from the test set without simulation, as the
test set is guaranteed to contain not yet simulated test patterns that detect those
faults, namely their corresponding �rst test patterns. �is method not only leads
to smaller pattern counts than simple ROFS, but it also requires fewer simulation
runs.
A further static compaction method merges pairs of test patterns into new patterns
that detect at least the same faults as the original patterns. Merging is possible due to
the fact that many circuit inputs are not assigned a speci�c logic value by the ATPG
algorithm. Two partially speci�ed test patterns p1 ∶= b1,1⋯b1,n and p2 ∶= b2,1⋯b2,n,
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bi,j ∈ {0, 1, x}, are compatible if they do not assign contradicting values to any
primary input, i.e. if for all j = 1, . . . n, either b1,j = x or b2,j = x or b1,j = b2,j. If p1
and p2 are compatible, they can be merged into a new test pattern p1 ∩ p2, where
the intersection operator ∩ is de�ned as in Table 3. For instance, the intersection of
01xx and 0x10 is 0110. Obviously, all faults detected by p1 and by p2 are detected
by p1 ∩ p2 as well. Hence, p1 and p2 can be replaced by only one new test pattern
p1 ∩ p2.

Table 3

The intersection operator

∩ 0 1 x
0 0 - 0
1 - 1 1
x 0 1 x

Given a test set P, pairs of compatible tests in P are subsequently identi�ed and
replaced by their intersection until no further compaction can be achieved. �e
obtained compacted test set depends on the order in which the test patterns are
merged. For example (taken from [12]), consider the test set {01x, 0x1, 0x0, x01}.
If the �rst two tests are merged �rst, the set {011, 0x0, x01} is obtained which
cannot be compacted any further. In contrast, merging the �rst and the third test
patterns �rst renders the test set {010, 0x1, x01}, which can be further compacted to
{010, 001}. However, �nding the optimal compaction is computationally complex.
An optimal solution can be found by constructing a compatibility graph, i.e. an
undirected graph where the nodes represent the test patterns and the edges connect
compatible tests. �en, all cliques5 contained in the graph represent sets of test
patterns that are all compatible to each other and can thus be merged into one single
test pattern. �e optimal solution is found by covering the compatibility graph using
a minimum number of cliques, which is an NP-complete problem [135].

For this reason, most static compaction algorithms have to rely on heuristic tech-
niques for fault reordering and test relaxation [133, 71], i.e. the post-ATPG injec-
tion of x-values into the generated test patterns, a technique which is also widely
employed to aid test compression for built-in self-test or for test of systems-on-a-
chip [71].

In contrast to static compaction, which is always applied a�er the ATPG process has
been completed and is independent of the used ATPG method, dynamic compaction

5A clique is a graph in which every two nodes are connected by an edge.
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encompasses techniques that modify the ATPG algorithm such that each generated
test pattern is suitable for the detection of a higher number of faults.

�e generic approach [99] consists in generating a test pattern p1 for a primary
target fault f1. �en, a secondary target fault f2 is chosen, and a test pattern p2 is
generated for f2 under the condition that the circuit inputs assigned to speci�ed
values by p1 be assigned to the same values by p2. Hence, if p2 exists, it detects both
f1 and f2 and p1 can be dismissed. �is process can be repeated for further secondary
targets until the percentage of unspeci�ed values in the test pattern is too low to
allow the consideration of more targets.

Obviously, the most relevant problem is the selection of secondary target faults.
Similarly to the selection of merging pairs in static compaction, the optimal selection
of secondary target faults would be computationally too expensive. Hence, the
selection relies on heuristic methods. For instance, the partially speci�ed test pattern
that has been generated for the primary fault can be simulated using normal fault
simulation or faster algorithms like critical-path tracing [14], which is usually done
in any case for the purpose of fault dropping. �e values this simulation process
implies on lines in the whole circuit are then analysed in order to determine what
secondary fault is more likely to be detected by a pattern that respects these value
assignments [100, 101, 13].

�e pattern counts achieved by the tool COMPACTEST [185] for the iscas’85 [32]
and iscas’89 [31] benchmark circuits are among the lowest ever recorded. �e tool
combines pre-ATPG fault reordering based on the concept of independent faults [17]
with a more aggressive approach that allows to modify speci�ed primary-input as-
signments. Also, the objectives of line justi�cation can be changed dynamically
to allow di�erent faults to be potentially detected. However, the large number of
heuristic methods used in this work makes it hard to predict the tool’s perform-
ance on newer benchmark circuits, like itc’99 [7, 48] or nxp (see Appendix A)
circuits. �e methods implemented in COMPACTEST were also combined with
static compaction and further heuristic techniques in [134].

An alternative type of approach was presented in [170]. �e subscripted D-Algorithm
attempts to sensitise multiple paths simultaneously, thus generating a single pattern
that detects many faults. However, this approach uses a system that consists of a
�exible observation signal assigned to a gate’s output, and of �exible control signals
assigned to all gate inputs. �e multiplicity of these �exible signals causes new types
of con�icts that require heuristic handling [146].

Further techniques that di�er from the general approach were presented in [20]
and [203]. In [20], instead of extending a new generated test pattern, it is merged
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with a previously generated test pattern compatible to it, if one exists. �us, the
necessity to select secondary target faults is eliminated. However, like in static
compaction, the selection of a previously generated pattern has a strong in�uence
on the �nal result. In [203], the �lling of unspeci�ed bits in the generated test
patterns is done employing a genetic algorithm6.

6Genetic algorithms belong to the class of evolutionary algorithms [36, 102], which are heuristic
search methods that mimic the process of natural evolution. Candidate solutions (represented by
character strings) are the individuals of a population. �e population evolves in an iterative process
that consists in generating new individuals (derived from existing individuals by applying opera-
tions like mutation or crossover) and in selecting which individuals will form the next generation
according to a �tness function that best represents the optimisation objective of the search. Evol-
utionary algorithms have been employed in many areas of VLSI design and test [66], including
ATPG [94, 137], BIST con�guration [263, 180] and test data compression [181].
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3

Introduction to the SAT problem

and to SAT-based ATPG

�is chapter introduces the SAT problem, which is the problem of deciding whether
the variables of a Boolean formula can be assigned such that the formula evaluates to
logic 1. A�er a formal introduction of the SAT problem, the chapter presents basic
algorithms for the solution of this problem, as well as the most important techniques
used by modern SAT solving tools. �e second part of this chapter focuses on the
application of SAT solving to test pattern generation. A�er the introduction of
the basic principle, a review of previously existing works on SAT-based ATPG is
given, as well as of related ATPG approaches. Like Chapter 2, this is an introductory
chapter. Hence, all its contents constitute pre-existing knowledge originated in the
work of other authors, and references to the original works have been added where
appropriate.

3.1 Introduction

�e Boolean satis�ability problem (SAT) is the problem of deciding whether a
Boolean formula is satis�able, i.e. whether its variables can be assigned the values 0
or 1 such that the whole formula evaluates to 1. So�ware tools used to determine
the satis�ability of SAT formulae are called SAT solvers.

Currently, SAT solvers are used in many �elds like planning [136, 96], electronic
design automation [166], and veri�cation and test of digital systems [219, 27, 46,
224, 114, 77, 164, 69, 55, 209, 207], especially because many search problems can
be converted into SAT problems e�ciently [151].
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�e SAT problem is NP-complete [47], which means that there is currently no
known method to solve an arbitrary instance of the SAT problem e�ciently. How-
ever, many problems found in practice result in SAT formulae that are relatively
easy to solve, especially if it is possible to nest structural information of the original
problem into the SAT problem [237]. �is also applies to ATPG. Although ATPG is
NP-complete, only a relatively low percentage of ATPG instances found in practice
make ATPG algorithms display their worst-case behaviour [256, 189, 55]. How-
ever, ATPG is challenging because it has to be applied to a very large number of
instances. �anks to techniques like incremental SAT solving, where the solving of
a SAT instance bene�ts from knowledge learnt during the solution of previous SAT
instances, ATPG can be performed e�ciently using SAT solvers.

�e �rst approaches to reduce the ATPG problem to a SAT problem were proposed
several decades ago [220, 147, 148, 237], yet structural algorithms, which perform a
direct search based on the circuit’s net list, have largely remained the standard used
in industrial applications due to their better run-times. Structural algorithms are
particularly fast when applied to a large number of easy-to-solve ATPG instances
(see also Section 2.7.1).

However, recent experiments [242, 55] have shown that SAT-based test pattern
generation (SAT-ATPG) outperforms structural methods for hard-to-solve ATPG
instances. �ese instances are either hard-to-detect faults or undetectable faults,
for which structural algorithms tend to display their worst-case behaviour due to
the size of the search space that needs to be traversed until a solution is found or
until the nonexistence of a solution can be proved. In contrast, SAT solvers are
routinely used to prove unsatis�ability in applications such as equivalence checking
and model checking7, which has given rise to numerous techniques that allow
SAT solvers to prune large parts of the solution space e�ciently. Obviously, this
development has made SAT-ATPG more suitable than structural algorithms to
prove fault undetectability. �ese techniques also result in an advantage of SAT-
ATPG when applied to hard-to-detect faults, for which structural methods require
a larger number of backtracks than SAT-ATPG.

7Equivalence, model and property checking are formal-veri�cation problems. Given two models
of the same system, or a model of the system and a speci�cation, equivalence checking is the problem
of deciding whether both models are functionally equivalent. Model and property checking refers
to the problem whether a system model satis�es a certain property. For example, property checking
can be used to determine whether a sequential circuit can enter a set of desired or undesired states
as the result of the application of test sequences of a given length.
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Especially the ability to prove undetectability is an important feature of SAT-ATPG,
as modern fault modelling approaches o�en lead to a high number of undetectable
faults, while an accurate computation of defect coverage depends strongly on the
number of undetectable faults that can be reliably identi�ed as such. For instance,
the rise in importance of reliability concerns has resulted in an increased use of
redundant structures to enhance fault tolerance [227, 260] (see also Chapter 9).
Hence, a rising number of modelled faults are undetectable. In addition, many
defects in nano-scale manufacturing technologies need to be modelled using non-
standard fault models rather than the SAFM [16]. Such models usually impose very
speci�c conditions on several lines in the circuit in order to excite the fault, thus
leading to a high amount of undetectable faults. For instance, a high-resistance
short defect might require particular values at the inputs of the gates that drive the
bridged lines in order to justify the voltages that excite the fault (see Section 2.5).
Another example is the accurate modelling of interconnect-open defects, which
requires that particular values be assigned to lines that have a coupling capacitance
with the a�ected line [204, 107, 234, 116].

Given this particular strength of SAT-based ATPG, the combination of structural
methods and SAT-ATPG is an approach with expected good performance in indus-
trial settings, as shown in [242]. But SAT-ATPG has also been proved highly useful
in its own merit, especially in applications that produce many hard-to-solve ATPG
instances, like the classi�cation of faults in robust circuits with redundant checking
logic [126] (see also Section 9.3), or test generation using complex fault models that
require non-trivial constraints for fault activation [55, 57, 56] (see also Chapters 7
and 8).

3.2 Formal definition of the SAT problem

(Propositional) logic variables or Boolean variables are variables that can take either
the value 0 (false) or 1 (true). In this thesis, logic variables are denoted by upper-case
letters, usually X, if applicable followed by an index.

(Propositional) logic formulae or Boolean formulae are expressions over the set of
Boolean variables and the following symbols: {¬,∧,∨, (, )}. Boolean formulae will
be denoted by lower-case Greek letters.

Valid Boolean formulae are de�ned recursively. If X is a logic variable, then the
expressions X and ¬X are Boolean formulae. Also, if ϕ and ψ are Boolean formulae,
the following expressions are Boolean formulae as well:
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▸ ¬ϕ — negation,

▸ (ϕ ∧ ψ) — conjunction,

▸ (ϕ ∨ ψ) — disjunction.

For simplicity, pairs of round brackets in a Boolean formula can be omitted provided
that the removal does not provoke confusion. In addition, the following abbreviating
expressions are common:

▸ (ϕ⊕ψ) — exclusive disjunction — as an abbreviation of ((ϕ∧¬ψ)∨(ψ∧¬ϕ)),

▸ (ϕ→ ψ) — implication — as an abbreviation of (¬ϕ ∨ ψ),

▸ (ϕ↔ ψ) — equivalence — as an abbreviation of ((ϕ→ ψ) ∧ (ψ → ϕ)),

▸ (ϕ1∨ϕ2∨ϕ3) — as an abbreviation of ((ϕ1∨ϕ2)∨ϕ3) or of (ϕ1∨(ϕ2∨ϕ3)),

▸ (ϕ1∧ϕ2∧ϕ3) — as an abbreviation of ((ϕ1∧ϕ2)∧ϕ3) or of (ϕ1∧(ϕ2∧ϕ3)).

Let X be the set of variables occurring in a formula ϕ. A logic assignment or Boolean
assignment is a map w ∶ X→ B that assigns each variable either the logic value 0 or
the logic value 1. If w(X) = 1 for a variable X ∈ X, w is said to satisfy X (written
w ⊧ X).

w can be extended to a map w∗ that evaluates the formulaϕ. w∗ is de�ned recursively
as follows:

▸ w∗(X) = w(X),

▸ w∗(¬ϕ) = ¬w∗(ϕ),

▸ w∗(ϕ ∧ ψ) = w∗(ϕ) ⋅w∗(ψ),

▸ w∗(ϕ ∨ ψ) = w∗(ϕ) +w∗(ψ).

A formula ϕ is called satis�able if there is an assignment w such that w∗(ϕ) = 1.
�en, w is said to be a model of ϕ or to satisfy ϕ (written w ⊧ ϕ). �e SAT problem
is the problem of deciding whether a formula ϕ is satis�able.

A formula that evaluates to 0 for all assignments is called unsatis�able. A formula
that evaluates to 1 for all assignments is called a tautology.

Let {X1, . . . , Xn} be the set of variables occurring in a formula ϕ. �en, the formula
ϕ describes the Boolean function Bn → B that maps (a1, . . . , an) to w∗(ϕ) for all
assignments w with w(Xi) = ai for all i = 1, . . . , n.

Two formulae ϕ and ψ are called semantically equivalent if w∗(ϕ) = w∗(ψ) for all
assignments w, i.e. if ϕ and ψ describe the same Boolean function.
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A formula ϕ is said to be in conjunctive normal form (CNF), if ϕ is a conjunction of
disjunctions of literals, i.e. if it has the form (λ1,1∨⋯∨λ1,n1)∧⋯∧(λm,1∨⋯∨λm,nm),
where each λi,j is a literal, i.e. λi,j is either a variable or a negated variable8. For every
Boolean formula there is a semantically equivalent formula in CNF. Hence, for
every Boolean function Bn → B, there is a formula in CNF that describes it.
�e conjunctions that form a CNF formula are also called clauses and regarded as
sets of literals, while the CNF formula is seen as a set of clauses. Hence, a formula in
CNF is o�en written in the form {{λ1,1, . . . ,λ1,n1}, . . . ,{λm,1, . . . ,λm,nm}}. Clauses
that consist of only one literal are called unit clauses.
An assignment w that satis�es a CNF formula ϕ has to satisfy every individual
clause in ϕ, while each clause is satis�ed if w satis�es at least one literal contained
in the clause. Hence, unit clauses can only be satis�ed by assignments that satisfy
their only literal. Furthermore, a clause in which at least one literal occurs in both
a�rmative and negative form is always satis�ed.
Let K1 and K2 be two clauses in which a literal λ occurs neither in a�rmative nor
in negative form. Resolution is an inference rule that states that if an assignment w
satis�es both K1 ∪ {λ} and K2 ∪ {¬λ}, then w satis�es K1 ∪ K2 as well. K1 ∪ K2 is
called the resolvent of K1 ∪ {λ} and K2 ∪ {¬λ}.
�e empty clause is formally de�ned as it can be inferred by resolution. It is unsat-
is�able, as it is the resolvent of {X} and {¬X} for any Boolean variable X, i.e. it is
implied by the conjunction of {X} and {¬X}, which is clearly unsatis�able9. Intu-
itively, the empty clause is unsatis�able because it contains no satis�ed literals. In
addition, the empty formula can be de�ned as well. �e empty formula is satis�able,
as it contains no unsatis�ed clauses.

3.3 SAT solving algorithms

3.3.1 The DPLL-Algorithm

Modern SAT solvers almost exclusively process SAT instances expressed as formulae
in CNF. �e use of CNF as the preferred normal form has historical reasons. �e

8In this thesis, literals are denoted by λ, if applicable followed by an index. �e expression ¬λ,
which is formally not a valid logic expression, is used as an abbreviation to denote ¬X if λ stands
for a variable X (a�rmative occurrence), or to denote X if λ stands for ¬X (negative occurrence).

9Any Boolean formula that contains such a pair of clauses is called self-contradictory and is
unsatis�able.
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SAT solving algorithm presented by Davis and Putnam in 1960 [60] was intended
to e�ciently determine the satis�ability of a sequence of SAT instances that arose
from the attempt to show the unsatis�ability of a �rst-order predicate logic formula.

Given an in�nite sequence of Boolean formulae ϕ1,ϕ2,ϕ3, . . ., a natural number n
was to be found, for which ψn ∶= ϕ1 ∧ϕ2 ∧⋯∧ϕn would be unsatis�able. Hence, it
was necessary to subsequently determine the satis�ability ofψ1,ψ2, . . .. �e decision
to transform all ϕi into CNF expressions allowed the fast construction of the ψj.
Eachψj is constructed by simply concatenatingψj−1 andϕj and is thus automatically
in CNF.

�e algorithm by Davis and Putnam consists in iteratively modifying the input
formula ϕ by applying one of three rules until either the modi�ed formula becomes
empty, in which case ϕ is satis�able, or until the empty clause is inferred, in which
case ϕ is unsatis�able. �e three rules are as follows:

▸ Unit propagation — If a unit clause {λ} occurs in the formula, delete all
clauses that contain λ, and delete all occurrences of ¬λ in the remaining
clauses.

▸ Pure literal — If the formula contains a pure literal λ, i.e. if ¬λ occurs in no
clause, delete all clauses that contain λ.

▸ Resolution — Choose two clauses K1 and K2 such that K1 contains a literal λ
and K2 contains ¬λ. �en, delete K1 and K2 and add the resolvent of K1 and
K2 to the formula.

In 1962, Davis, Logemann and Loveland replaced the resolution rule by a depth-
�rst search with backtracking, thus eliminating the �rst algorithm’s high memory
demand, and also allowing the algorithm to not just prove satis�ability, but to derive
a model as well. �e resulting algorithm is known as DLL or DPLL-Algorithm [59].

Also algorithms not based on DPLL have been proposed, for instance Bryant’s work
with BDDs10 [33] or Stålmarck’s Proof Procedure [223]. Although these algorithms
perform well on small SAT instances, their further development has stagnated, and

10Boolean functions can be represented using binary decision diagrams (BDD), i.e. directed acyclic
graphs where the nodes represent Boolean variables and the edges represent logic assignments to the
variables at whose node they originate. �e nodes without outgoing edges are called leafs and stand
for the logic value to which the formula evaluates if the variables are assigned the values speci�ed
by the edges on the path from the root node to the leaf. An important property of reduced BDDs is
that, given a �xed variable ordering, they are a canonical representation of the Boolean function.
However, due to their high memory demand, BDDs are impractical for Boolean functions with a
large number of variables.
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Algorithm 4

The DPLL-Algorithm

Inputs: Boolean formula ϕ in CNF
Output: returns satis�able if ϕ is satis�able, otherwise unsatis�able

1: dpll(ϕ) {

2: for each unit clause K in ϕ do {

3: ϕ ∶= apply-unit-propagation(ϕ, K)
4: }

5: for each pure literal λ in ϕ do {

6: ϕ ∶= apply-pure-literal-rule(ϕ,λ)
7: }

8: if ϕ is empty then {

9: return satis�able
10: }

11: if ϕ contains the empty clause then {

12: return unsatis�able
13: }

14: X ∶= select-variable(ϕ)
15: if dpll(ϕ ∧ X) returns satis�able then { ▷ decision (X = 1)
16: return satis�able
17: } else {

18: return dpll(ϕ ∧ ¬X) ▷ backtracking
19: }

20: }

DPLL has become the foundation of modern high-performance SAT solvers [151],
including the SAT solvers MiraXT [152] and antom [217], which have been used
by the author of this thesis as SAT solving back-end engines for SAT-based ATPG.

�e DPLL procedure is shown in Algorithm 4. �e procedure consists of three parts.
�e �rst part (lines 2–7) is characterised by the assignment of necessary values to
certain Boolean variables. In order to satisfy the input formula, pure literals and
unit-clause literals that occur in a�rmative form have to be mapped to logic 1,
while negative literals need to be mapped to logic 0. Since the application of the
unit propagation and pure-literal rules deletes clauses and literals from clauses,
the second part of the DPLL-Algorithm (lines 8–13) checks whether a clause or
the formula itself have become empty, in which case the algorithm terminates.
Otherwise, the third part of the algorithm consisting of the depth-�rst search is
applied. First, the select-variable-procedure (line 14) selects a decision variable
according to some criterion. �en, the algorithm maps that variable to logic 1 and
recursively calls the dpll-procedure, which will determine the satis�ability of the
derived formula that results from that assignment. If that formula is not satis�able,
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the chosen variable is set to logic 0 (backtracking) and the satis�ability of the new
derived formula is checked.

If the formula is satis�able, the assignments made during the application of the
unit propagation and pure-literal rules and during the search dictate the found
model. However, the model is not unique and depends on the order in which
decision variables are selected. In addition, a particular selection can result in a
model that is only partially speci�ed, as the clauses deleted by the application of the
unit propagation and pure-literal rules can contain variables that are completely
eliminated from the formula before being selected as decision variables.

One of the most important aspects for the performance of the DPLL-Algorithm is
the strategy by which the decision variables are chosen [151]. In [59], for instance,
a simple heuristic reordering was reported to cause a speed-up by a factor of 10.
�is is still one of the key issues in modern SAT solvers, and a good method for the
selection of decision variables can have a large in�uence on the solver’s performance.

3.3.2 Modern SAT solvers

�e growing complexity of SAT instances derived from problems in various �elds
of engineering resulted in several SAT solvers being introduced towards the end
of the 1990s. Examples include GRASP [163, 165], SATO [258], rel_sat [26] and
WalkSAT [221, 168]. Essentially, these solvers combine heuristic techniques for
local search with simpli�ed implementations of the DPLL-Algorithm that result
in better run-time and memory e�ciency. For instance, while the original DPLL-
Algorithm generates validity proofs (a list of all resolution steps), modern SAT
solvers are purely search-based and do not physically delete unsatis�ed variables in
order to avoid run-time-expensive operations.

�e most signi�cant advancements were contributed by the solver Cha� [176, 259]
which enhanced some of the techniques �rst implemented in GRASP and SATO.
In particular, Cha� introduced the VSIDS strategy (Variable-State Independent
Decaying Sum), which has been proved to be a very good technique for the se-
lection of decision variables. �e advanced techniques implemented in Cha� are
still employed by SAT solvers of today, though they have been extended and en-
hanced by SAT solvers like BerkMin [103], MiniSat [80, 79, 1], MiraXT [152] and
antom [217].

�e run-time e�ciency of modern SAT solvers is characterised by four main aspects
that will be discussed in more detail in the remainder of this section: pre-processing,
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e�cient Boolean constraint propagation, learning and the use of good decision
strategies.
Pre-processing encompasses several techniques employed to eliminate trivial vari-
ables and clauses from the SAT formula prior to the start of the DPLL-based search
algorithm. �e necessity of pre-processing arises from the fact that real-world SAT
instances are derived from other problems in engineering. �e translation of such
problems into SAT formulae needs to be run-time-e�cient and o�en results in
SAT formulae that contain many redundant variables and clauses. Examples of pre-
processing techniques include the application of unit propagation and of the pure-
literal rule, as well as techniques introduced by MiniSat based on subsumption11

and variable elimination through resolution. �e extent to which pre-processing
is applied varies among di�erent SAT solvers, and the result depends on the com-
plexity of the SAT formula as well. For instance, the pure-literal rule is o�en not
applied as the e�ort spent on identifying pure literals may not be compensated by
the lower complexity of the resulting simpli�ed formula.
Boolean constraint propagation (BCP) is the process of computing all logic values
that are implied by the current partial assignment of variables. BCP is called a�er
the SAT solver has made a decision. Since BCP consumes between 70 and 95% of
the total SAT solving time [151], this is one of the most optimised procedures in
the solver. �e most important contribution to the e�ciency of BCP was Cha� ’s
watched-literals scheme which exploits the fact that not every clause containing the
decision variable needs to be examined a�er a decision, because no clause that
is already satis�ed or that contains at least two unspeci�ed literals can trigger an
immediate implication of the assignment made to the decision variable. In this
scheme, the solver “watches” only two unspeci�ed literals of each clause. �en, a
clause needs to be examined only if one of its two watched literals becomes unsat-
is�ed. �is allows implications to be found quickly while examining only a small
amount of clauses.
Another major step in the advancement of modern SAT solvers was the introduc-
tion of con�ict analysis in Grasp. Con�ict analysis is done using non-chronological
backtracking and recording of con�ict clauses (also known as learning). �e solver
manages an implication graph that shows what implications are forced by each
clause. When a con�ict is encountered by BCP, the implication graph is used to
�nd the �rst reason for the con�ict, called the �rst unique implication point (�rst
UIP). �en, backtracking can skip several decision levels and directly jump back to

11A clause K1 subsumes a clause K2 if K1 ⊆ K2. K2 can be removed from the SAT formula, as every
model of K1 satis�es K2 as well.
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that point. Also, a con�ict clause is resolved from the path between the UIP and
the con�ict and added to the clause database. �is learnt clause will prevent the
SAT solver from making the same chain of decisions again, thus e�ectively limiting
the search space. However, a large amount of learnt clauses can not only result in
memory explosion, but also considerably slow down BCP. In practice, thousands
of clauses are learnt every second. Hence, while Grasp considers multiple UIPs,
Cha� considers only the �rst UIP in order to limit the number of learnt clauses
and in order to learn shorter clauses which truncate larger parts of the search space.
Also, older con�ict clauses can be deleted a�er some time. BerkMin introduced a
concept where con�ict clauses are learnt based on their activity, i.e. clauses that are
more o�en involved in con�icts are seen as more useful and kept for a longer time.

Finally, decision strategies are strategies by which decision variables are chosen, and
they have a big in�uence on the solver’s performance. In general, decision strategies
try to choose variables whose speci�cation will constraint the SAT problem such
that large parts of the solution space can be disregarded quickly. For instance,
Marques-Silva introduced four strategies based on literal counts: DLCS (Dynamic
Largest Combined Sum), DLIS (Dynamic Largest Individual Sum), RDLCS (Ran-
dom DLCS) and RDLIS (Random DLIS) [162]. �ese strategies select variables
depending on their number of occurrences in the formula and assign these variables
either random values or a value depending on the di�erence in number between
the variable’s a�rmative and negative occurrences. A drawback of these strategies
is that the literal counts need to be constantly updated. In an attempt to overcome
this di�culty, Cha� introduced the VSIDS (Variable-State Independent Decaying
Sum) strategy that works as follows: �e number of a�rmative and negative occur-
rences of each literal in the original formula are counted and kept in a sorted list.
�ese counters are incremented only when new learnt clauses are added. A�er the
addition of a given number of new learnt clauses, all counters are divided by two
(decay operations) and the list is resorted. �en, whenever a variable needs to be
chosen, the variable with the largest a�rmative or negative occurrence is chosen
and assigned the logic value 1 if the a�rmative occurrences outnumber the negative
ones, or 0 if the negative occurrences outnumber the a�rmative ones (as in DLIS).
Aside from the signi�cant run-time reduction that arises from the more e�cient
counting, VSIDS’s periodical halving of counters gives precedence to variables that
occur in recently learnt clauses, i.e. to variables o�en involved in con�icts, which
results in an intuitively more intelligent search algorithm. �e VSIDS strategy and
its variants are now used by most SAT solvers.
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3.3.3 Incremental SAT solving

Learning has also been bene�cial for the solution of the incremental Boolean satis-
�ability problem (incremental SAT). �e formulation and solution of this problem
was motivated by work on SAT-based circuit veri�cation [121] and de�ned in [120]
as the problem of deciding the satis�ability of a CNF formula ϕ ∪ {K} for a clause
K, given ϕ’s satis�ability. Although the problem is NP-complete, it can be solved
more e�ciently once the satis�ability of ϕ has been determined. �e algorithm pro-
posed in [120] solves the SAT instance ϕ using the DPLL-Algorithm and uses the
information contained in the built search tree to speed up the solution of ϕ ∪ {K}.
�e extended problem of deciding the satis�ability of a series of n related SAT for-
mulae ϕ∪ψ1, . . . ,ϕ∪ψn, where ϕ is a shared pre�x formula, was addressed with the
introduction of the tool SATIRE [255]. SATIRE uses GRASP’s learning mechanism
such that the solving of ϕ∪ψi+1 bene�ts from the con�icts learnt during the solving
of ϕ ∪ ψ1, . . . ,ϕ ∪ ψi, for i = 1, . . . , n − 1. However, learning is adapted such that
only con�ict clauses pertaining to the pre�x ϕ are kept in the clause database. �e
improvement of learning techniques as well as better approaches to identify such
con�ict clauses [226, 81] allows modern SAT solvers to solve the incremental SAT
problem e�ciently.

3.3.4 SAT solving with qualitative preferences

In many applications, having a satisfying assignment is not enough. In planning, for
instance, a SAT solution corresponds to merely one plan, while an optimal plan is a
plan that satis�es a set of additional so� goals. Approaches to extend SAT in order
to specify problems that require more expressive power, while still bene�ting from
the advancements in conventional SAT solving, include MIN-ONE12 and MAX-
SAT13 [50, 230], DISTANCE-SAT14 [21] and pseudo-Boolean approaches [24].

Giunchiglia and Maratea [95, 96] proposed a mechanism known as SAT solving with
qualitative preferences, where the SAT solver is given a list of variables that should
preferably be assigned to 1. An advantage of this approach is that it is possible to
extend a SAT solver to handle preferences in an e�cient way [65].

12MIN-ONE is the problem of �nding a model that assigns 1 to a minimum number of variables.
13MAX-SAT is the problem of �nding a model that satis�es a maximum number of clauses.
14DISTANCE-SAT is the problem of �nding a model that assigns at most d variables di�erently

from a given partial assignment that stands for a solution preference.
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Let ϕ be a Boolean formula, and let L be the set of all literals occurring in ϕ. A
qualitative preference on L is a subset L ⊆ L together with a partial ordering ≺ on L.
Intuitively, L is the set of literals that should be preferably satis�ed, and ≺ determines
the relative importance of those preferences.
Let w1 and w2 be two models of ϕ. Formally, w1 is preferred over w2 under (L,≺)
(written w1 ≺L w2) if the following two conditions hold:

▸ �ere is at least one literal λ ∈ L that is satis�ed by w1 but not by w2 (written
w1 ≺λ w2).

▸ If there is a literal λ ∈ L with w2 ≺λ w1, then there is a literal λ′ ∈ L with
w1 ≺λ′ w2 and λ′ ≺ λ.

�is mechanism also allows to formally de�ne the optimality of a model. A model
w is an optimal model of ϕ under (L,≺), if w ≺L w′ for every other model w′ of ϕ.
�e following example (taken from [65]) shall illustrate what type of problems can
be expressed using this formalism. �e CNF formula

{{¬�sh,¬beef },{¬redwine,¬whitewine}}

models the fact that one can have neither both �sh and beef nor both red and white
wine. In order to express that one would like to have �sh and both red and white
wine, but white rather than red wine if having both was not possible, the SAT prob-
lem is extended by preferences ({�sh, whitewine, redwine}, whitewine ≺ redwine).
�ese preferences instruct the SAT solver to search for the formula’s only optimal
model (�sh, beef , redwine, whitewine) ↦ (1, 0, 0, 1).
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3.4 The principle of SAT-based ATPG

Boolean di�erence was the �rst method that analysed errors in logic circuits by
converting the original problem into a SAT problem. It was published in 1968 [220].

Given a combinational circuit C with n inputs and m outputs, SAT-based test gen-
eration for a fault f consists of three steps: First, fault f is injected into the original
circuit, which renders a faulty version Cf of the circuit. �en, the original circuit
and the faulty version are combined to form a miter [29], i.e. a circuit with n in-
puts and one output z, where the i-th input of C and the i-th input of Cf are both
connected to the miter’s i-th input for i = 1, . . . , n, while the j-th output of C and
the j-th output of Cf are both connected to a new xor gate for j = 1, . . . , m. �e
outputs of all these new xor gates are connected to an m-input tree of or gates,
whose output is connected to z. An input pattern can induce the logic value 1 on z
if and only if the responses of C and Cf di�er on at least one output, i.e. if the input
pattern detects f . Hence, �nding a satisfying assignment for the Boolean function
implemented by the miter under the condition that the miter’s output be assigned
to 1 is equivalent to generating a test pattern for fault f , while the nonexistence of a
satisfying assignment proves the fault’s undetectability.

�e second step consists in generating a SAT instance in CNF that represents the
ATPG problem. Every line in the circuit is represented by a Boolean variable. �en,
the SAT instance is composed of clauses that describe the circuit’s structure, as well
as of a one-literal clause that can only be satis�ed by assignments that satisfy the
Boolean variable that represents the miter’s outputs. �e clauses that describe the
circuit’s structure are generated using Tseitin transformation [246], a transformation
method that has the advantage that both the number of clauses it generates as well
as its run-time are only linear in the number of gates.

Finally, the last step consists in solving the generated SAT instance using a SAT
solver. If the SAT solver �nds a solution, the test pattern is composed of the values
that have been assigned to the Boolean variables that represent the primary inputs.

Consider, for instance, test generation for the stuck-at-1 fault at line b of the circuit
shown in Figure 12 (a). �e corresponding miter is shown in Figure 12 (b). Here,
the and gate c′ represents the faulty version of the original circuit. Since the original
circuit has only one output, the tree of or gates is unnecessary and the miter’s output
is given by the xor gate’s output z.

�e functionality of gate c is described by the Boolean expression c↔ (a∧b), which
is an abbreviation of (¬c∨(a∧b))∧(¬(a∧b)∨ c). By the axioms of the Boolean al-
gebra (see Section 2.1), this expression is equivalent to (¬c∨a)∧(¬c∨b)∧(¬a∨¬b∨c),
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(b) corresponding miter

Figure 12. Miter construction and conversion into a SAT formula

which is an expression in CNF that can be written in the form

{{¬c, a},{¬c, b},{¬a,¬b, c}}.

�is type of transformation can also be applied to the xor gate and to the second
and gate c′, which acts like a bu�er due to its second output being a constant logic
1. �e complete SAT instance is composed of all clauses shown in Figure 12 (b),
together with the clause {z} that requires that any satisfying assignment assign the
miter’s output to 1. �e only model of this SAT instance is given by

(a, b, c, c′, z) ↦ (1, 0, 0, 1, 1).

�e extracted test pattern is composed of the values assigned to a and b, i.e. 10.
Important improvements of this basic problem formulation were published in the
�rst half of the 1990s. In [147, 148], instead of duplicating the whole circuit, only
the sub-circuit that is a�ected by the modelled fault is duplicated in order to reduce
the size of the generated SAT instance. �is is illustrated in Figure 13. In this
example, only gate h needs to be duplicated (h′), as that is the only gate a�ected by
the fault. �e sub-circuit that drives gate h’s faulty input requires no duplication, as
that input’s behaviour in the faulty case depends only on the de�nition of the fault.
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Figure 13. Larrabee’s miter

�e part of the circuit that drives the second input of gate h (gate g and its input
cone) is also not a�ected by the fault’s presence; hence, it can be shared with h′.
Another improvement that has become a standard in SAT-ATPG was implemented
in the tool TEGUS (Test Generation Using Satis�ability) [237]. �e employed
technique includes structural information into the SAT instance, which guides the
search of the SAT solver. Inspired by the D-Algorithm, which only tries to drive
propagation through gates in the D-frontier, this method explicitly models D-chains,
i.e. paths along which propagation can be driven.
In this approach, all lines in the fault site’s output cone are modelled not only by two
Boolean variables, one that represents the line’s logic value in the fault-free case, and
one that represents the line’s logic value in the faulty case, but also by an additional
Boolean variable that models whether the line would have a D or a D′-value in the
D-Algorithm. Let X1 and X2 be the variables that represent the fault-free and faulty
logic value of a given line. Let X3 be the new variable. �en, all models of the set
of clauses {{X3,¬X1, X2},{X3, X1,¬X2},{¬X3, X1, X2},{¬X3,¬X1,¬X2}} assign X3
the value 1 if and only if X1 and X2 are assigned di�erent values, i.e. if the modelled
line displays a fault e�ect. Hence, this set of clauses is added to the original SAT
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instance. Finally, all new variables along each D-chain are connected by additional
clauses that model the fact that if a gate g belongs to a D-chain (i.e. its D-chain
variable is set to 1), then one of its successors must belong to a D-chain as well in
order to enable the propagation of the fault along a path starting at g.
Although these new variables and clauses increase the size of the SAT-instance, the
run-time required for SAT solving is considerably reduced, as corroborated by the
implementation of these technique in other tools [224, 55]. �e reason for this is
that a considerable number of backtracks are avoided during the SAT solving due
to the implications that are triggered by the new clauses. In addition, thanks to the
D-chain variables assigned to the primary outputs in the fault site’s output cone, the
miter’s array of xor gates does not need to be modelled explicitly any more.

3.5 Previous and related work

Even a�er the optimisations proposed in [147, 148, 237], which also included the
use of global implications and other techniques derived from structural ATPG, the
e�ciency achieved by algorithms like PODEM and FAN for the average ATPG
instance could not be transferred to early SAT-based approaches, as the SAT solver
is not able to identify Boolean variables that represent primary inputs or head lines
and to make decisions based on them.
In response to this, alternative approaches were developed, which attempted to
enhance the performance of basic structural ATPG by combination with graph-
based algorithms instead of SAT. For instance, in [235], BDDs were used to enhance
justi�cation and propagation. However, the worst-case memory complexity of
BDDs is exponential, which makes them inapplicable to large circuits, and BDD-
based techniques always compute all possible justi�cations even when only one is
needed, which results in over-speci�ed test patterns that cannot be compacted well.
A di�erent approach that attempts to combine Boolean and structural reasoning
in one model utilises implication graphs, which are also partially used in [148].
�is approach was implemented in the tool IGRAINE (Implication-GRaph-bAsed
engINE) [240, 238, 239]. An implication graph is a directed acyclic graph, whose
nodes represent assignments to lines and whose edges represent implications. �ere
is also a second type of nodes, called ∧-nodes, which are used to represent ternary
relations between line assignments. Graph algorithms are employed to derive in-
direct implications that would remain undetected in purely structural ATPG, and
the method has the advantage that its memory complexity is only linear in the
number of gates. Furthermore, these indirect implications can be used to aid the
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constraint propagation in SAT solving. [97] proposes the use of new data structures
for a better representation of k-nary relations for arbitrary k-values. �is technique
was implemented in the tool SPIRIT (Satis�ability Problem Implementation for
Redundancy Identi�cation and Test generation), but the presented data structures
su�er from a large overhead when applied to gates with many inputs.
Recently, the advancement of research on e�cient SAT solving made a�er the year
2000 has given rise to a new generation of purely SAT-based approaches. �e
most relevant contributions were made by a research group at the University of
Bremen between 2005 and 2010 [69], and by the author of this thesis at the Chair
of Computer Architecture at the University of Freiburg between 2008 and 2012.
�e tool PASSAT [224], which uses the SAT solver MiniSat [80, 1], constitutes the
�rst contribution by the University of Bremen, followed by comparative studies with
NXP’s structural ATPG tool Amsal [5] and a �ow that combines both tools [242, 67].
[68] presents an extension of PASSAT aimed at increasing the amount of unspeci�ed
bits in the generated patterns, which is an important prerequisite for better static
compaction (Section 2.7.2).
In Bremen, research towards enhancing the run-time e�ciency of SAT-ATPG
developed along two paths. �e �rst approach uses BDDs to generate smaller
SAT instances and to also reduce the run-time needed for SAT instance genera-
tion [244, 243]. �e circuit is partitioned into FFRs, and each FFR is represented
using a BDD. �en, the SAT instance that describes the structure of the circuit is
derived from the BDDs, which removes some information redundancy and allows
to reuse already converted sub-formulae. However, this approach is only applicable
to FFRs with a limited amount of gates due to the memory requirements of BDDs.
�e second path followed in Bremen, which involves approaches that utilise learning
and incremental SAT solving [86, 70, 241], lead to better results. For instance,
in [70], a central database is used to cache basic as well as learnt clauses that represent
the circuit in the fault-free case. Since not all cached clauses are needed in all SAT
instances, these are activated or deactivated dynamically. �is approach reduces
the time needed for SAT solving as well as the time needed to generate the SAT
instances.
�e contributions made by the author of this thesis constitute the main topic of this
work and are discussed in detail in Chapters 4–9.
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4

The SAT-based test pattern

generator Tiguan

�is chapter introduces the SAT-based test pattern generator Tiguan. First, a
summary of the tool’s development history is given. �en, in order to allow for an
accurate description of Tiguan’s core algorithms, the conditional multiple stuck-
at fault model (CMS@FM) is �rst brie�y de�ned. �is is the fault model used by
Tiguan for the internal representation of faults. A thorough motivation for the need
for such a fault model will be given in Chapter 7 which is dedicated to the solution of
ATPG problems for complex fault models and of ATPG problems with optimisation
goals. �e rest of the chapter discusses the basic implementation of Tiguan, which
uses MiraXT as SAT solving back-end, and presents a �rst evaluation of the tool’s
performance.

Author’s contribution — �e author’s contribution consisted in the implement-
ation of a new, stand-alone SAT-ATPG framework (Tiguan), the de�nition of a
generic fault model (CMS@) to enable the framework’s applicability to di�erent
types of test generation problems, and a re�nement of the initial implementation in
order to make the new tool competitive in comparison to the then-state-of-the-art
SAT-ATPG tool PASSAT developed at the University of Bremen.

Parts of the work covered in this chapter have been published in [J2, C16, W10] (see author’s
publications on pages 223–226).
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4.1 Introduction

From this chapter onwards, this thesis covers the contributions to the �eld of
SAT-based test pattern generation made by the thesis’s author between 2008 and
2012. �e beginning of the work consisted in implementing a new SAT-ATPG
tool from scratch, where the main concern was to create a particularly e�cient
implementation that would permit the incorporation of new techniques to in-
crease run-time e�ciency. �e resulting tool Tiguan (Thread-parallel Integrated
test pattern Generator Utilising satis�ability ANalysis) was presented for the �rst
time in [54], and a journal version of this work was published in [55]. All sub-
sequent methods developed by the author have been integrated into this tool.
Furthermore, Tiguan has been used as a SAT-ATPG back-end engine in several
works [126, 131, 52, 82, 83], and its so�ware code base has served as basis for spin-
o� tools developed by other doctoral students at the Chair of Computer Architecture
in Freiburg [208, 206, 209, 211, 205, 210, 207].

�e SAT solving back-end engine used in Tiguan’s initial implementation was the
SAT solver MiraXT [152, 151] (also developed at the Chair of Computer Architec-
ture in Freiburg), a state-of-the-art SAT solver that incorporates various optimisa-
tion techniques. Furthermore, MiraXT supports thread parallelism, which permits
the use of multi-processor systems or multi-core processors to full capacity. A tight
integration of both tools allows Tiguan to dynamically control internal parameters
of the SAT solver, for instance whether the SAT formula is to be pre-processed prior
to solving, or what number of computation threads to use, and reduces run-time
and memory requirements as clauses can be passed to the SAT solver’s running
instance without the need of expensive communication via the �le system.

MiraXT’s support of thread parallelism was used to explore manners of improving
the run-time e�ciency of SAT-ATPG for single stuck-at faults. A two-stage method
was developed, where faults are processed using di�erent SAT solving paramet-
ers depending on the hardness of the produced SAT instances, thus enabling the
utilisation of parallelism in an e�ective way.

Tiguan also incorporates a pattern-parallel fault-simulator [73], which was, like
MiraXT, also developed at the Chair of Computer Architecture in Freiburg. �us,
Tiguan is a complete ATPG framework able to use simulation for fault dropping
(see Section 2.7) and for compaction-aiding techniques like reverse-order fault
simulation (see Section 2.7.2).

�e combination of all these factors allowed Tiguan to classify, without aborts, all
stuck-at faults in nineteen large industrial circuits containing up to two and a half
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million gates, which were provided by NXP Semiconductors GmbH Hamburg [5]15,
whereas the processing of several hard-to-solve instances was aborted by a com-
mercial ATPG tool using structural ATPG, even a�er the tool’s backtracking limit
was raised to very high levels.

A�er this successful work on stuck-at faults, Tiguan was extended such as to sup-
port complex fault models, motivated by the search for new challenges to SAT-
ATPG. �is lead to the introduction of the conditional multiple stuck-at fault model
(CMS@FM) [54, 55], which allows to model defects with fault e�ects on multiple
victim lines that are activated simultaneously if certain conditions on a number
of aggressor lines are satis�ed. �e implementation of a �exible and extensible
framework to support this fault model allowed to generate test patterns for resistive
bridges (Section 2.5) and gate-exhaustive testing [169, 43] with few or no aborts
for circuits of various sizes.

Tiguan also provides a mode in which the percentage of unspeci�ed bits in the gen-
erated patterns is maximised, which is essential for static and dynamic compaction
(Section 2.7.2) as well as for test compression [145, 192]. However, although high
densities of unspeci�ed bits can be measured for industrial circuits, the density is
usually rather low within the input cone of the fault site. �is is because SAT-ATPG
searches for a test pattern based on the SAT engine’s decision strategies which are
not guaranteed to re�ect reasoning made based on the circuit’s structure. In con-
trast, structural ATPG methods usually search for a pattern starting at the fault site
and moving towards the circuit’s inputs, thus assigning only inputs that are essential
for fault detection.

�is motivated the next research goal — the incorporation of dynamic compac-
tion techniques into SAT-ATPG [53]. A tight integration of these techniques into
Tiguan allows to guide the search of the SAT solver such as to generate patterns
that detect several faults. Tiguan’s speci�c data structures and the �exibility o�ered
by the CMS@ framework are used to dynamically extend the de�nition of a fault
according to the conditions that are necessary to guarantee the detection of other
faults.

A�er this work, large parts of Tiguan’s implementation were optimised in order to
provide a C++ library that allowed other researchers to use Tiguan as a SAT-ATPG
back-end for various applications. Along with this, also sequential expansion over
an arbitrary number of time frames (see Section 2.2.3) was implemented. �is

15Details on these circuits and on all other benchmark circuits mentioned in this thesis are listed
in Appendix A.
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allows to map dynamic faults that a�ect the circuit’s behaviour over a given number
of clock cycles to CMS@ faults in the combinational expansion of the circuit.
Furthermore, a new SAT solver developed at the Chair of Computer Architecture
in Freiburg was integrated into Tiguan. �e development of the SAT solver antom
[217] was started in 2010 with the intention of implementing a highly e�cient SAT
solver that incorporates the newest advances in SAT solving. �e solver has been
successfully deployed into di�erent test and veri�cation tools [117, 209, 210, 207],
also as a #SAT16 solver [82, 83], and as the foundation of a QBF17 solver [212, 213].
Furthermore, antom supports incremental SAT solving (see Section 3.3.3) and SAT
solving with assumptions. Assumptions is the term for an initial partial assignment
of Boolean variables that can be passed to the SAT solver. �e solver preserves those
assignments and continues the solving based on the implications of those initial
assignments. �ese features were used to develop a new fault clustering technique,
thanks to which the time required to classify all stuck-at faults in NXP’s suite of in-
dustrial benchmarks was reduced by up to 65.3% [57]. In order to increase antom’s
performance on ATPG instances, its internal control variables were adjusted using
a dedicated parameter tuning tool [127, 3].
Moreover, antom is able to solve SAT problems with qualitative preferences (see
Section 3.3.4). �is made it possible to extend Tiguan to support even more com-
plex fault models. In [57], an extension of the CMS@FM, the enhanced conditional
multiple-stuck-at fault model (ECMS@FM), was presented. �is model can specify
multiple fault locations along with a set of hard conditions imposed on arbitrary
lines; hard conditions must hold in order for the fault e�ect to become active. Ad-
ditionally, optimisation constraints that may be required for best coverage can be
speci�ed via a set of so� conditions. �e number of satis�ed so� conditions can be
manipulated (e.g. maximised) using SAT solving with preferences. Finally, in [56],
an application of the ECMS@FM to ATPG for power droop test was presented.
�e rest of this chapter introduces the CMS@FM, an example application of that
fault model, and the basic SAT-ATPG algorithm for CMS@ faults implemented
in Tiguan. �e next chapter focuses on the run-time e�ciency of SAT-ATPG for
stuck-at faults. It gives an evaluation of Tiguan’s performance on multi-core archi-
tectures based on the utilisation of MiraXT’s thread parallelism, and presents the
fault clustering technique that uses antom’s incremental SAT solving. Chapter 6
presents the work on dynamic compaction for SAT-based ATPG. Chapter 7 focuses
on the application of Tiguan to complex fault models by mapping these models to

16#SAT is the problem of determining the number of assignments that satisfy a Boolean formula.
17QBF is the problem of determining the satis�ability of a quanti�ed Boolean formula.
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CMS@ or ECMS@ faults, and on the implementation of the SAT-ATPG algorithm
for ECMS@ faults. Chapter 8 discusses the use of the ECMS@ fault model to gener-
ate test patterns for power droop testing. Finally, Chapter 9 introduces the Tiguan
library, the C++ library that was implemented in order to allow client applications
to incorporate Tiguan’s functionality. Furthermore, the chapter presents example
applications of this library, which are related to the important topics of process
variations and fault tolerance.

4.2 The CMS@ fault model

�e basic implementation of the SAT-ATPG tool Tiguan uses the conditional mul-
tiple stuck-at fault model (CMS@FM) which can be seen as an extension of the
SAFM, and which is related to generic fault modelling approaches such as fault
tuples [64], the generalised fault model [144] or Mentor Graphics’s recently intro-
duced user-de�ned fault models [158]. Chapter 7 discusses in detail the motivation
for the de�nition of this fault model and of its extension (the ECMS@FM), as well
as their applications.

4.2.1 Definition

A CMS@ fault (A, V) is described by two sets: the set of aggressor lines
A ∶= {a1, . . . , ar}, which may be empty, and the set of victim lines V ∶= {v1, . . . , vs}.
Each aggressor line ai is associated to a �xed logical value bai , and each victim line
vj has a �xed stuck-at behaviour s-a-bvj . �e behaviour of a circuit with a CMS@
fault is as follows. If an input vector sets each aggressor line ai to its associated value
bai , then the fault is activated and each victim line displays its s-a-bvj behaviour.
A test pattern that detects such a fault needs to set all aggressors to their corres-
ponding values, to excite at least one victim line vj (i.e. set its fault-free value to
¬bvj), and to propagate the error produced on at least one of the excited victim lines
to a primary output.
For better legibility, a CMS@ fault ({a1, . . . , ar},{v1, . . . , vs}), where each aggressor
line ai is associated to the value bai , and each victim line vj is associated to the
behaviour s-a-bvj , is written as follows:

if [a1 = ba1 , . . . , ar = bar] v1 s-a-bv1 , . . . , vs s-a-bvs .

If the aggressor set is empty, the fault is written as follows: v1 s-a-bv1 , . . . , vs s-a-bvs .
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�e SAFM is a subset of the CMS@FM. A single-stuck-at fault is represented by a
CMS@ fault consisting of an empty aggressor set and one single victim.

4.2.2 Example application to gate-exhaustive testing

Gate-exhaustive testing is an approach shown to be e�ective in identifying hard-to-
detect defects on actual manufactured silicon [43]. Similarly to n-detection [186, 38]
approaches, where each fault f is tested using n di�erent patterns such as to increase
the coverage of physical defects that behave like f , gate-exhaustive testing targets
each stuck-at fault at the output of a gate g and applies all input combinations to g
which excite the fault [169, 43]. For example, given a two-input and gate, the stuck-
at-1 fault at the gate’s output is tested independently by three di�erent patterns:
one that justi�es 00 at the gate’s inputs, one that justi�es 01, and one that justi�es
10, while the stuck-at-0 fault at the gate’s output is tested by only one pattern that
justi�es 11 at the gate’s inputs.

In general, 2n − 1 test patterns must be generated for the stuck-at-1 fault at the
output of an n-input and or nor gate, and for the stuck-at-0 fault at the output of a
nand or or gate. �e 2n−1 patterns must justify all input combinations in which at
least one of the gate’s inputs is set to its controlling value. For the opposite stuck-at
fault, one pattern must be generated. �at pattern has to set all inputs of the gate to
the gate’s non-controlling value, as that is the only possible way to excite the fault.
For n-input xor or xnor gates, 2n−1 patterns must be generated for the stuck-at-1
fault, and another 2n−1 patterns must be generated for the stuck-at-0 fault at the
gate’s output.

Gate-exhaustive testing is easily mapped to the CMS@FM. Each targeted input
combination to the given gate is expressed by declaring the gate’s inputs as aggressors
and imposing on them the required justi�cation targets. For example, let g be a
two-input and gate with inputs a and b. �en, the four CMS@ faults that need to
be targeted in order to exhaustively test g are the following:

▸ if [a = 0, b = 0] g s-a-1,

▸ if [a = 0, b = 1] g s-a-1,

▸ if [a = 1, b = 0] g s-a-1, and

▸ if [a = 1, b = 1] g s-a-0.
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4.3 Tiguan — overview

Given a combinational circuit modelled at gate level, a list of CMS@ faults and a set
of parameters that includes a SAT solving timeout, Tiguan generates a test set that
detects all faults whose SAT instances can be solved within the allotted time budget.
Other parameters control what pre- and post-processing steps to execute, as well
as internals of the SAT solving back-end. Figure 14 gives an overview of the basic
�ow.

do SAT-ATPG
for fault f

post-processing

found
p?

choose fault f
from fault list

generate
SAT instance

solve
SAT instance

(abort solving if
timeout is reached)

if a model is found,
extract test pattern p

classify f as
undetectable

classify f as
aborted

classify f as
detectable

no

yes

timeout

all faults
classified?

end

yes

no

test relaxation
or

random filling

fault
dropping

static
compaction

Figure 14. Tiguan — flow

First, Tiguan selects a fault from the input fault list. Although not shown in the
�gure, Tiguan also allows to pre-sort the fault list prior to the start of the process.
�e order in which faults are processed can in�uence the total run-time when
fault dropping is performed. Once a fault f has been selected, the SAT-ATPG
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engine attempts to generate a pattern for f by generating a SAT formula in CNF and
passing it to the SAT solving engine. In this thesis, the process of converting the
ATPG problem into a SAT formula is referred to as SAT instance formulation or, for
conciseness, as SAT formulation, while the process of determining the satis�ability
of the generated formula is called SAT solving.
�e SAT solver is allotted a �xed amount of time to solve the SAT instance. If the
SAT instance cannot be solved within that time, the SAT solving is aborted and a
timeout is raised. If the SAT solver �nds a model within the allotted time, a test
pattern p that detects f is extracted from the model. �e test pattern corresponds
to the values assigned to the Boolean variables that represent the circuit’s primary
inputs. If the SAT instance is unsatis�able, the fault is provably undetectable.
Depending on the result returned by the SAT solver, fault f is classi�ed as detectable,
undetectable or aborted. If the fault is found to be detectable, fault dropping is com-
bined with other post-processing steps. In fault dropping, all yet-undetected faults
are simulated when new patterns are generated, and faults detected by simulation
are classi�ed as detected and excluded from further processing, thus saving the
run-time necessary to formulate and solve their corresponding SAT instances.
Which post-processing steps are executed together with fault dropping is controlled
via the set of parameters passed to Tiguan at the beginning and can sensibly in�u-
ence the performance of the tool. For example, �lling the unspeci�ed bits of the
generated test pattern p with random values and performing fault simulation with
the �lled test pattern usually results in a larger amount of faults being detected by
simulation, which leads to fewer test generation runs and thus to better run-times.
In this case, however, the �nal test set is composed of fully speci�ed test patterns
and hence not suitable for static compaction or compression. In contrast, the test
relaxation of p allows to achieve a better compaction, but fewer faults are detected
by simulation when only partially speci�ed patterns are used.
�e full process terminates when all faults in the input fault list have been classi�ed.
In a last post-processing stage, static compaction can be applied to the �nal test set.

4.4 Generation of SAT formulae

�is section explains how Tiguan generates a SAT formula ϕ for a given CMS@
fault f such that f is detectable if and only if ϕ is satis�able.
Similarly to Larrabee’s work [147, 148], where only the sub-circuit a�ected by the
fault is duplicated to construct a simpli�ed miter (see Section 3.4), in Tiguan
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only parts of the circuit that are relevant for the justi�cation and propagation are
modelled. �is results in smaller SAT formulae that can be generated in a shorter
time without compromising the completeness of test generation. Moreover, since
the SAT problem’s worst-case complexity is exponential in the number of variables,
the size of the SAT formula has a big in�uence on the time needed for SAT solving.
Depending on the structure of the circuit and the location of a stuck-at fault, the
in�uence region of the a�ected gate can comprise less than 10% of the circuit’s
total area. Experiments with �rst, unpublished Tiguan prototypes showed that
modelling the whole circuit and modelling only the fault site’s in�uence region can
result in run-time di�erences of several orders of magnitude. In that experiment,
the average SAT solving time per instance measured for iscas’85 circuit c6288 went
down from 10 minutes to only a few seconds.

However, in order to make the process of formulating the SAT instance as e�cient as
possible, Tiguan does not actually construct the reduced miter before applying the
Tseitin transformation. Tiguan constructs a tree-like data structure in which every
node corresponds to a gate and every edge corresponds to a connection between
gates. �e data structure is designed such as to enable e�cient forwards (from PIs
to POs) and backwards (from POs to PIs) traversing of the circuit. For example,
fan-out nodes are not modelled in this data structure. Instead, nodes are allowed to
have more than one outgoing edge. While information relevant to the gate is stored
in the node object, information relevant to the connection between two speci�c
gates is stored in the corresponding edge object. Traversing e�ciency is essential,
because the assignment of Boolean variables to lines and the formulation of clauses
is done on the �y while traversing the circuit. Additionally, in order to reduce the
memory requirements, formulated clauses are immediately passed to the SAT solver
instead of being kept in a SAT-solver-external clause database.

Each node contains all information relevant to the gate represented by the node.
In order to increase the e�ciency of SAT formulation, data that do not depend
on the speci�c fault being processed are written into the nodes only once, while
only data that depend on the speci�c ATPG instance (e.g. the Boolean variables
assigned to each site) are updated for each instance. For example, the inversion
and controlling and non-controlling values of each gate need to be derived from
the gate’s type only once. Once these values have been recorded for each gate, the
Tseitin transformation of all multiple-input gates can be handled by one single
generic function that does not need to query the gate types any more.

A procedure called colouring is performed in order to determine which lines of
the circuit need to be modelled, and to what extent. �is is illustrated in Figure 15
which shows an example CMS@ fault consisting of two victim lines v1 and v2 and

71



4.4. GENERATION OF SAT FORMULAE

fault-free justification lines
(one Boolean variable per line)

v

v

a

not modelled

fault-affected lines
(two Boolean variables per line
and one D-variable per gate)

g

g

Figure 15. Circuit colouring

one aggressor line a. First, all lines that belong to the output cone of any of the
victim lines are marked as fault-a�ected (dark-grey region in Figure 15). �ese are
lines whose logic value depends on the fault site’s value and may display erroneous
behaviour in the presence of the fault. In order to permit the distinction between
stuck-at faults on di�erent branches of the same fan-out node, victim lines are
associated to gate ports instead of to gates. Hence, the fault-a�ected attribute is
assigned to gate ports. In this example, the output port of gate g1 is victim line
v1 and the �rst input port of gate g2 is victim line v2. Note that if a victim is a
gate’s input port (e.g. v2), then only the victim and the gate’s output are regarded as
fault-a�ected, not the whole gate and in particular not all other inputs of the gate.

Once all fault-a�ected primary outputs have been determined, all lines that belong
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Figure 16. Assignment of Boolean variables

to the input cone of any fault-a�ected PO or to the input cone of any aggressor line
are marked as justi�cation lines (light-grey region in Figure 15). �is set does not
include the lines that have already been coloured dark grey. �e set of justi�cation
lines comprises all lines that might have an e�ect on the logic value of aggressor
lines or on the non-fault-a�ected inputs of gates with fault-a�ected outputs. Hence,
these lines determine the justi�ability of the CMS@ fault’s activation condition and
the propagability of observed faulty behaviour. Note that, in contrast to victim lines,
aggressor lines are associated to gate outputs only.

Once the circuit colouring is �nished, Boolean variables are assigned to all coloured
lines in the circuit in one single pass. Lines that have been le� uncoloured are
excluded from the model, as such lines have no e�ect on the processing of the
current fault. Justi�cation lines are modelled by only one Boolean variable each.
�is variable represents the logic value of the line in the good circuit and is denoted
by G followed by an index (G stands for good). Each fault-a�ected line is represented
by two Boolean variables, a G-variable representing the line’s value in the good
circuit and a B-variable representing the line’s value in the faulty version of the
circuit (B stands for bad). Additionally, fault-a�ected gate outputs are assigned a
third variable — the D-variable which is used to implement the D-chain technique
(see Section 3.4) introduced in [237].

Figure 16 illustrates the assignment of Boolean variables. �e circuit portion shown
on the le�-hand side is internally modelled using the data structure shown on the
right-hand side. �e cross on the second input of gate g3 marks a victim site. In the
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right-hand model, variables are not assigned to edges, but rather to their source and
sink points. �us, since the later generation of clauses is node-local, all Boolean
variables related to each node are directly accessible by the node object without the
need of further look-up. However, the algorithm reuses Boolean variables whenever
possible in order to reduce the number of assigned variables — and thus the number
of clauses — to a minimum. For example, the source and sink points of all edges
starting at node g1 are assigned one single G-variable G3, as all these gate ports will
always have the same logic value in the fault-free circuit. Moreover, this strategy
eliminates the need to generate clauses that express the equivalence of variables
assigned to di�erent fan-out branches.
�e case of g3 illustrates that not all input ports of a gate with a fault-a�ected output
need to be assigned faulty-case variables. During the generation of clauses, the ap-
plication of the Tseitin transformation will detect which variables need to be related
to each other in order to describe the functionality of the gate. In this example, the
set of clauses {{¬G8, G5},{¬G8, G3},{¬G5,¬G3, G8}} describes g3’s functionality in
the fault-free case, while the set of clauses {{¬B2, G5},{¬B2, B1},{¬G5,¬B1, B2}}
describes the gate’s functionality in the faulty-circuit case.
When all Boolean variables have been assigned, the generation of clauses is applied
locally to each node in topological order. For each node, clauses that describe
its functionality are generated using the Tseitin transformation as in the example
above. Additionally, for nodes whose output ports have been assigned a D-variable,
clauses are generated which implement a variant of the D-chain technique which
requires only one clause per gate to connect the D-variables into chains. Given a
gate with input D-variables D1, . . . , Dn and an output D-variable Dn+1, the generated
clause is {¬Dn+1, D1, D2, . . . , Dn}. �is clause is equivalent to the Boolean expression
Dn+1 → (D1 ∨D2 ∨⋯∨Dn). Hence, it expresses that if the output of the gate carries
a fault e�ect, then the fault e�ect must also be present on at least one of its fault-
a�ected inputs. Like in the original technique, further clauses express that a line’s
D-variable is equivalent to the exclusive disjunction of that line’s G and B-variables.
�e �nal component of the SAT formula is the set of triggering clauses, which
consists of the clauses that activate the fault, the clauses that excite the fault and the
clauses that require models of the SAT instance to set the miter’s output to 1. Let
Ga be the G-variable assigned to an aggressor line a that needs to be set to a logic
value ba in order to activate the fault. �en, if ba = 0, the clause {¬Ga} is added to
the SAT formula. Otherwise, the clause {Ga} is added to the SAT formula. �is is
repeated for every aggressor line, thus setting up the conditions for fault activation.
�e condition for fault excitation, namely that a fault e�ect must be observed on at
least one victim site, is expressed by only one clause. Let v1, . . . , vn be the victim lines,
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let G1, . . . , Gn be the G-variables assigned to those lines, and let s-a-b1, . . . , s-a-bn
be their stuck-at behaviour. �en, the clause that is added to the SAT formula is
{λ1, . . . ,λn}, where λi stands for Gi if bi = 0, or for ¬Gi if bi = 1, for i = 1, . . . , n.
�e last triggering clause is the one that represents the miter’s xor gates and tree of
or gates. Since the D-variables assigned to the modelled POs already describe the
functionality of the miter’s xor gates, these gates do not need to be modelled expli-
citly. Also, the tree of or gates can modelled by one single large clause {D1, . . . , Dn},
where the Di are the D-variables assigned to the primary outputs.

4.5 Post-processing

Post-processing is applied to each generated test pattern individually. When com-
bined with fault dropping, Tiguan usually replaces the unspeci�ed bits of the gen-
erated test pattern with random speci�ed values (random �lling), such that more
patterns are detected by simulation, thus reducing the number of necessary SAT-
ATPG runs and speeding up the whole process. However, if the main goal is the
generation of a compact test set, Tiguan is also able to perform test relaxation,
i.e. to inject x-values into the generated test patterns without loss of fault coverage.
Trivially, all primary inputs that are not modelled in the SAT instance are le� un-
speci�ed. Hence, depending on the amount of circuit area covered by the fault’s
in�uence region (coloured region), already a high percentage of PIs are unspeci�ed
just by exclusion from the model. However, a large number of PIs in the coloured
region remain which can be relaxed, because fault e�ects are usually propagated
over only a limited number of paths rather than over all fault-a�ected paths. �is
especially applies to CMS@ faults with multiple victims, as it su�ces to propagate
the faulty e�ects of only one victim in order to detect the fault.
Hence, a�er the generation of each test pattern, Tiguan performs an input-output-
cone analysis based on which paths are sensitised by the found pattern. An example
is illustrated in Figure 17. Here, the same CMS@ fault as in Figure 15 is shown,
but a�er a test pattern p has been generated. �e example assumes that p excites
only victim v1, and that fault e�ects are propagated only over three paths π1, π2
and π3. �en, Tiguan determines the number of primary inputs that belong to
the input cone of each of these paths and chooses to consider only the path whose
input cone contains the smallest number of primary inputs (π2 in the example).
All primary inputs that lie outside of the chosen path’s input cone can be relaxed
without invalidating fault detection, however without the exclusion of PIs belonging
to the input cones of aggressor lines. Also in the case that the found sensitised paths
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Figure 17. Input-output-cone analysis for test relaxation

belong to di�erent victims, the path whose input cone has the smallest number
of PIs is chosen, regardless of which of the victims it belongs to, as it su�ces to
observe the fault e�ect of only one victim. An advantage of SAT-ATPG is that
neither simulation nor a dedicated search are required to perform this analysis.
�e sensitised paths correspond to primary outputs whose D-variables have been
assigned to logic 1 by the SAT solver, and this information is already contained in
the solution of the SAT problem. Also, the analysis of input cones of the primary
outputs needs to be done only once a�er the initialisation of the circuit model. A�er
the generation of each test pattern, this does not need to be repeated, as it is already
known which primary outputs require the speci�cation of less primary inputs.

Additional analysis can be carried out in order to inject more x-values into the
remaining cones. In [68], a technique consisting in locally analysing justi�cation
conditions in order to relax more cones is implemented. For instance, given an
and gate whose output is 0, only one of the inputs which has been set to 0 needs
to be justi�ed. All other inputs of the gate can remain unjusti�ed; hence the PIs in
their respective input cones can be relaxed. However, this technique can be very
time-consuming when combined with SAT-ATPG, as SAT-ATPG does not have
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additional information to aid such an analysis, whereas structural ATPG algorithms
collect that kind of information without negative e�ect on their performance. Struc-
tural algorithms may even be optimised in a way that such an analysis is made
super�uous. For example, in [185], PODEM’s backtracing is modi�ed such as to
sensitise di�erent paths every time that a value is to be justi�ed on a speci�c line,
thus increasing the e�ciency of fault dropping. Such approaches, however, are not
directly applicable to SAT-ATPG, as the main advantage of SAT-ATPG, especially
when applied to undetectable and hard-to-detect instances, stems from the liberty
the SAT solver has to apply SAT-speci�c pruning techniques that are not aware of
the structure of the original problem.

One attempted approach to utilise SAT-speci�c techniques consisted in modifying
Tiguan’s SAT solving engine MiraXT, which usually returns only fully speci�ed
SAT solutions. An experimental modi�cation allowed the relaxation of the SAT
solutions to be carried out by the SAT solver instead of externally. However, the
percentage of variables that could be relaxed without compromising MiraXT’s run-
time was very low and, in all observed cases, none of the relaxed Boolean variables
corresponded to primary inputs but to internal lines of the circuit. �e reason why
this experiment failed is that the core SAT solving algorithm could not be changed
without a�ecting the performance of the SAT solver; hence, the relaxation was
performed by a simple and fast heuristic analysis a�er the normal solving routine
had terminated. As was explained in Section 3.3, modern SAT solvers employ
techniques that avoid repeated and thorough inspection of the clause database.
�e watched-literals technique is one such strategy. A further technique that has
made modern solvers very e�cient [151] consists in setting all variables of a SAT
instance to either a �xed value or to a random value prior to the start of the search
routine. �en, the search routine is aimed at solving the existing con�icts rather
than at satisfying each clause individually. Such a solving paradigm is obviously
counterproductive towards the generation of SAT models with a high number of
unspeci�ed variables.

�e tool used for fault dropping is a 64-bit PPSFP (parallel-pattern single-fault
propagation, see Section 2.6) fault simulator [73] that was originally developed for
the simulation of resistive bridges [197, 75, 78] and was adapted to the CMS@FM.
In order to bene�t from the simulator’s parallelism, fault simulation is not invoked
a�er every SAT-ATPG run, but only when a previously �xed number of new test
patterns have been accumulated. �e number of patterns that are collected before
doing actual simulation is called simulation width, and can be chosen to be any
number less than 64, since the tool is not restricted to 64-bit fault simulation.

Initially, the strategy to choose the best simulation width was expected to be of
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concern, given that the simulator’s parallel-processing capability can be utilised
optimally only if the simulation width is as high as the host processor’s bit width.
In this case, though, waiting until enough patterns have been collected may result
in the generation and solution of SAT instances corresponding to faults that would
have been detected by simulation if the simulation had been carried out instantly.
However, the experiments later showed that the fault simulator is so e�cient that
its run-time is nearly negligible in comparison to the ATPG run-time. Hence,
the choice of a simulation width can be made independently of run-time concerns.
Given the run-times of the individual tasks performed by Tiguan, it was determined
that it is generally safe to choose a high simulation width.

�e only post-processing step executed a�er the generation of all test patterns has
�nished is the static compaction, which is only e�ective if no random �lling has
been applied. �e static compaction implemented in Tiguan consists of a greedy
merging algorithm. Given a sequence of test patterns p1, . . . , pr, the algorithm tests
the compatibility of each pattern pi to each pattern pj with j > i and, if found
compatible, pi is replaced by pi ∩ pj, and pj is dropped from the test set.

4.6 Evaluation of Tiguan’s performance

Tiguan was applied to iscas’85 circuits and to the combinational cores of iscas’89
and itc’99 circuits, and to the suite of industrial circuit benchmarks provided by
NXP. When not otherwise stated, the measurements were performed on a 2.8 GHz
AMD Opteron computer with 16 GB RAM. Note that MiraXT is a 32-bit application;
hence, the memory use of a Tiguan process was limited to 4 GB.

All the experiments presented in this chapter were performed without employing
the SAT engine’s multi-threading mode, i.e. the SAT solving of each instance was
done by only one computation thread on one processor. �is permitted a fair
comparison to the tool developed at the University of Bremen, PASSAT, which is
not capable of multi-threading, and to a commercial ATPG tool that employs a
structural algorithm. An evaluation of the impact of multi-threaded SAT solving is
given in Chapter 5.

4.6.1 Stuck-at faults

First, tests for stuck-at faults were generated for larger iscas’85 circuits and for the
combinational cores of larger iscas’89 and itc’99 circuits. No timeout was imposed
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Table 4

SAT-ATPG without fault dropping for stuck-at faults — iscas and itc’99 circuits

run-time (s)

classi�cation average per fault

circuit faults detected undetectable formulation solving total

c1355 1,574 1,566 8 0.0010 0.0011 4.5
c1908 1,879 1,870 9 0.0010 0.0006 4.6
c2670 2,747 2,630 117 0.0010 0.0003 5.4
c3540 3,428 3,291 137 0.0020 0.0006 14.0
c5315 5,350 5,291 59 0.0010 0.0002 10.3
c6288 7,744 7,710 34 0.0030 0.0014 61.8
c7552 7,550 7,419 131 0.0010 0.0003 19.4

cs01196 1,242 1,242 0 0.0000 0.0001 1.0
cs01238 1,355 1,286 69 0.0000 0.0001 1.0
cs01423 1,515 1,501 14 0.0000 0.0001 1.2
cs01488 1,486 1,486 0 0.0000 0.0001 0.6
cs01494 1,506 1,494 12 0.0000 0.0001 0.6
cs05378 4,603 4,563 40 0.0000 0.0001 4.1
cs09234 6,927 6,475 452 0.0010 0.0003 16.8
cs13207 9,815 9,664 151 0.0010 0.0003 19.2
cs15850 11,725 11,336 389 0.0020 0.0006 47.8
cs35932 39,094 35,110 3,984 0.0010 0.0002 62.3
cs38417 31,180 31,015 165 0.0020 0.0003 89.7
cs38584 36,303 34,797 1,506 0.0010 0.0002 71.1

b13c 801 801 0 0.0000 0.0000 0.1
b14c 16,167 16,137 30 0.0030 0.0019 122.1
b15c 21,282 20,545 737 0.0050 0.0068 378.8
b17c 68,207 66,552 1,655 0.0050 0.0064 1,168.6
b18c 206,812 206,430 382 0.0110 0.0049 5,022.8
b20c 35,731 35,661 70 0.0050 0.0030 470.3
b21c 36,058 35,976 82 0.0050 0.0030 453.0
b22c 51,341 51,243 98 0.0050 0.0030 619.9

on SAT solving; hence, all faults were classi�ed. Also, no fault dropping was utilised
such as to allow for a realistic evaluation of the core test generation algorithm.
Table 4 reports the results of this experiment. �e �rst two columns quote the circuit
names and the number of targeted faults. �e input fault lists comprised all stuck-at
faults a�er the removal of locally equivalent faults (see Section 6.3 for details). �e
third column indicates how many faults were classi�ed as detected, i.e. for which
faults a test pattern could be generated (the SAT formula was found to be satis�able),
and the fourth column shows the number of provably undetectable faults, i.e. of
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Table 5

SAT-ATPG with 32-bit fault dropping for stuck-at faults — nxp circuits

run-time (s)

classi�cation average per fault

circuit faults det und abr patterns frm slv sim total

p35k 67,733 66,721 1,012 – 11,536 0.0330 0.0278 0.0007 1,364
p45k 68,760 68,564 196 – 3,604 0.0050 0.0017 0.0008 47
p77k 120,348 113,049 7,299 – 5,318 0.0290 0.3455 0.0510 5,454
p78k 163,310 163,310 0 – 468 0.0050 0.0006 0.0061 7
p81k 204,174 202,981 1,193 – 7,529 0.0100 0.0017 0.0015 162
p89k 150,538 148,604 1,934 – 9,868 0.0070 0.0015 0.0018 154
p100k 162,129 161,404 725 – 5,142 0.0060 0.0032 0.0028 91
p141k 282,428 279,189 3,239 – 8,893 0.0500 0.0337 0.0024 1,706
p267k 366,871 365,423 1,448 – 11,579 0.0200 0.0031 0.0037 447
p269k 369,055 367,607 1,448 – 11,633 0.0180 0.0031 0.0046 436
p286k 650,368 640,103 10,264 1 20,243 0.0410 0.0490 0.0062 3,456
p295k 472,022 468,174 3,847 1 22,786 0.0240 0.0053 0.0042 1,159
p330k 540,758 535,070 5,656 32 23,392 0.0380 0.0388 0.0048 3,208
p378k 816,534 816,534 0 – 1,107 0.0220 0.0007 0.0145 44
p388k 881,417 876,750 4,665 2 11,975 0.0290 0.0078 0.0065 830
p469k 142,751 140,869 1,762 120 578 0.0940 4.4455 1.7238 13,139
p951k 1,557,914 1,542,633 15,281 – 20,899 0.0600 0.0011 0.0119 2,668
p1522k 1,697,662 1,681,874 15,788 – 63,549 0.0730 0.0099 0.0173 9,324
p2927k 3,527,607 3,412,613 114,907 87 39,842 0.1560 0.0308 0.0602 33,758

faults whose corresponding SAT formula was found to be unsatis�able. �e next
two columns quote the average time in seconds that was needed to formulate a
SAT instance (formulation) and to solve it (solving). Since no fault simulation was
employed, the SAT formulation and SAT solving processes were called once for each
fault. �e number of generated patterns is not quoted, as no compaction techniques
were employed. Hence, the number of generated patterns equals the number of
detected faults. Finally, the last column shows the total time in seconds that was
required to process all faults. With the exception of one circuit (b18c), Tiguan was
able to classify all faults with an average processing time of less than 0.01 seconds
per fault. �is also includes structurally complex circuits like c6288, which is a
16-bit multiplier known among the testing community as a hard benchmark.

Tiguan was also applied to large industrial circuits provided by NXP. As usual for
circuits of their size, fault dropping was utilised. Fault dropping was combined
with random �lling to maximise the amount of faults detected by simulation, and a
simulation width of 32 was chosen, i.e. 32 new generated patterns were collected
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before each simulation run, and all collected patterns were simulated in PPSFP
fashion. �e results are summarised in Table 5. Like in the previous table, the
�rst two columns quote the circuit names and the number of targeted faults, again
all stuck-at faults a�er the removal of equivalent faults. �e third, fourth and
��h columns indicate the distribution of the faults into classes of detected (det),
provably undetectable (und) and aborted (abr) faults. Detected faults are faults for
which a test pattern could be generated or faults that were detected by simulation.
Provably undetectable faults are faults whose corresponding SAT formula was found
to be unsatis�able, and aborted faults are those whose corresponding SAT formula’s
satis�ability could not be determined within 20 seconds. �e timeout of 20 seconds
per fault was chosen taking the tool PASSAT as reference, which also employed
that time limit in the experiments shown later in this section. For thirteen of these
nineteen circuits, Tiguan was able to classify all faults in limited SAT solving time.
From the six circuits in which faults were classi�ed as aborted, only two circuits have
a number of aborts that stands out among the rest. In the case of p2927k, this can be
attributed to the size of the circuit. Since the number of both variables and clauses
is linear in the number of gates contained in the coloured area of the circuit, and
given p2927k’s large size (2,539,052 gates)18, the SAT formulae generated for this
circuit are on average larger than the formulae generated for other circuits. Hence,
the same timeout of 20 seconds per fault has a greater e�ect on this circuit. Still,
the 87 aborts constitute only 0.002% of the targeted faults. In the case of p469k, the
number of aborts is higher, especially in comparison to this circuit’s relatively small
size (49,771 gates). However, extensive experimental data have shown that this
circuit generally makes di�erent testing tools (e.g. the stand-alone RBF simulator
SUPERB [74]) display their worst-case behaviour. No exhaustive analysis has been
carried out in this regard, but a possible explanation might be this circuit’s large
depth19 in relation to its number of inputs and outputs. �is has also been observed,
though to a smaller scale, for circuit p77k. Also, the fraction of undetectable faults
(i.e. of potentially harder SAT instances) in these two circuits is higher than in all
other circuits.

�e sixth column shows the number of test patterns that were generated, which is
smaller than the number of detected faults due to the possibility of detection by
simulation. Note that no dynamic or static compaction techniques were employed
in the experiments presented in this chapter.

18See Appendix A for details on the used benchmark circuits.
19A circuit’s depth is the number of gates that form the circuit’s longest complete path between a

primary or secondary input and a primary or secondary output.
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�e last four columns report the run-times measured for this experiment. All times
are given in seconds. Columns frm, slv and sim list the average time per run required
for the di�erent stages of fault processing, i.e. for SAT formulation, SAT solving
and fault simulation, respectively. �e di�erences between these average times are
best appreciated in Figure 18, which shows these data in graphical form20. �e total
time required for the complete processing of all faults is shown in the last column.

It has been noted before, e.g. in [108], that sophisticated performance enhancements
are usually e�ective only for few hard-to-detect faults, while the processing of easy-
to-detect faults tends to be slowed down. �e same could be observed for Tiguan
in preliminary experiments, given that the average SAT solving time per instance is
of less than 0.1 seconds for all but two of these circuits despite their large sizes. For
this reason, some of MiraXT’s pre-processing steps were switched o� permanently,
and this applies to all experimental results presented in this thesis. More details on
the pre-processing techniques employed by MiraXT are given in Section 5.1.1.

�e average run-times measured for the single steps of the test generation process
lead to two important observations. �e �rst observation is that, due to the e�-
cient implementation of the employed fault simulator, the time needed for fault
simulation is very low and can be regarded as nearly negligible. �is is not directly
evident in the table, where the quoted average simulation time per run is generally
smaller than the average SAT solving time per run, but still in the same order of
magnitude. However, since simulation is performed only a�er the collection of 32
new and di�erent patterns, at least 32 SAT formulation and SAT solving runs take
place for each simulation run.

�e second observation is that, with few exceptions, the SAT formulation times
are higher than the SAT solving times, which means that the SAT formulation
procedure is successful in formulating SAT instances that are e�ciently solvable.
�is was also the case for the application of Tiguan to iscas and itc’99 circuits
(Table 4), and other authors have observed a similar relation between these times
in their implementations [244]. Two notable exceptions are the circuits p77k and
p469k. In these two cases, the SAT formulation time is not signi�cantly above the
average of all circuits, but the corresponding SAT solving times are several orders
of magnitude higher than in all other circuits. �is corroborates the observation
that these two circuits tend to force testing tools to their worst-case behaviour. �e
average fault simulation times of these two circuits are also above the average, which
suggests that the internal structure of these two circuits (which contain very long

20For better legibility, circuit p469k is not included in Figure 18.
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Figure 18. SAT-ATPG with 32-bit fault dropping for stuck-at faults — average times per

run in comparison (columns 7–9 in Table 5)
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paths) requires the traversing of very large parts of the search space to determine
the detectability of a fault.
Table 6 compares Tiguan’s performance (number of aborted faults — there were
no aborts for itc’99 circuits — and total run-time in seconds) to the best published
PASSAT results that were available at the time when these experiments were carried
out [67]. �e table includes only the circuits for which results on PASSAT’s per-
formance were available. �e same parameters as in [67] were chosen, i.e. a timeout
of 20 seconds per fault and the use of fault of dropping. For reference, a dual-core
Xeon computer with 3 GHz and 32 GB RAM was used in [67]. Tiguan’s numbers
of aborted faults correspond to those shown in the ��h column of Table 5, while the
run-times correspond to the last column of Table 5. PASSAT’s results correspond
to the fourth and ��h columns of Table VI in [67] (run-times were converted into
seconds).
Except for circuits b15c and and p469k, Tiguan classi�es more faults than PASSAT
and has better run-times. A possible explanation for the notable di�erence observed
for circuit p469k may be the fact that the results in [67] were obtained using MiniSat
v1.14, whereas Tiguan uses MiraXT. Since di�erent SAT solvers usually employ
di�erent sets of default parameters to guide their decision heuristics, they may
perform di�erently when applied to certain types of SAT formulae despite having the
same performance on average random SAT formulae. However, the large number of
aborts produced by PASSAT for p469k in comparison to the other circuits, con�rms
the observation that p469k is a circuit that leads to particularly hard ATPG instances.
Circuits p89k, p141k and p951k contain tri-state elements21. Since Tiguan and
its fault simulation back-end do not support multi-valued logic, bufif1 gates were
replaced by and gates and invif1 gates were replaced by nand gates, which retains
the circuit’s functionality22. Hence, for these circuits, Tiguan’s run-time advantage
is partially owed to the simpli�ed encoding of tri-state elements. PASSAT uses a
four-valued logic that includes the high-impedance value z, but only in the circuit
areas that can be in�uenced by tri-state elements, while the rest of the circuit is
modelled using Boolean logic. According to [67], these three circuits contain 6.73%,

21Tri-state elements are bu�ers (bufif1) or inverters (invif1) with an additional control input.
If the control input is set to logic 1, the gate behaves like a normal bu�er or inverter. If the control
input is set to logic 0, the gate’s output adopts a high-impedance state that disconnects it from the
circuit. Tri-state bu�ers are used to allow the output of several gates to be connected to one single
line (a bus). �e control signals of all tri-state elements driving one single bus are then set such that
only one driver is active at a time.

22To prevent bus contention, additional clauses that ensure that at most one driver is active at the
same time need to be generated.
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Table 6

SAT-ATPG with 32-bit fault dropping for stuck-at faults — performance comparison

with PASSAT [67]

Tiguan PASSAT

circuit time (s) time (s)

b14c 13.2 19.0
b15c 44.0 24.0
b17c 123.6 142.0
b18c 341.8 1,350.0
b20c 29.4 56.0
b21c 33.3 59.0
b22c 36.0 95.0

Tiguan PASSAT

circuit aborted time (s) aborted time (s)

p35k – 1,364.0 – 1,561.0
p81k – 162.0 – 583.0
p89k – 154.0 – 573.0
p100k – 91.0 – 410.0
p141k – 1,706.0 – 4,740.0
p469k 120 13,139.0 77 6,180.0
p951k – 2,668.0 1 18,300.0

Table 7

SAT-ATPG without fault dropping for stuck-at faults — classification and performance

comparison with PASSAT [86]

classi�cation Tiguan PASSAT

circuit faults detected undetectable aborted time (s) aborted time (s)

c0432 524 520 4 – 0.5 – 2.6
c0499 758 750 8 – 1.0 – 21.0
c1355 1,574 1,566 8 – 4.5 – 32.5
c1908 1,879 1,870 9 – 4.6 – 14.4
c3540 3,428 3,291 137 – 14.0 – 47.9
c7552 7,550 7,419 131 – 19.4 – 106.5

cs01494 1,506 1,494 12 – 0.6 – 2.7
cs05378 4,603 4,563 40 – 4.1 – 14.3
cs15850 11,725 11,336 389 – 47.8 – 121.3
cs38417 31,180 31,015 165 – 89.7 – 191.3

b10c 486 486 0 – 0.1 – 0.3
b11c 1,436 1,434 2 – 1.0 – 4.8
b12c 2,827 2,826 1 – 1.5 – 5.6
b14c 16,167 16,137 30 – 122.1 – 1,426.8
b15c 21,282 20,545 737 – 378.8 – 2,673.6

p81k 204,174 202,981 1,193 – 4,429 – 12,116
p89k 150,538 148,604 1,934 – 2,544 – 5,755
p100k 162,129 161,404 725 – 2,102 19 15,397
p141k 282,428 279,189 3,239 – 29,938 236 95,452
p951k 1,557,914 1,542,633 15,281 – 158,875 132 166,791
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26.13% and 8.11%, respectively, of elements that required four-valued modelling.
All other circuits are purely Boolean, and PASSAT uses only two-valued logic to
model them.

In order to compare Tiguan’s and PASSAT’s test generation algorithms independ-
ently of fault simulation, also experiments without fault dropping were performed.
�e results are shown in Table 7. �e results quoted for PASSAT are the best num-
bers achieved by PASSAT among di�erent learning techniques presented in [86].
For reference, an AMD Athlon computer with 2.2 GHz and 1 GB RAM was used
in [86]. Tiguan’s results were generated with a timeout of 20 seconds per fault (as
in [86]). Again, Tiguan outperforms PASSAT regarding both aborts and run-time
for all circuits.

Finally, the performance of Tiguan was compared to a commercial ATPG tool
that employs a structural algorithm. �e results are listed in Table 8. �e results
are organised in �ve groups of columns, each consisting of a column abr which
shows the number of aborted faults, and a column time which lists the total run-
time in seconds. �e �rst group corresponds to the application of Tiguan to the
combinational cores of larger itc’99 circuits and to nxp circuits using a low timeout
of 0.5 seconds per fault. �e second group summarises Tiguan’s performance using
a timeout of 20 seconds per fault. Note that these numbers are not the same as those
quoted in Table 5, as these experiments were carried out on a di�erent machine (a
2.3 GHz AMD Opteron computer with 4 GB RAM). �e third group corresponds to
Tiguan’s performance without a time limit. Hence, all faults were classi�ed and this
group contains no abr column. �e experiment with a timeout of 20 seconds was
started only for circuits for which Tiguan was not able to classify all faults within
the time limit of 0.5 seconds. Analogously, only circuits with aborted faults using a
timeout of 20 seconds were considered for the experiment without a timeout. As
expected, the run-times of the experiment with 20 seconds timeout are in general
higher than those with a 0.5 seconds timeout, and the number of aborted faults is
lower. An interesting �nding is that there are circuits (b18c and p295k) for which
the 20s-experiment has a lower run-time than the 0.5s-experiment even though
more faults are classi�ed. �is stems from natural run-time variations that can
be observed for the SAT solving of formulae for which the time needed to set up
the internal data structures of the SAT solver is higher than the time needed for
the search, which in general applies to formulae derived for SAT-ATPG, as will be
discussed in Chapter 5. Since the initialisation of data structures involves mostly
operations like memory allocation, its run-time can vary depending on the current
workload of the operating system.

�e run-time comparison between the 20s-experiment and the experiment without
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Table 8

SAT-ATPG with 32-bit fault dropping for stuck-at faults — comparison with a commer-

cial tool (structural ATPG)

Tiguan structural ATPG

0.5s timeout 20s timeout no timeout default high con�ict limit

circuit abr time (s) abr time (s) time (s) abr time (s) abr time (s)

b14c – 14 – – – 3 4 2 1,708
b15c – 46 – – – 166 63 1 10,437
b17c – 122 – – – 481 171 4 18,920
b18c 1 395 – 392 – 247 250 56 121,274
b20c – 32 – – – 6 15 4 2,393
b21c – 38 – – – 7 10 6 3,407
b22c – 41 – – – 2 16 2 4,173

p35k – 1,529 – – – 2 74 1 6,936
p45k – 54 – – – 15 14 – 1,053
p77k 2,554 4,311 – 5,346 – 381 1,475 unknown > 700,000
p78k – 7 – – – – 10 – –
p81k – 153 – – – 201 69 65 51,356
p89k – 198 – – – 2 33 – 356
p100k – 103 – – – 260 90 11 22,928
p141k 1 1,847 – 1,889 – 24 144 13 18,468
p267k – 474 – – – – 119 – –
p269k – 506 – – – 17 121 – 12,828
p286k 129 2,099 1 3,260 3,497 78 313 11 13,637
p295k 5 1,229 1 1,164 1,228 19 307 12 7,013
p330k 93 2,781 31 3,272 23,475 186 426 36 26,827
p378k – 52 – – – – 62 – –
p388k 31 879 2 934 1,263 66 272 7 23,903
p469k 9,170 13,611 147 14,695 30,815 210 4,189 unknown > 700,000
p951k – 2,781 – – – 193 1,692 – 14,595
p1522k 121 13,160 – 13,400 – 1,159 3,201 448 313,969
p2927k 1,189 34,475 92 39,724 50,812 5,601 4,108 165 264,202

time limit illustrates that the hard-to-solve ATPG instances of a circuit can be dis-
proportionately harder than the same circuit’s remainder of instances. For example,
in the case of circuit p330k, 20,203 seconds are required to process the 31 faults that
cannot be classi�ed using a timeout of 20 seconds per fault, which means that these
31 faults require an average SAT solving time of more than 600 seconds, while this
circuit has 540,665 faults with an average SAT solving time of less than 0.5 seconds.

�e second-to-last group of columns in Table 8 corresponds to the performance
of the commercial tool using its default parameters. In comparison to Tiguan,
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the commercial tool has lower run-times, but it aborts the processing of a consid-
erable number of faults. �e largest di�erences between Tiguan’s run-time and
the commercial tool’s run-time can be observed for the large nxp circuits, as these
circuits have a very large number of faults, most of which are easy to detect. Hence,
the structural ATPG algorithm has a better performance. However, the di�erence
between Tiguan’s run-time and the commercial tool’s run-time is less pronounced
for the smaller itc’99 circuits. For example, for circuit b17c, which has a large
fraction of undetectable faults, Tiguan is able to classify all faults in less time than
the commercial tool, whereas the commercial tool even produces 481 aborts.

Finally, the last group of columns summarises the performance of the commercial
tool using a very high con�ict limit. Instead of using timeouts, the commercial tool
aborts the processing of a fault when the search has reached a certain number of
con�icts. Using this strategy allows the commercial tool to produce deterministic
results regarding which faults are aborted. �e experiment with the high con�ict
limit was applied only to circuits for which the tool was not able to classify all faults
using default parameters. For circuits p77k and p469k, the experiment with the high
con�ict limit was aborted manually a�er 700,000 seconds. In contrast to Tiguan,
increasing the con�ict limit leads to a disproportionate grow of the total run-time,
which becomes higher than Tiguan’s highest run-time for all circuits, while there
are still many faults that cannot be classi�ed. Assuming that the faults aborted by
the commercial tool using its default parameters constitute the group of faults that
can be regarded as generally hard for structural ATPG algorithms, this shows that
there is a subset of these faults which are particularly harder for structural than
for SAT-based algorithms. �is is especially evident for circuits p77k and p469k,
for which the commercial tool using default parameters has a considerably better
performance than Tiguan. When the con�ict limit was increased, the commercial
tool was not able to classify all faults of these two circuits even a�er 700,000 seconds.

Table 9 shows the results of the last experiment, which was performed in order to
evaluate the performance of the SAT-based algorithm for faults that are regarded
as hard by the structural tool. �e table shows the average run-time per fault that
Tiguan needed to generate the SAT formula (column group SAT formulation), to
solve the SAT instance (column group SAT solving) and to perform the complete
processing of a fault (column group test generation), for the set of all stuck-at faults
(columns all) and for the set of faults that were aborted by the commercial tool using
its default parameters (columns hard). �e test generation time includes the SAT
formulation time, the SAT solving time and also the time required for miscellaneous
tasks like fault simulation.

�e last line shows the average over all circuits. In general, the formulation of
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Table 9

SAT-ATPG for stuck-at faults — evaluation of hard-to-detect faults

average run-time per fault (s)

SAT formulation SAT solving test generation

circuit all hard all hard all hard

p35k 0.0330 0.0380 0.0278 0.0220 0.0615 0.0600
p45k 0.0050 0.0040 0.0017 0.0029 0.0075 0.0069
p77k 0.0290 0.0350 0.3455 1.7769 0.4255 1.8124
p81k 0.0100 0.0090 0.0017 0.0019 0.0132 0.0109
p89k 0.0070 0.0240 0.0015 0.0600 0.0103 0.0840
p100k 0.0060 0.0080 0.0032 0.0352 0.0120 0.0432
p141k 0.0500 0.0450 0.0337 0.0247 0.0861 0.0697
p269k 0.0180 0.0260 0.0031 0.0092 0.0257 0.0352
p286k 0.0410 0.0320 0.0490 0.2941 0.0962 0.3274
p295k 0.0240 0.0300 0.0053 1.0714 0.0335 1.1014
p330k 0.0380 0.0220 0.0388 4.4320 0.0816 4.4564
p388k 0.0290 0.0390 0.0078 0.6604 0.0433 0.7017
p469k 0.0940 0.1060 4.4455 7.4815 6.2633 7.5889
p951k 0.0600 0.0590 0.0011 0.0090 0.0730 0.0745
p1522k 0.0730 0.1130 0.0099 0.0811 0.1002 0.2017
p2927k 0.1560 0.2050 0.0308 0.6693 0.2470 0.8877

average 0.0421 0.0496 0.3129 1.0395 0.4737 1.0914

the SAT instances for hard faults needs more time, but the average di�erence is
of only 0.0075 seconds per fault, which shows that the SAT generation is largely
una�ected by the fault hardness. In contrast, the average SAT solving time increases
by a factor of 3.32, which shows that all faults regarded as hard by the structural
algorithm are on average harder for the SAT-based algorithm as well, but the factor
of 3.32 can be regarded as moderate, especially in comparison to the performance
of the commercial tool with a high con�ict limit. For circuit p469k, which is a hard
benchmark, the increase factor is even smaller (1.68). �e average increase factor
of the total test generation time per fault is of only 2.30, which proves that SAT-
ATPG performs particularly well on SAT instances that are too hard for structural
algorithms.

4.6.2 CMS@ faults with non-empty aggressor sets

In order to evaluate Tiguan’s performance on more complex faults, Tiguan was
used to generate gate-exhaustive test sets. Table 10 summarises the application of
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Table 10

CMS@-based SAT-ATPG with 32-bit fault dropping for gate-exhaustive testing — iscas’85,

iscas’89 and itc’99 circuits

classi�cation run-time (s)

circuit faults detected undetectable patterns avg/�t total

c1355 2,466 1,996 470 299 0.0009 2
c1908 5,440 3,846 1,594 552 0.0007 4
c2670 5,308 4,413 895 545 0.0006 3
c3540 10,358 5,364 4,994 596 0.0022 23
c5315 12,084 10,194 1,890 1,069 0.0004 4
c6288 9,664 7,934 1,730 439 0.0019 18
c7552 15,050 12,345 2,705 1,227 0.0006 9

cs01196 2,298 2,106 192 350 0.0002 0
cs01238 2,392 2,087 305 379 0.0003 1
cs01423 2,564 2,313 251 278 0.0002 1
cs01488 3,306 3,046 260 303 0.0001 0
cs01494 3,330 3,040 290 303 0.0001 0
cs05378 9,958 8,563 1,395 549 0.0002 2
cs09234 17,642 14,866 2,776 1,074 0.0005 9
cs13207 26,004 22,950 3,054 1,381 0.0006 15
cs15850 29,922 26,703 3,219 1,213 0.0009 26
cs35932 60,064 46,484 13,580 128 0.0004 23
cs38417 70,236 66,228 4,008 2,425 0.0003 20
cs38584 75,278 64,629 10,649 1,549 0.0003 24

b13c 1,246 1,132 114 98 0.0000 0
b14c 30,138 23,366 6,772 3,511 0.0023 70
b15c 41,402 29,718 11,684 2,144 0.0045 186
b17c 138,230 97,826 40,404 6,041 0.0040 554
b18c 396,886 292,165 104,721 16,084 0.0058 2,313
b20c 66,444 52,049 14,395 5,048 0.0028 187
b21c 66,420 52,444 13,976 5,597 0.0029 192
b22c 94,022 73,540 20,482 5,522 0.0026 244

Tiguan to generate gate-exhaustive test sets for larger iscas and itc’99 circuits,
and Table 11 shows the results obtained for nxp circuits. �e test generation was
combined with 32-bit fault dropping (with random �lling), and a timeout of 20
seconds per fault was imposed on SAT solving. No multi-threading was used.
Note that the fault simulator was extended such as to respect the de�nition of the
CMS@FM. �at means, that a CMS@ fault is regarded as detected by simulation
only if the simulated test pattern sets all aggressors to their corresponding values in
addition to propagating a fault e�ect to a primary output.
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Table 11

CMS@-based SAT-ATPG with 32-bit fault dropping for gate-exhaustive testing — nxp cir-

cuits

classi�cation run-time (s)

circuit faults detected undetectable aborted patterns avg/�t total

p35k 150,898 136,980 13,918 – 19,049 0.0242 3,657
p45k 148,232 131,604 16,628 – 4,163 0.0009 140
p77k 254,176 215,505 38,667 4 12,271 0.0336 8,543
p78k 274,200 238,385 35,815 – 765 0.0009 258
p81k 404,348 361,938 42,410 – 28,773 0.0022 899
p89k 306,680 276,373 30,307 – 16,859 0.0016 496
p100k 328,516 293,707 34,809 – 7,195 0.0015 479
p141k 577,922 523,183 54,739 – 12,801 0.0102 5,871
p267k 850,024 781,926 68,098 – 18,631 0.0032 2,731
p269k 854,364 786,266 68,098 – 18,646 0.0032 2,717
p286k 1,265,588 1,091,567 174,020 1 28,619 0.0089 11,202
p295k 986,740 880,130 106,607 3 29,613 0.0054 5,351
p330k 1,166,046 1,037,130 128,843 73 36,401 0.0102 11,934
p378k 1,370,984 1,191,909 179,075 – 1,980 0.0037 5,117
p388k 1,663,442 1,463,686 199,754 2 17,317 0.0049 8,220
p469k 312,784 241,562 70,844 378 652 0.1618 50,603
p951k 3,250,198 2,884,773 365,425 – 28,050 0.0089 28,863
p1522k 3,708,692 3,350,769 357,923 – 80,404 0.0140 52,036
p2927k 7,048,378 6,253,392 794,723 263 51,340 0.0241 169,859

�e second column of these two tables shows the number of targeted faults. �e
columns labelled detected, undetectable and aborted indicate how many faults were
detected by pattern generation or by simulation, how many faults were proved
undetectable, and how many faults were le� unclassi�ed due to a SAT solving
timeout, respectively. �e circuits on Table 10 had no aborted faults; hence, a
column aborted is not included in that table. �e next column (patterns) shows the
amount of generated test patterns, which is signi�cantly smaller than the number
of detected faults due to the use of fault dropping, but no compaction techniques
were employed. �e last two columns quote the average run-time needed to process
each fault (this time comprises SAT formulation, SAT solving and fault simulation),
and the total run-time needed to process the whole fault list.

�e total run-times are higher than the run-times measured for stuck-at faults, but
this is due to the very large number of targeted faults, while the average time needed
to process each fault is in the same order of magnitude. �us, although these faults
have non-empty aggressor sets, they are on average not signi�cantly harder than
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stuck-at faults, which can be attributed to the presence of only one victim and to the
fact that all aggressors of a CMS@ fault for gate-exhaustive testing are connected
to the inputs of one single gate, which means that the area of the modelled part of
the circuit is not increased in comparison to stuck-at faults. However, the larger
number of aborted faults leads to the conclusion that hard-to-detect CMS@ faults
with non-empty aggressor lists are on average harder than hard-to-detect stuck-
at faults. Nonetheless, Tiguan was able to e�ciently classify CMS@ faults with
non-trivial additional conditions with only very few aborts.

In order to evaluate Tiguan’s performance on even more complex faults, and in
particular, in order to evaluate the impact the number of victims and aggressors
has on a fault’s hardness, Tiguan was used to generate tests for three sets of 10,000
randomly generated CMS@ faults. In contrast to CMS@ faults for gate-exhaustive
testing, the aggressors and victims belonging to each random fault were allowed
to be located anywhere on the circuit. �us, with growing number of aggressors
and victims, the faults are expected to be harder to process due to an increased area
of the modelled part of the circuit. �e experiment was applied with a timeout of
20 seconds per fault, and fault dropping was performed with a simulation width
of 32. No multi-threading was used. Table 12 (a) lists the results. Columns 2–4
show the results for the �rst set of faults, where all faults had one aggressor and
three victims. Columns 5–7 list the results for faults with �ve aggressors and �ve
victims, and the last three columns report results on faults with ten aggressors and
ten victims. �e columns labelled det list the number of detected faults in each
fault list, the columns labelled und list the number of provably undetectable faults,
and the columns labelled time show the total run-time in seconds. �e number of
aborted faults is shown separately in Table 12 (b). Only the circuits p77k and p469k
produced aborts, which repeatedly con�rms that these circuits are particularly hard
benchmarks.

�e �rst observation that can be made is that the fraction of undetectable faults
among the 10,000 faults and the total run-time both increase with growing number
of aggressors and victims. �is con�rms the correlation between the undetectability
of faults and the hardness of their corresponding ATPG instances (with respect
to structural or SAT-based approaches), which has been previously observed for
stuck-at faults. Although the fraction of undetectable faults grows also in the case
of the industrial nxp benchmarks, it is lower among these circuits than among
the smaller iscas and itc’99 circuits, and this is especially evident for the CMS@
faults with ten aggressors and ten victims. �is can be attributed to the depth of
the nxp circuits, which is rather small in relation to their number of inputs and
outputs, which means that the input cones of the primary outputs of these circuits
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Table 12

SAT-ATPG with 32-bit fault dropping for sets of 10,000 random CMS@ faults

(a) classi�cation and run-time

1 aggressor, 3 victims 5 aggressors, 5 victims 10 aggressors, 10 victims

circuit det und time (s) det und time (s) det und time (s)

c1355 8,186 1,814 31.99 6,287 3,713 33.49 2,637 7,363 33.29
c1908 8,101 1,899 41.33 6,477 3,523 44.84 2,587 7,413 47.53
c2670 9,276 724 34.23 8,256 1,744 40.24 5,291 4,709 46.71
c3540 7,762 2,238 66.69 4,911 5,089 75.12 1,234 8,766 84.09
c5315 9,392 608 49.3 9,061 939 64.45 7,031 2,969 87.51
c6288 8,835 1,165 156.76 8,983 1,017 182.13 7,968 2,032 287.24
c7552 9,214 786 76.71 8,750 1,250 103.05 6,231 3,769 142.93

cs05378 9,220 780 27.47 8,424 1,576 40.48 5,801 4,199 64.78
cs09234 8,844 1,156 63.96 8,218 1,782 86.16 5,321 4,679 137.12
cs13207 9,293 707 38.73 8,940 1,060 61.26 6,961 3,039 88.94
cs15850 9,156 844 82.8 8,876 1,124 116.96 7,034 2,966 180.26
cs35932 9,204 796 33.01 8,570 1,430 47.71 6,357 3,643 65.02
cs38417 9,429 571 62.43 9,736 264 89.91 9,325 675 171.95
cs38584 8,825 1,175 51.06 7,504 2,496 64.36 4,724 5,276 102.17

b13c 9,530 470 4.5 7,689 2,311 6.13 3,592 6,408 9.45
b14c 8,818 1,182 199.32 7,362 2,638 261.55 4,584 5,416 336
b15c 8,150 1,850 352.59 5,254 4,746 398.55 1,817 8,183 489.5
b17c 9,306 694 473.15 8,238 1,762 656.99 5,167 4,833 1,044.97
b18c 9,576 424 719 8,829 1,171 1,061.83 6,514 3,486 1,710.64
b20c 9,277 723 352.13 8,767 1,233 523.53 6,758 3,242 749.46
b21c 9,353 647 353.66 8,739 1,261 547.62 6,726 3,274 731.52
b22c 9,457 543 377.55 9,196 804 618.42 7,593 2,407 881.88

p35k 9,297 703 1,413.24 9,400 600 1,581.93 8,623 1,377 1,551.26
p45k 9,388 612 145.49 9,104 896 222.83 7,539 2,461 356.12
p77k 8,846 1,138 5,254.23 8,049 1,943 3,479.69 5,708 4,292 2,447.43
p78k 9,556 444 163.3 9,760 240 255.92 9,441 559 468.65
p81k 9,546 454 366.8 9,778 222 591.78 9,582 418 1,275.26
p89k 9,552 448 246.69 9,720 280 386.52 9,221 779 773.97
p100k 9,511 489 205.97 9,674 326 315.16 9,029 971 699.18
p141k 9,465 535 1,653.21 9,633 367 2,604.32 9,307 693 4,056.55
p267k 9,434 566 550.17 9,806 194 617.73 9,605 395 1,083.35
p269k 9,419 581 512.65 9,798 202 726.02 9,582 418 1,068.83
p286k 9,410 590 931.46 9,533 467 1,133.44 8,653 1,347 1,891.96
p295k 9,391 609 618.43 9,036 964 687.67 7,280 2,720 1,018.1
p330k 9,420 579 921.99 9,819 181 1,571.12 9,545 455 2,263.24
p378k 9,567 433 521.98 9,796 204 518.48 9,419 581 742.96
p388k 9,497 503 621.94 9,911 89 836.72 9,895 105 1,344.34
p469k 6,623 1,867 79,985.77 4,808 1,541 114,489.46 1,701 1,394 157,864.57
p951k 9,560 440 927.9 9,786 214 1,229.66 9,530 470 1,181.92
p1522k 9,511 489 1,965.6 9,743 257 2,457.8 9,390 610 5,230.21
p2927k 9,196 804 3,359.97 9,455 545 2,479.48 8,958 1,042 4,043.21

(b) aborted faults

circuit 1 agg, 3 vic 5 agg, 5 vic 10 agg, 10 vic

p77k 16 8 –
p469k 1,510 3,651 6,905
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are relatively narrow, and hence, that the probability that the conditions imposed
on the ten random aggressors con�ict with each other is lower than in the smaller
circuits.
With the exception of p77k and p469k, Tiguan is able to classify all faults without
aborts and using the same time limit that was used to classify stuck-at faults, which
are intuitively less complex than the random CMS@ faults shown here, as single-
stuck-at faults have only one victim and no aggressors. Furthermore, it can be
observed that the increase of total run-time is less severe than the increase of un-
detectable faults, which shows that the application of Tiguan to such hard faults
bene�ts from the advanced SAT-based learning techniques. �us, Tiguan is espe-
cially suitable for complex fault models that allow the de�nition of multiple fault
e�ects and the imposition of multiple conditions for fault activation.

4.7 Conclusions

In this chapter, the SAT-based test pattern generator Tiguanwas presented. Tiguan
can classify all single-stuck-at faults in large industrial circuits and in structur-
ally complex iscas circuits, even without the utilisation of the SAT engine’s multi-
threading capability. Tiguan outperforms the tool PASSAT developed at the Uni-
versity of Bremen, which constituted the state-of-the-art in SAT-ATPG at the time
when the experiment was performed. Also a comparison to a commercial tool
that uses a structural algorithm was presented. �e analysis of the results proves
that SAT-based ATPG performs particularly well for faults that are too hard for
structural algorithms.
Tiguan works internally with the CMS@FM, a generic fault model that enables the
representation of multiple victim lines with stuck-at behaviour as well as conditional
fault activation in function of multiple aggressor lines. Experiments on CMS@ faults
for gate-exhaustive testing and on random CMS@ faults with many aggressors and
many victims show that Tiguan is especially suitable for the application to complex
fault models.
An important result is that the time needed for SAT formulation is not only non-
negligible, but on average even higher than the time needed for SAT solving. In
the second part of the next chapter, a fault clustering technique is presented which
eliminates a large number of SAT formulation runs, and reduces the SAT solving
time thanks to incremental SAT solving, thus signi�cantly increasing Tiguan’s
run-time e�ciency.
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5

Optimising the run-time of

SAT-based ATPG

A�er the introduction of the SAT-ATPG tool Tiguan in the previous chapter,
this chapter focuses on techniques to improve Tiguan’s run-time e�ciency. �e
�rst part of the chapter gives insight into the algorithms used by the SAT engine
MiraXT23. �is is done with the purpose of explaining some of the modi�cations
made to MiraXT for a better performance on SAT formulae generated by Tiguan24,
and of introducing MiraXT’s implementation of multi-threading, which is essential
to understand the evaluation of Tiguan’s performance on multi-core architectures
that follows. �e second part of the chapter introduces the SAT engine antom
and explains the most important di�erences between antom and MiraXT from the
point of view of a SAT-ATPG application. �en, a fault clustering technique that
utilises antom’s incremental SAT solving is presented and evaluated.

Author’s contribution — �e author’s contribution consisted in the perform-
ance evaluation of SAT-ATPG on multi-core architectures, and the engineering of a
two-stage method to best exploit MiraXT’s multi-threading capability. In addition,
the author integrated the new SAT engine antom into Tiguan, and developed the
fault clustering technique, paying special attention to preserving the e�ciency of
existing code base.

Parts of the work covered in this chapter have been published in [J2, C16, C7, W10, W9, W7,
W5, W2] (see author’s publications on pages 223–226).

23See Section 3.3 for a general introduction to algorithms for the solution of the SAT problem.
24�ese modi�cations were part of the initial implementation process of Tiguan. Hence, the

experimental results shown in Section 4.6 already re�ect these optimisations.
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5.1 SAT-ATPG with thread-parallel SAT solving

As processor design has approached the limits of speed scalability, the last dec-
ade has brought about multi-core architectures as a way of further optimising the
run-time of computationally complex tasks. Processes can distribute tasks among
several computation threads, and all threads can run in parallel, each on an own
processor or processor core, thus reducing the real time needed to complete the
task. However, as di�erent threads have to communicate with each other, and due
to task dependencies between threads, the speed-up scaling is usually sub-linear in
the number of threads.

Several algorithms in the �elds of electronic design automation and testing have
been ported to multi-core architectures such as to bene�t from this new paradigm
of computing. �e SAT-based test pattern generator Tiguan, which supports multi-
threaded SAT solving, is an example of such a tool. �e relevant question is how the
tool can bene�t from these architectures in an optimal way. Signi�cant research on
distributed ATPG has been performed in the past [88], albeit based on the general
assumption that the communication between processor nodes is very expensive.
However, modern multi-core architectures have largely rendered this assumption
invalid thanks to design principles that locate individual cores in physical proximity
of each other. Also fast buses (such as AMD’s HyperTransportBus) and multi-level
cache design that enables fast communication between threads have increased the
usability of multi-core architectures.

In this section, Tiguan’s performance on multi-core architectures is evaluated ex-
perimentally using the SAT solver MiraXT, which is able to distribute the SAT
solving process among several computation threads. In this context, it is important
to consider the average properties of SAT instances derived from ATPG in compar-
ison to the type of SAT instances that have driven the development of modern SAT
solvers, namely instances derived from problems in the �eld of formal veri�cation.
Here, the typical workload is characterised by few, but very hard and usually un-
satis�able SAT instances (e.g. equivalence checks or property checks). �is means
that most modern SAT solvers have been tuned for e�ciency on instances whose
hardness can be regarded as above-average from the point of view of ATPG. In
fact, it was shown in the previous chapter that more than 90% of the SAT instances
derived from ATPG for large industrial circuits can be solved very fast, even without
the use of sophisticated speed-up techniques. �is poses the question whether the
optimisation techniques found in modern SAT solvers are suitable for the solution
of the average SAT-ATPG instance. In order to answer this question, this section
analyses the performance of the various stages of the SAT solving process.
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In addition, it was shown in Section 4.6 that the few hard SAT-ATPG instances can
be disproportionately harder than the rest. In [67], the same observation motivated
a two-stage approach, where a commercial structural ATPG tool was �rst applied
to all faults, while a SAT-based ATPG tool (without thread parallelism) was applied
only to the faults aborted by the structural ATPG engine. In this section, this
principle is applied to a purely SAT-based solution, exploiting the fact that Tiguan
is able to dynamically control the internal parameters of the SAT solver MiraXT.

5.1.1 The SAT solving back-end MiraXT

�is section brie�y introduces the SAT solver’s architecture and some of the al-
gorithmic details that were modi�ed to optimise its performance as a SAT solving
back-end for Tiguan. More information on the SAT solver’s internals can be found
in [151].

Given a SAT formula ϕ in CNF, MiraXT computes a model of ϕ if ϕ is satis�able.
As a pre-processing step, MiraXT applies the unit propagation rule — the triggering
clauses of a SAT formula produced by Tiguan may include several unit clauses —
and the pure-literal rule. MiraXT is also able to apply further pre-processing tech-
niques. Along with variable elimination through resolution and clause elimination
through subsumption, MiraXT uses a unit propagation look-ahead routine (UPLA)
similar to techniques employed by Stålmarck’s Proof Procedure [223] and to tech-
niques implemented in March_eq [115] and RSAT [178]. �is technique consists in
assigning 1 to any yet unassigned variable X1 and recording all implications of that
assignment, then assigning the variable to 0 and recording also that assignment’s
implications, and �nally analysing both sets of implications according to a �xed set
of rules. For example, if X1 implies X2 and ¬X1 implies ¬X2 for a variable X2, then
both variables are equivalent and all occurrences of X2 can be replaced by X1.

However, these three advanced techniques did not prove bene�cial for Tiguan. �e
time needed to perform the required analysis exceeded the speed-up that these
techniques produced on the later solving. Hence, these pre-processing steps were
permanently switched o� for MiraXT’s use in Tiguan.

One reason why Tiguan did not bene�t from MiraXT’s advanced pre-processing
is the speci�c structure of SAT formulae derived from ATPG. First of all, due to
Tiguan’s e�cient assignment of Boolean variables, the generated SAT formulae do
not contain the amount of redundancy that the subsumption technique intends to
eliminate. Second, although SAT formulae derived from the ATPG problem can
have very large numbers of clauses and variables, most variables appear in only
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Table 13

Influence of VSIDS on the SAT solving time

old VSIDS new VSIDS

circuit avg slv (s) total (s) avg slv (s) total (s)

b14c 0.0021 21 0.0017 18
b15c 0.0066 62 0.0052 55
b17c 0.0059 194 0.0052 186
b18c 0.0039 672 0.0031 576
b20c 0.0040 74 0.0032 67
b21c 0.0035 72 0.0030 67
b22c 0.0039 101 0.0032 83

norm avg 100% 100% 82.3% 74.4%

few clauses as all variables stand for circuit lines and the SAT formula contains
only clauses that express those lines’ relationship to other lines in their immediate
vicinity. In addition, except for triggering clauses, which can have as many variables
as there are coloured primary outputs, clause size is bound by the number of ports
of the modelled gates. As a consequence, the application of UPLA was not able to
reveal useful global implications.

Further preliminary experiments showed that also some of MiraXT’s parameters
which guide the search need to be modi�ed for better performance in SAT-ATPG.
For example, although the search procedure of modern SAT solvers is in principle
DPLL-based, some solvers assign a random value to all Boolean variables at the
beginning, and then try to resolve all con�icts rather than satisfy every single clause.
�is results in an equally valid solution, but the search is guided in a more intelligent
way. For MiraXT’s application in Tiguan, experimental data revealed that it is
better to assign �xed values (for example, only 0 or only 1) instead of random
values at the beginning. Also MiraXT’s decision strategy was modi�ed. MiraXT
employs the VSIDS decision strategy (Variable-State Independent Decaying Sum,
see Section 3.3.2). In VSIDS, every variable is assigned a counter that is incremented
at every occurrence of the variable in a clause. Due to Tiguan and MiraXT’s tight
integration, the initial values of these counters are computed on the �y as soon as
Tiguan submits a new clause. During the solving process, the counters only need
to be incremented when new learnt clauses are added to the clause database. �en,
whenever a variable needs to be chosen, the variable with the largest number of
occurrences is chosen. In order to enable the identi�cation of variables with the
most occurrences, the variable list must be sorted a�er each update of a counter,
which MiraXT implements using bucket sort.
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A�er the addition of originally 512 new learnt clauses, all variable counters are
divided by two (e�ciently implemented with a right shi�). �is is called a decay
operation and has the aim of giving variables that occur in newer con�ict clauses
preference over those in older con�ict clauses. Experiments determined that in-
creasing the frequency of decay operations allows MiraXT to solve Tiguan’s SAT
instances in shorter time. Table 13 shows the average SAT solving times per fault
and the total run-times for larger itc’99 circuits, using MiraXT’s default VSIDS
strategy (column group old VSIDS), and using the strategy with an increased fre-
quency of decay operations (column group new VSIDS). �e last row quotes the
normalised average. Increasing the frequency of decay operations lead to a decrease
of total run-time of about 25%. �e reason for this is that more frequent decay
operations translate into new con�ict clauses being given even more preference
over older con�ict clauses. Such a decision strategy is better suited to Tiguan’s SAT
instances due to the rather limited scope of their variables.
Along with early-con�ict-detection-based BCP and other innovations like implica-
tion queue sorting, one of MiraXT’s most prominent features is that it was the �rst
modern SAT solver that took advantage of modern multi-core processors [151]. Fig-
ure 19 depicts MiraXT’s design architecture. �e basis is a shared-memory system
that runs within the bounds of one single process. Hence, the di�erent computation
threads, which can be executed in parallel on di�erent processor cores, can share
data structures, global variables and pointers, and are thus able to access shared
information at any time. In particular, con�ict clauses learnt by one thread are
immediately available to all other threads.
�e shared-memory architecture allows the threads to communicate with each
other faster than in message-passing-based systems. However, shared memory
requires the implementation of systems to cope with race conditions and data
hazards. In order to avoid the reduction of concurrency, all of MiraXT’s operations
are implemented in a manner that requires only few locks. For instance, data
structures that are frequently used, like watched literals and VSIDS counters, are
either stored in each thread’s private part of the memory and not shared, or they
are shared in read-only form. In MiraXT, locks are needed for only three activities:

▸ adding new con�ict clauses and deleting old ones,
▸ generating and receiving new sub-problems,
▸ reporting a �nal solution if one exists.

Adding and deleting con�ict clauses is the most common reason for the need of
locks. In order to reduce the number of required locks, each thread analyses clauses
recently inserted by other threads before inserting a new clause. �is analysis can
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Figure 19. MiraXT — design architecture

be done without locks as the other clauses are not modi�ed by it. If they are found
to be more e�ective, e.g. because they prune larger parts of the search space, the
new clause is not inserted at all. In addition, the deletion of clauses is implemented
by a two-stage garbage collection strategy that almost eliminates the need for locks.
A�er the application of the pre-processor, which operates directly on the clause
database in a single-threaded fashion, the solving procedure is computed by several
threads running in parallel, where each thread is in charge of a portion of the search
tree. �is approach is known as search-space splitting [153]. Running and idle
threads are coordinated by a master control object (MCO) of very limited complexity
which never intervenes in the threads’ computation process.
At the beginning of the solving, the complete decision tree is given to one of the
threads. All other threads communicate to the MCO that they are idle. Idle threads
are put into sleep mode in which they do not poll and consequently do not cause
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communication overhead. Running threads poll the MCO periodically whether
any global events have occurred. Example global events are “SAT instance has been
solved”, “timeout has been exceeded” or “a thread has become idle”. In the latter
case, the MCO makes one of the running threads divide its sub-problem into two
parts, wakes one of the idle threads and transfers control of one problem part to
that thread.
If a thread determines its sub-problem to be unsatis�able, it inserts the derived
con�ict clauses into the database and enters the idle state. �e process terminates
when either one thread �nds a satisfying assignment, or if the MCO eventually
determines that all threads have become idle. In the latter case, the complete search
space has been exhausted and the SAT instance is identi�ed as unsatis�able.

5.1.2 Performance of Tiguan on multi-core architectures

A series of experiments were performed on large industrial benchmarks provided
by NXP. All experiments presented in this section were executed on a 2.3 GHz AMD
Opteron computer with 4 Quad-Core processors (hence, up to sixteen computation
threads can run in parallel, each on an own processor core) and 64 GB RAM. Note,
however, that MiraXT is a 32-bit application; hence, the memory use of a Tiguan
process is limited to a total of 4 GB independently of the number of SAT solving
threads.
It has been noted before, e.g. in [108], that sophisticated performance enhancements
are e�ective for relatively few hard-to-detect faults while the processing of easy-to-
detect faults tends to be slowed down. �e same could be observed for Tiguan in
preliminary experiments, which is why some of MiraXT’s pre-processing techniques
were switched o� permanently. �e next question is whether the same applies to
multi-threaded SAT solving. Table 14 shows two extreme examples: circuit p45k,
a circuit with 99.7% detectable faults, for which the average SAT solving time per
fault amounts to 0.0017 seconds and the largest measured SAT solving time lies
below 0.5 seconds (see Table 5); and circuit p469k which has been proved to be
a hard benchmark, with an average SAT solving time per fault of 4.4455 seconds
and a maximal SAT solving time of several thousand seconds. In this experiment,
all stuck-at faults were targeted using di�erent numbers of computation threads
between 1 and 16 and a �xed timeout of 3 seconds per fault. �is time limit was
chosen such as to be selective on p469k. �e table shows the average run-time per
fault of di�erent stages of fault processing, the total run-time in seconds (columns
total) and the number of aborted faults (column abr) for these two circuits (no faults
were aborted for p45k). �e columns labelled thr quote the thread initialisation
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Table 14

SAT-ATPG with multi-threaded SAT solving for stuck-at faults

p45k p469k

run-time (s) run-time (s)

average/fault average/fault

threads thr slv tpg total abr thr slv tpg total

1 0.0039 0.0039 0.0165 83 917 0.1135 2.2389 2.4978 16,229
2 0.0079 0.0045 0.0200 99 284 0.1764 1.0810 1.3810 5,447
3 0.0107 0.0027 0.0204 111 123 0.2540 0.8553 1.2270 4,941
4 0.0133 0.0046 0.0246 123 53 0.3477 0.7454 1.2128 5,150
5 0.0152 0.0024 0.0240 139 27 0.4496 0.6885 1.2581 5,659
6 0.0184 0.0061 0.0307 154 18 0.5188 0.6409 1.2752 5,487
7 0.0219 0.0051 0.0336 177 10 0.6303 0.6572 1.4085 6,085
8 0.0257 0.0032 0.0356 197 1 0.6904 0.5806 1.3879 6,264
9 0.0266 0.0048 0.0375 206 0 0.8028 0.6645 1.5941 6,886

10 0.0294 0.0040 0.0399 221 1 0.8962 0.6751 1.6975 7,295
11 0.0335 0.0029 0.0429 243 3 0.9845 0.6765 1.7884 7,346
12 0.0364 0.0040 0.0469 259 5 1.0679 0.6909 1.8844 7,896
13 0.0417 0.0058 0.0540 289 1 1.1467 0.7070 1.9691 8,217
14 0.0447 0.0043 0.0555 302 8 1.2398 0.7509 2.1063 8,911
15 0.0491 0.0040 0.0597 326 1 1.3225 0.6233 2.0582 8,543
16 0.0509 0.0061 0.0637 353 2 1.4276 0.8399 2.3848 9,801

time, i.e. the time that the SAT solver needs to set up the data structures for the
di�erent computation threads prior to the start of the actual solving process. �e
columns labelled slv quote the run-time needed for the actual SAT solving process,
i.e. for the search for a Boolean solution. Finally, the columns labelled tpg list the
total run-time needed to process one fault. It includes the thread initialisation time,
the SAT solving time and the time needed for other tasks that are not performed in
thread-parallel fashion, like SAT formulation and fault simulation.

It can be seen that the thread initialisation time increases linearly with the number of
threads, and the same was observed for other circuits that are not shown in the table.
�read initialisation includes tasks like allocating memory for pointers to the shared
clause database and is independent of the hardness of the SAT instance. Instead,
this run-time depends on the size of the SAT formula in terms of the number of
contained clauses and variables and on the e�ciency of the operating system. �e
results show that this time also depends linearly on the number of threads, i.e. on the
amount of memory to allocate and data structures to initialise. For all these reasons,
the thread initialisation time cannot be optimised. In contrast, the average SAT
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solving time varies depending on the number of computation threads. In the case
of p45k, where all instances can be regarded as easy to solve, the communication
overhead leads to variations that cannot be analysed systematically. In general, the
average SAT solving time remains in the same order of magnitude for all numbers
of threads. In combination with a linearly growing thread initialisation time, the
average test generation time per fault increases consistently with a growing number
of threads, and so does the total run-time. �is suggests that the application of multi-
threaded SAT solving is ine�ective for circuits like p45k with only easy-to-solve
ATPG instances.

A di�erent trend can be observed for the particularly hard circuit p469k. Here, a
higher number of threads leads not only to fewer aborted faults, but also reduces
the average SAT solving time which reaches its best value for 8 computation threads.
However, using more than 8 threads does not reduce the average SAT solving time
any further, which, combined with a linearly growing thread initialisation time,
leads to test generation times per fault that grow to nearly the same value as in the
experiment with 1 thread. However, for large numbers of threads, the number of
aborted faults remains low since the growing test generation time stems largely from
the large thread initialisation times, while the average SAT solving time is still better
than in the experiments with 1 or 2 threads, even as it does not improve for thread
numbers greater than 8. Altogether, it can be seen that the quality of test generation
for hard-to-detect faults bene�ts from multi-threading both in terms of number of
classi�ed faults and total run-time. However, the best results are observed for about
8 computation threads, while a larger number of threads does not lead to further
improvement.

In order to achieve a better understanding of the impact of multi-threading on SAT-
ATPG for hard-to-detect faults, a second experiment was performed considering
only hard circuits and only faults that were aborted by a commercial structural
ATPG tool using its default parameters (see also Table 8). No SAT solving timeout
was imposed on Tiguan; hence, all considered faults were classi�ed either as detect-
able or as provably undetectable. Table 15 reports the average times per fault and
the total run-times (columns labelled tot). �e meaning of the columns labelled
thr, slv and tpg is the same as in Table 14. �ese data are also shown in graphical
form in Figure 20.

Like in the previous experiment, it can be seen that the thread initialisation time
increases linearly with the number of threads. However, since only hard-to-detect
faults are considered and the average SAT solving times are higher than in the �rst
experiment, the thread initialisation times lie below the average SAT solving times
in all cases. Regarding the average SAT solving time, it decreases rapidly for up to
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Table 15

SAT-ATPG with multi-threaded SAT solving for hard-to-detect stuck-at faults

p295k (19 faults) p330k (186 faults) p388k (66 faults)

avg/�t (s) avg/�t (s) avg/�t (s)

threads thr slv tpg tot (s) thr slv tpg tot (s) thr slv tpg tot (s)

1 0.01 3.61 3.65 72 0.00 83.77 83.79 15,588 0.01 4.38 4.42 295
2 0.03 2.63 2.69 73 0.00 58.84 58.87 10,965 0.01 3.35 3.39 251
3 0.04 1.68 1.75 55 0.01 31.45 31.48 5,880 0.02 2.94 2.99 227
4 0.05 1.16 1.24 47 0.01 26.20 26.24 4,906 0.02 2.79 2.86 217
5 0.06 1.95 2.04 51 0.01 17.94 17.97 3,395 0.03 2.38 2.44 189
6 0.07 1.53 1.64 55 0.01 13.78 13.82 2,596 0.03 1.80 1.87 154
7 0.09 0.79 0.91 40 0.02 13.48 13.52 2,546 0.04 1.91 1.98 160
8 0.13 1.11 1.27 47 0.02 12.49 12.53 2,356 0.04 2.20 2.28 181
9 0.11 1.32 1.46 53 0.02 10.63 10.67 1,997 0.05 2.14 2.22 177

10 0.12 0.89 1.05 45 0.03 10.38 10.43 1,972 0.06 2.02 2.11 173
11 0.13 2.16 2.33 67 0.03 8.21 8.25 1,567 0.06 1.73 1.82 148
12 0.15 1.16 1.34 48 0.03 7.69 7.75 1,470 0.06 1.80 1.90 160
13 0.18 1.68 1.90 59 0.03 7.77 7.83 1,485 0.07 1.74 1.85 154
14 0.17 1.05 1.26 43 0.04 7.34 7.40 1,412 0.07 1.79 1.89 158
15 0.19 0.89 1.12 45 0.04 6.34 6.40 1,221 0.08 1.80 1.92 160
16 0.21 1.21 1.46 50 0.04 6.23 6.29 1,204 0.08 1.73 1.85 153

p469k (210 faults) p2927k (5,601 faults)

avg/�t (s) avg/�t (s)

threads thr slv tpg tot (s) thr slv tpg tot (s)

1 0.08 14.12 14.32 3,026 0.03 4.12 4.29 24,204
2 0.19 5.14 5.46 1,186 0.06 2.64 2.90 16,566
3 0.25 2.67 3.03 686 0.08 2.01 2.28 13,207
4 0.33 2.09 2.54 586 0.11 1.58 1.86 10,970
5 0.43 1.93 2.48 597 0.14 1.49 1.82 10,873
6 0.49 1.48 2.08 510 0.16 1.24 1.56 9,498
7 0.60 1.85 2.57 636 0.18 1.21 1.55 9,459
8 0.69 1.70 2.51 643 0.22 1.28 1.70 10,452
9 0.74 1.57 2.43 614 0.24 1.13 1.53 9,601

10 0.87 1.71 2.70 699 0.27 1.28 1.73 10,853
11 0.91 1.62 2.65 688 0.28 1.08 1.52 9,682
12 1.00 1.83 2.95 765 0.31 1.12 1.59 10,174
13 1.13 1.91 3.16 829 0.35 1.24 1.76 11,227
14 1.17 1.64 2.93 787 0.36 1.17 1.70 10,955
15 1.21 1.73 3.05 807 0.38 1.17 1.71 11,041
16 1.32 1.76 3.19 864 0.41 1.16 1.73 11,269
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Figure 20. Data from Table 15 in graphical form
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4–6 computation threads and then stagnates, �uctuates randomly or even increases.
Hence, the behaviour of the average SAT solving time in function of the number of
threads is the same behaviour that was observed for p469k in the �rst experiment.
A possible reason for this phenomenon is the constant-rate learning performed by
the individual threads. In this experiment, each thread generates roughly 10,000
new con�ict clauses per second. Due to MiraXT’s shared-memory architecture,
this leads to memory congestion, which slows down the solving process when the
number of threads is too high.

�e overall observation is that SAT-ATPG for hard-to-detect faults bene�ts strongly
from thread-parallel SAT solving up to a certain number of computation threads,
while SAT-ATPG for easy-to-solve instances is consistently slowed down due to
the large thread initialisation time. Consequently, a two-stage ATPG strategy was
implemented. In the �rst stage, Tiguan was run with an aggressive SAT solving
time limit of 1 second per fault in order to �lter out harder SAT instances. In the
second stage, Tiguan was applied to the remaining faults (hard-to-detect faults)
with a higher timeout of 20 seconds per fault and employing thread parallelism.
Table 16 (a) summarises the results for circuits with at least one abort during the
�rst stage. �e second and third columns quote the run-time of the �rst stage and
the number of faults aborted during the �rst stage, respectively. �is is also the
number of faults targeted in the second stage. �e remaining columns are organised
in three groups reporting the performance of the second stage using multi-threaded
SAT solving with 1, 2 and 4 threads. �e columns labelled abr quote the number of
faults that remained unclassi�ed a�er the second stage, while the columns labelled
time and total quote the total run-time in seconds of the second stage and the
accumulated run-time of both stages, respectively.

Table 16 (b) compares the best results observed for the two-stage approach to the
results obtained by the one-stage approach with a timeout of 20 seconds and without
a timeout (there are no aborts in this case). �e experiment without timeout was
only performed for circuits where not all faults could be classi�ed with a timeout of
20 seconds. �e second column indicates the number of threads employed during
the second stage that leads to the results quoted in the third and fourth columns.

It is apparent that the two-stage method is advantageous for several circuits. With a
higher number of employed threads, the number of faults the second stage manages
to classify is consistently better, and also the run-times of the second stage are better,
especially for hard circuits like p469k. However, there are circuits for which the
second stage yielded better results using a lower number of threads. �is applies
to circuits with either only few faults targeted in the second stage or with hard-
to-detect faults that are not too hard on average. In comparison to the one-stage
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Table 16

Two-stage thread-parallel SAT-ATPG for stuck-at faults

(a) two-stage approach

�rst stage second stage (20s timeout)

(1s timeout) 1 thread 2 threads 4 threads

circuit time (s) abr abr time (s) total (s) abr time (s) total (s) abr time (s) total (s)

p77k 4,545 1,322 – 2,940 7,485 – 1,354 5,899 – 1,003 5,548
p286k 2,115 126 1 1,459 3,574 1 1,232 3,347 1 1,609 3,724
p295k 1,062 3 1 45 1,107 1 62 1,124 1 66 1,128
p330k 2,376 70 31 806 3,182 17 616 2,992 16 491 2,867
p388k 800 2 2 40 840 2 41 841 2 40 840
p469k 17,929 2,680 141 10,434 28,363 28 3,343 21,272 3 2,152 20,081
p1522k 9,295 22 – 63 9,358 – 15 9,310 – 19 9,314
p2927k 25,856 666 92 3,929 29,785 80 3,298 29,154 73 3,120 28,976

(b) comparison to one-stage approach

best results of one-stage approach

two-stage approach 20s timeout no timeout

circuit threads aborted total (s) aborted time (s) time (s)

p77k 4 – 5,548 – 5,454 –
p286k 2 1 3,347 1 3,456 3,497
p295k 1 1 1,107 1 1,159 1,228
p330k 4 16 2,867 32 3,208 23,475
p388k 4 2 840 2 830 1,263
p469k 4 3 20,081 120 13,139 30,815
p1522k 2 – 9,310 – 9,324 –
p2927k 4 73 28,976 87 33,758 50,812

approach, the run-time and number of aborts of the two-stage method are both
considerably lower in many cases (e.g. p330k and p2927k). In the case of p469k,
the two-stage approach needs 20,081 seconds as opposed to the one-stage method
that needs only 13,139 seconds, but the two-stage approach leaves only 3 faults
unclassi�ed. In contrast, the one-stage method without timeout needs a total of
30,815 seconds to classify all faults. Hence, the two-stage approach o�ers the best
compromise between number of aborts and run-time.

�e two-stage test generation was also applied to CMS@ faults for gate-exhaustive
testing. Hard-to-detect faults were identi�ed for circuits p330k, p469k and p2927k
by running Tiguan in single-threaded mode with a timeout of one second per fault.
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Table 17

Two-stage thread-parallel CMS@-based SAT-ATPG for gate-exhaustive testing

p330k p469k p2927k
(1st st: 25,601s, 203 abr) (1st st: 59,493s, 5,480 abr) (1st st: 340,603s, 1,621 abr)

2nd stage 2nd stage 2nd stage

threads abr time (s) total (s) abr time (s) total (s) abr time (s) total (s)

1 70 2,087 27,688 421 23,919 83,412 284 11,666 352,269
2 38 1,550 27,151 147 10,713 70,206 260 10,212 350,815
4 36 1,246 26,847 18 5,614 65,107 258 9,651 350,254
6 38 1,196 26,797 7 6,610 66,103 246 9,272 349,875
8 30 1,055 26,656 3 6,527 66,020 246 9,533 350,136

12 28 948 26,549 1 7,119 66,612 247 10,590 351,449
16 27 898 26,499 0 8,566 68,059 232 10,133 350,736

�e number of faults targeted in the �rst stage was of 1,166,046 for p330k (about
12% of them undetectable), 312,784 for p469k (23% of them undetectable), and
7,048,378 for p2927k (about 11% of them undetectable). For p330k, the run-time
for the �rst stage was of 25,601 seconds, and 203 faults were aborted. For p469k,
all but 5,480 faults were classi�ed in 59,493 seconds, and for p2927k, the run-time
of the �rst stage was of 340,603 seconds, with 1,621 aborted faults. �e second
stage was executed by Tiguan in multi-threaded mode using di�erent numbers of
threads between 1 and 16. All other nxp circuits are not considered, as they did not
produce a su�cient number of aborts in the �rst stage.
Table 17 reports the number of aborts le� a�er the second stage (columns abr),
the run-time in seconds of the second stage (columns time), and the accumulated
run-time in seconds of both stages (columns total). While using more cores always
increases the ATPG quality in terms of the amount of classi�ed faults, the run-time
does not become considerably better for more than 4–6 computation threads in the
case of p330k, and in the case of the other two circuit, the total run-time even starts
increasing again.
In order to evaluate the two-stage approach, the experiment was repeated using
multiple threads and a timeout of 20 seconds (one-stage approach with parallelism).
�is resulted in a total run-time of 75,072 seconds for p330k when using 16 threads,
while the two-stage approach achieves the best run-time of 26,499 seconds when
run with 16 threads. For p469k, 4 threads yielded the best run-time of 75,157
seconds as opposed to 65,107 seconds in two-stage mode (also 4 threads). �e fact
that the one-stage approach with parallelism needs more time than the two-stage
approach may seem counter-intuitive at �rst, because the one-stage approach uses
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more resources. However, this is due to the thread-management overhead incurred
in the one-stage approach which is unnecessary for easy-to-solve ATPG instances.
�is con�rms the superiority of the two-stage approach.

5.2 SAT-ATPG with incremental SAT solving

�is section introduces the fault clustering technique, a di�erent acceleration tech-
nique for SAT-ATPG that makes use of incremental SAT solving provided by the
SAT solver antom. A�er a short review of the di�erences between antom and
MiraXT, the technique is introduced and evaluated by application to stuck-at faults
and to CMS@ faults for gate-exhaustive testing.

5.2.1 The SAT solving back-end antom

antom is a new SAT solver whose development at the Chair of Computer Archi-
tecture in Freiburg was started in 2010 with the intention of implementing a SAT
solver that supports incremental SAT solving as well as SAT solving with qualitative
preferences. Moreover, antom incorporates new SAT solving techniques that have
emerged recently. antom has already been successfully deployed into several test
and veri�cation tools [117, 209, 210, 207], also in the form of a #SAT solver [82, 83],
and as the foundation of a QBF solver [212, 213]. Here, only some of the di�erences
between antom and MiraXT are explained. More detailed information on antom
can be found in [217].

In contrast to MiraXT, antom supports incremental SAT solving (see Section 3.3.3)
and it also accepts assumptions, i.e. an initial partial assignment of Boolean vari-
ables that is preserved by the solving procedure. �ese two aspects were used to
implement the fault clustering technique that is the subject of this section. In addi-
tion, antom has the ability to solve SAT problems with qualitative preferences (see
Section 3.3.4), although the e�ciency of preference processing is currently limited,
given that the tool is still in active development. Nonetheless, this feature was suc-
cessfully used to extend Tiguan in order to support complex ATPG problems with
optimisation objectives. �is topic will be discussed in detail in Chapter 7.

In contrast to MiraXT, antom also supports the abortion of SAT solving based on
a backtracking limit, i.e. the search can be aborted a�er a given number of con�icts.
�is can be implemented more e�ciently than the abortion based on timeouts,
because abortion based on timeouts requires constant polling of the elapsed time.
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In addition, abortion based on a backtracking limit guarantees that the results are
deterministic with regard to which faults are aborted. Finally, antomwas also tuned
for better performance on ATPG instances, but instead of the empirical approach
used for MiraXT, antom’s internal control variables were adjusted using a dedicated
parameter tuning tool [127, 3].
Aside from several minor techniques to increase the e�ciency of BCP and con�ict
analysis, there are two major di�erences between antom and MiraXT regarding
the implementation of multi-threading and the way in which the problem is dis-
tributed among di�erent threads, and regarding the decision strategy. An example
technique employed to speed up BCP consists in storing two-literal clauses in an
own database, such that these clauses can be processed �rst when BCP is performed,
which also results in reduced memory consumption. �ere are also further di�er-
ences. For example, while MiraXT implements only static restarts [157], antom
also implements a procedure introduced by the SAT solver Glucose [19] which
performs restarts only when necessary. However, these implementation details are
less relevant from the point of view of SAT-based ATPG, as SAT formulae derived
from ATPG problems can be solved in times that are clearly below the average of
the random SAT instances for which the SAT solvers were originally tuned.
In antom, each computation thread manages an own clause database, which has the
disadvantage of increased memory use and slightly slower communication between
threads in comparison to the architecture used by MiraXT. However, antom’s
architecture speeds up BCP, since pointers to a shared clause database do not need
to be resolved any more, and since the necessity of locks is diminished. �ese
advantages are particularly observed when the tool is started in single-thread mode.
Instead of search-space splitting, antom employs multi-threading to implement
the algorithm portfolio principle [153]. According to this principle, every thread
solves the complete SAT instance, but each thread employs di�erent algorithms
or di�erent parameter settings. �e motivation for this model is that modern
multi-purpose SAT solvers are employed to solve SAT instances with very di�erent
levels of hardness; hence, it is usually di�cult to �nd one single set of parameter
settings that suits all types of SAT instances. Moreover, as opposed to MiraXT,
this enables antom to produce deterministic results also in multi-threading mode,
which makes the development and debug of applications easier. However, antom’s
multi-threading capability is not used by Tiguan, as its implementation had not
been yet �nished at the time when the work on fault clustering was being done.
�e second major di�erence between antom and MiraXT consists in the use of
an improved decision strategy that eliminates the need of decay operations. In-
stead of periodically halving the variable counters, the counter of each variable
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that occurs in a new clause is increased by a factor that grows over time25. �is
strategy has the same e�ect as the periodic counter halving — it gives newer clauses
preference over older clauses. Also, the occurrences of each variable are recorded in
one single counter disregarding the polarity of each occurrence. �en, when mak-
ing a decision, the chosen variable is assigned the last value that this variable has
been previously assigned, instead of assigning a value depending on the di�erence
between a�rmative and negative occurrences26. Altogether, the combination of
these improvements results in a decision strategy that causes less run-time overhead
than the classic VSIDS strategy implemented in MiraXT.

5.2.2 Fault clustering

Given a combinational circuit C and a list of faults f1, . . . , fN , traditional SAT-based
ATPG (without fault dropping) generates N SAT formulae ϕ1, . . . ,ϕN , one per fault,
and solves each of them separately. Various approaches to reduce the run-time
of SAT-based ATPG try to enhance the run-time of both SAT formulation and
SAT solving, but in general they stick to the principle of generating and solving
one formula per fault. In [244, 243], for instance, the circuit is partitioned into
fan-out-free regions (FFR, see Section 2.2.2), and each FFR is represented using a
BDD. �en, the SAT formula that describes the structure of the circuit is derived
from the BDDs, which removes some information redundancy and allows to reuse
already converted sub-formulae. However, this approach is only applicable to FFRs
with a limited amount of gates due to the memory requirements of BDDs. A better
approach that achieves a considerable reduction in SAT solving time is presented
in [70]. Here, a SAT-solver-external clause database is used to cache original and
learnt clauses corresponding to the fault-free circuit. However, this approach still
has to either generate a new SAT formula or to modify an existing SAT formula for
each new processed fault.

Motivated by the empirical observation that the time required for SAT generation is
not only non-negligible, but also o�en higher than the average SAT solving time (see
Section 4.6), the proposed fault clustering approach attempts to speed up ATPG by
substantially reducing the number of required SAT formulation runs and completely
eliminating the need to modify existing SAT formulae. �is is done at the expense of

25�is technique was introduced by MiniSat [80, 1].
26�is technique was introduced by RSAT [178]. �e intuition behind this type of variable

assignment is that the SAT solver can enter parts of the search tree that have been explored before.
Hence, the solver will bene�t from previously learnt con�icts.
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larger and slightly more complex SAT instances. However, incremental SAT solving
is used in order to prevent excessive growth of the average SAT solving time.
In SAT-ATPG with fault clustering, the input fault list is divided into sub-sets of
faults called fault clusters. Let one such cluster be composed of faults f1, . . . , fn.
Instead of generating n single-fault SAT formulae ϕ1, . . . ,ϕn, fault-clustering-based
ATPG generates only one combined SAT formula ϕ1∶n that represents a circuit into
which the faults f1, . . . , fn can be injected depending on the values of control variables
X1, . . . , Xn. ϕ1∶n is constructed such that, for all i = 1, . . . , n, the single-fault SAT
formula ϕi is semantically equivalent to

ϕ1∶n ∧ Xi ∧⋀
j≠i
¬Xj.

�e combined SAT formula ϕ1∶n needs to be generated and passed to the SAT solver
only once. Hence, not only the time needed to traverse the circuit in order to
generate clauses is saved, but also the time that the SAT solver requires to insert
new clauses into its internal database and to set up its internal data structures.
�e combined SAT formula ϕ1∶n is then solved once for each fault in the cluster,
however using di�erent assumptions each time. In order to solve the combined
SAT formula ϕ1∶n such as to �nd a test for fi, the set of assumptions

Xi = 1, X1 = ⋯ = Xi−1 = Xi+1 = ⋯ = Xn = 0

is passed to the SAT solver, meaning that only fi is injected into the circuit. �e
implications that result from the combined SAT formula and from these assump-
tions are equivalent to ϕi by construction of ϕ1∶n. Hence, solving the combined SAT
formula given these assumptions renders a valid test pattern for fi if one exists, or it
proves the undetectability of fi if the assumptions lead to a con�ict.
Between two calls of the SAT solver’s solving routine using two di�erent sets of
assumptions, the SAT solver is not reset. �is means that all global implications
and con�ict clauses learnt by the SAT solver during previous solving runs are used
to speed up the solving of the combined SAT formula under the current set of
assumptions. �erefore, clustering results in a speed gain even as the combined
SAT formula ϕ1∶n is larger and on average harder than each single-fault formula
ϕ1, . . . ,ϕn.
�e principle for the construction of ϕ1∶n is as follows. Let the fault cluster to be
encoded be composed of n CMS@ faults f1, . . . , fn, and let X1, . . . , Xn be the chosen
control variables, where each Xi being set to logic 1 is equivalent to the injection of
fi into the circuit, for i = 1, . . . , n. Let l be a line in the circuit, and let K l

i,1, . . . , K l
i,mi
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be the clauses in the single-fault formula ϕi that describe l’s behaviour in the circuit
Cfi , i.e. the circuit that is a�ected by fault fi. �e behaviour of the line is either that
of a normal line, or that of one of fi’s victims, or that of one of fi’s aggressors. �en,
for each k = 1, . . . , mi, the clause {¬Xi}∪K l

i,k is added to the combined SAT formula
ϕ1∶n. If fault fi is injected into the circuit by setting Xi to 1, ¬Xi evaluates to 0 and
K l

i,k remains in the combined SAT formula a�er the propagation of the constraints
introduced by the assumption Xi = 1. In contrast, if fault fi is removed from the
circuit by setting Xi to 0, that assignment immediately satis�es {¬Xi} ∪K l

i,k and the
SAT solver’s solving routine removes this clause from the SAT formula. Hence, line
l’s behaviour expressed by K l

i,k, which is valid only if fi is present, is subsequently
ignored by the SAT solver. �is step has to be repeated for each i = 1, . . . , n and
for each line l. From the point of view of the implementation, this principle can
bear some redundancy. Hence, in order to eliminate redundant sub-formulae in
the combined SAT formula, behaviour that is the same in di�erent circuit instances
is modelled only as many times as necessary.

�is technique was implemented in a way that would preserve the underlying
structure of the tool such as to bene�t from optimisation techniques previously
introduced into Tiguan. Figure 21 illustrates an example in which two CMS@
faults f1 ∶ v s-a-1 and f2 ∶ if [a = 1] w s-a-0 form a fault cluster. As in the SAT
formulation without clustering27, the �rst step consists in colouring the circuit,
which is done according to the same criteria as without fault clustering, but with the
di�erence that the output cones of all victims and the input cones of all aggressors
that belong to any fault in the cluster need to be taken into consideration. Hence,
the coloured circuit area and thus the resulting SAT formula will be larger than
in the case that single-fault SAT formulae are constructed. For this reason, it is
important to consider which faults can be grouped into clusters such that the size
of the combined SAT formula is not signi�cantly larger than the size of the various
single-fault SAT formulae. Since SAT’s worst-case complexity is exponential in the
number of variables, clustering faults whose in�uence regions have only a small
area in common can result in a combined SAT formula that is too large and hence
too hard to solve. Di�erent strategies for the grouping of faults into clusters are
evaluated later.

In order to allow Tiguan to assign Boolean variables to circuit lines and to construct
clauses in the same e�cient fashion as the algorithm without fault clustering would
do, the internal data structure that is used to represent the circuit was extended such
that each node can store information regarding which colour it would have in each

27�e SAT formulation without clustering was introduced in detail in Section 4.4.
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a =    

Figure 21. Generation of the combined SAT instance for a fault cluster

circuit instance, and whether it would be a victim or an aggressor with respect to
which fault. According to these data, the correct type of clauses can be constructed
for each node, and the combined SAT formula is constructed on the �y without the
need to �rst construct the single-fault SAT formulae. In the example from Figure 21,
fault f1 is a CMS@ fault with only one s-a-1 victim v. Hence, this fault can only
be excited if line v is set to 0 in the fault-free case, which results in the triggering
clause28 {¬Gv}. But this clause shall be valid only when solving the combined SAT
formula for fault f1, i.e. when the SAT solver is given the assumption X1 = 1. Hence,
instead of {¬Gv}, the clause {¬X1,¬Gv} is inserted into the combined SAT formula.
Analogously, line v’s faulty behaviour under the presence of f1 is represented by the
clause {¬X1, Bv}, which has an e�ect on the SAT solving only when X1 is set to 1.
In the same way, all clauses that represent the behaviour of lines in v’s output cone

28Recall that G-variables model the line’s logic value in the fault-free circuit, while B-variables
model the line’s logic value in the fault-a�ected circuit (see Section 4.4).
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under the presence of f1 have to be given the additional control literal ¬X1, while
the clauses that represent those lines’ behaviour in the fault-free case are the same
as in the single-fault SAT formula.

�e second fault in this example, f2, is a CMS@ fault with one s-a-0 victim w that is
activated only if the aggressor line a is set to 1. Similarly to the f1-case, the clauses
that excite the victim w and that represent its faulty-case behaviour need to be
extended by the control literal ¬X2. Also, the fault activation condition a = 1 shall
be enforced only when the control variable X2 is set to 1. �us, the clause {¬X2, Ga}
is inserted into the combined SAT formula.

Finally, though not shown in Figure 21 for better legibility, all clauses that relate
D-variables29 to B-variables that are bound to the control variables X1 or X2, need to
inherit the respective control literals. �is also applies to the D-variables assigned
to coloured primary outputs; these D-variables are used to generate the triggering
clause that demands that at least one primary output must show a fault e�ect.

An important aspect of the fault clustering technique and of the proposed principle
for the construction of ϕ1∶n is that the application of the technique to clusters of size
1 poses no overhead with respect to the original Tiguan algorithm introduced in
Section 4.4. Due to the chosen implementation, the SAT formulation procedure
needs to insert the only control literal ¬X1 into few selected clauses, for which no
additional traversing of the circuit is needed, as the necessity of control literals at
each node is determined on the �y by the colouring procedure. Also, the formula
ϕ1∶1 together with the assumption X1 = 1 is not harder to solve than ϕ1 because the
assignment X1 = 1 is handled by the SAT solver as a non-backtrackable �rst-level
decision, which causes no search overhead.

5.2.3 Experimental evaluation

In order to evaluate the quality of the fault clustering technique, test patterns for
single-stuck-at faults and for CMS@ faults for gate-exhaustive testing were com-
puted for iscas’85 benchmark circuits and for the combinational cores of itc’99
and nxp circuits. All measurements were performed on a 2.3 GHz AMD Opteron
64-bit computer with 64 GB RAM. In all experiments, an unlimited time budget
was assigned to every processed fault; hence, no faults were aborted and the total
run-times are also in�uenced by the time needed for very hard instances.

29Recall that D-variables model whether a gate’s output displays a fault e�ect (see Section 4.4).
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Table 18

SAT-ATPG with fault clustering for stuck-at faults — without fault dropping

SAT formulation SAT solving

circuit faults clustering runs time (s) runs time (s) total time (s)

c5315 5,350 1 5,350 0.0015 5,350 0.0002 9
10 535 0.0056 5,350 0.0004 6
20 268 0.0112 5,350 0.0008 8
50 107 0.0379 5,350 0.0039 25
�r 929 0.0042 5,350 0.0002 5

c6288 7,744 1 7,744 0.0089 7,744 0.0025 88
10 775 0.0189 7,744 0.0045 50
20 388 0.0343 7,744 0.0067 66
50 155 0.0922 7,744 0.0140 124
�r 1,488 0.0151 7,744 0.0039 54

c7552 7,550 1 7,550 0.0041 7,550 0.0004 34
10 755 0.0095 7,550 0.0008 14
20 378 0.0221 7,550 0.0021 25
50 151 0.0631 7,550 0.0080 71
�r 1,408 0.0065 7,550 0.0004 13

b17c 68,207 1 68,207 0.0320 68,207 0.0094 3,487
10 6,821 0.0713 68,207 0.0120 2,235
20 3,411 0.1056 68,207 0.0175 2,434
50 1,365 0.2757 68,207 0.0482 4,711
�r 9,155 0.0595 68,207 0.0063 1,826

b18c 206,812 1 206,812 0.0803 206,812 0.0129 25,912
10 20,682 0.1459 206,812 0.0306 19,524
20 10,341 0.2080 206,812 0.0442 21,674
50 4,137 0.4475 206,812 0.0864 30,285
�r 28,395 0.1389 206,812 0.0158 16,352

b20c 35,731 1 35,731 0.0210 35,731 0.0037 972
10 3,574 0.0608 35,731 0.0127 816
20 1,787 0.1120 35,731 0.0227 1,163
50 715 0.2165 35,731 0.0438 1,833
�r 5,090 0.0526 35,731 0.0049 600

b21c 36,058 1 36,058 0.0217 36,058 0.0042 1,023
10 3,606 0.0593 36,058 0.0122 787
20 1,803 0.1026 36,058 0.0224 1,137
50 722 0.2554 36,058 0.0519 2,207
�r 5,187 0.0501 36,058 0.0048 567

b22c 51,341 1 51,341 0.0231 51,341 0.0037 1,552
10 5,135 0.0731 51,341 0.0146 1,493
20 2,568 0.1148 51,341 0.0247 1,901
50 1,027 0.2918 51,341 0.0637 3,942
�r 7,397 0.0555 51,341 0.0042 932
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In a �rst experiment, ATPG without fault clustering and ATPG with fault clustering
in di�erent con�gurations was applied to each considered circuit. �e results are
listed in Table 18, which includes only the larger iscas’85 and itc’99 circuits. For an
accurate evaluation of the real impact of reducing the number of SAT formulation
runs on the total run-time, no fault simulation was performed. For this reason,
industrial circuits were not considered in this experiment.
�e column labelled faults lists the number of processed faults (all stuck-at faults
a�er the removal of locally equivalent faults). Column clustering indicates what
type of fault clustering applies to the corresponding line. A number n means that
faults were grouped in clusters of �xed size n. In this case, the input fault list was
sorted according to the topological order of the victim lines, with faults a�ecting
the primary outputs of the circuit at the beginning of the list and faults a�ecting
the primary inputs at the end of the list (RTOP sorting, see Section 6.3). �en, the
sequence of faults was partitioned into sequences of n faults to form the clusters,
i.e. faults f1, . . . , fn constituted the �rst cluster, fn+1, . . . , f2n constituted the second
cluster, and so on. Note that clustering = 1 stands for clusters of size 1, i.e. for
traditional SAT-ATPG without fault clustering. In contrast, clustering = �r means
that fault clusters of variable size were used, where each fault cluster contained all
faults a�ecting the gates of a fan-out-free region. �e columns labelled runs and
time list the number of calls of the SAT formulation and the SAT solving procedures,
and the average run-time in seconds per run, respectively. �e last column of the
table lists the total run-time in seconds.
When no clustering is applied (clustering = 1), the number of SAT formulation runs
equals the number of SAT solving runs, as a SAT formula is generated and solved
separately for each processed fault. �e average run-times for the SAT formulation
and SAT solving procedures measured in this case con�rm the observation that
served as motivation for the development of fault clustering — the average time
needed to generate a formula for SAT-ATPG is higher than the average SAT solving
time (see Table 5).
As expected, the average SAT solving time increases with growing cluster sizes.
However, the amount of time saved by calling the SAT formulation routine signi-
�cantly less o�en results in an average total-time reduction of 24.6% for clusters of
size 10. However, the reduction decreases for clusters of size 20, and clusters of size
50 even increase the total run-time since the SAT solving time grows substantially
for that cluster size.
However, not only the cluster size in�uences the quality of fault clustering. �e
approach that groups all faults of an FFR into one cluster achieves the best results,
even though clusters with up to 200 faults were observed for the circuits in Table 18,
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Table 19

SAT-ATPG with fault clustering for stuck-at faults — with 64-bit fault dropping

SAT formulation SAT solving total

circuit faults clustering runs time (s) runs time (s) time (s) red (%)

p35k 67,733 none 11,297 0.1903 11,297 0.1126 3,483
�r-based 1,340 0.1874 10,254 0.0904 1,207 65.3

p77k 120,348 none 12,282 0.1381 12,282 0.4153 7,214
�r-based 3,273 0.1834 12,488 0.2883 4,527 37.2

p81k 204,174 none 23,105 0.0688 23,105 0.0024 1,746
�r-based 5,667 0.0917 20,593 0.0011 647 62.9

p89k 150,538 none 11,445 0.0587 11,445 0.0024 734
�r-based 2,620 0.0959 13,518 0.0033 344 53.1

p141k 282,428 none 11,139 0.2859 11,139 0.1042 4,397
�r-based 3,843 0.2705 10,471 0.0535 1,643 62.6

p267k 366,871 none 12,482 0.1792 12,482 0.0059 2,396
�r-based 2,079 0.2747 12,855 0.0143 852 64.4

p269k 369,055 none 12,467 0.1804 12,467 0.0058 2,405
�r-based 2,082 0.2821 13,002 0.0140 861 64.2

p295k 472,022 none 26,888 0.1707 26,888 0.0075 4,994
�r-based 4,314 0.3258 24,031 0.0215 2,297 54.0

p330k 540,758 none 26,616 0.2458 26,616 0.3140 15,109
�r-based 4,297 0.3826 26,462 0.4457 13,843 8.4

p469k 142,751 none 2,585 0.3660 2,585 17.2661 48,055
�r-based 1,152 0.3937 2,483 7.9524 21,155 56.0

and with up to 2,500 faults for the circuits in Table 19. Since all faults in such a
cluster share the same area of in�uence, they produce very similar single-fault SAT
formulae. Hence, a large amount of con�ict knowledge can be shared between
di�erent SAT solving runs of the combined SAT formula. In fact, thanks to incre-
mental SAT solving, the average SAT solving time using FFR-based clustering is
only negligibly higher than in the case without clustering, and in some cases it is
even better (e.g. b17c).

In a second experiment, the fault clustering technique was applied to harder nxp
circuits. �e three largest nxp circuits, p951k, p1522k and p2927k, were excluded
due to memory limitations. Given the size of nxp circuits and the very large amount
of targeted faults which make ATPG without fault simulation infeasible, fault clus-
tering was combined with fault dropping with a simulation width of 64, i.e. actual
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fault simulation was performed in PPSFP (parallel-pattern single-fault propagation,
see Section 2.6) fashion whenever 64 new unique test patterns had been collected. If
a simulation run had to be performed while a cluster was being processed, faults in
the current cluster that were detected by simulation were dropped in order to avoid
unnecessary SAT solving runs, but the SAT formulation for the current cluster was
not repeated.

Based on the observations of the �rst experiment, according to which FFR-based
fault clustering is the most e�ective strategy for fault grouping, only the FFR-based
clustering technique was applied and compared to SAT-ATPG without clustering.
�e results are summarised in Table 19. �e columns in this table have the same
meaning as in Table 18, but there is an additional column labelled red which lists
the reduction of total run-time with respect to SAT-ATPG without clustering. �e
reduction is de�ned by

reduction = time without clustering − time with clustering
time without clustering

⋅ 100%.

In contrast to iscas’85 and itc’99 circuits, the average SAT solving times per run
with fault clustering are better than without clustering in most cases, and especially
large di�erences can be observed for circuits p77k and p469k which are both known
as particularly hard benchmarks. �ese data show that the solving of large and hard
SAT instances bene�ts greatly from the application of incremental SAT solving. As
in the case of iscas’85 and itc’99 circuits, the total run-time also bene�ts from
the reduced number of SAT formulation runs, which in this case is even lower due
to the use of fault simulation. Since larger FFRs are processed �rst, many clusters
corresponding to smaller FFRs are completely detected by simulation, which means
that the combined SAT formula for those FFRs does not need to be generated any
more. �e combination of both a reduced number of SAT formulation runs and
faster SAT solving due to incremental learning results in an average reduction of
total run-time of 47.7%, and a reduction of more than 60% for half the circuits.

�e same experiment was also applied to CMS@ faults for gate-exhaustive testing.
Such faults result in SAT instances that are harder than SAT instances derived from
stuck-at faults, because gate-exhaustive testing imposes very speci�c conditions
on the gate that drives the fault site. Table 20 shows the results of this experiment.
Here, the average SAT solving time per run is higher when fault clustering is applied,
which can in part be attributed to the increased size of the FFR-based clusters in
comparison to FFR-based clusters of stuck-at faults (gate-exhaustive testing targets
more faults per gate), but the di�erence is only minimal. Combined with the high
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Table 20

CMS@-based SAT-ATPG with fault clustering for gate-exhaustive testing — with 64-bit

fault dropping

SAT formulation SAT solving total

circuit faults clustering runs time (s) runs time (s) time (s) red (%)

p35k 150,898 none 32,299 0.2259 32,299 0.0614 9,462
�r-based 4,347 0.1577 28,599 0.1700 5,746 39.3

p77k 254,176 none 50,454 0.1184 50,454 0.1141 13,531
�r-based 8,901 0.1783 51,097 0.0994 8,314 38.6

p81k 404,348 none 99,984 0.0577 99,984 0.0012 6,387
�r-based 16,314 0.1063 94,526 0.0008 3,357 47.4

p89k 306,680 none 46,974 0.0427 46,974 0.0009 2,117
�r-based 6,741 0.1144 47,744 0.0031 1,177 44.4

p141k 577,922 none 66,080 0.1777 66,080 0.0241 13,417
�r-based 21,438 0.2041 65,166 0.0151 5,598 58.3

p267k 850,024 none 86,690 0.1373 86,690 0.0013 12,177
�r-based 22,819 0.2382 85,680 0.0203 7,797 36.0

p269k 854,364 none 86,843 0.1093 86,843 0.0010 9,717
�r-based 22,807 0.2591 85,844 0.0184 8,039 17.3

p295k 986,740 none 136,946 0.1230 136,946 0.0018 17,367
�r-based 22,048 0.3210 135,318 0.0388 13,732 20.9

p330k 1,166,046 none 165,529 0.2187 165,529 0.1091 54,828
�r-based 35,806 0.2644 159,423 0.1291 32,407 40.9

p469k 312,784 none 71,997 0.4954 71,997 1.0285 113,155
�r-based 7,014 0.8865 71,872 0.9144 73,124 35.4

volume of saved SAT formulation time, the average reduction of total time amounts
to 36.8% and is as high as 58.3% for some circuits (p141k).

5.3 Conclusions

�e study presented in the �rst part of this chapter evaluated the scalability of state-
of-the-art SAT-based ATPG so�ware to multi-core systems. �e data showed that
the algorithm performs well on mid-size systems with around 4–6 available cores.
Providing more resources slightly increases the quality in terms of the amount
of classi�ed faults, but no further speed-up can be registered, and in some cases
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run-times even increase. �e primary reason for this is memory congestion that
occurs due to the large amount of clauses simultaneously learnt by individual com-
putation threads, and due to the shared-memory architecture of the SAT solver.
Future research maintaining this SAT solving architecture should focus on adaptive
strategies to select which learnt clauses are written back into the shared memory
such that memory congestion is avoided. Another option consists in reconsidering
earlier multi-threading approaches that employed fault parallelism, i.e. di�erent
parts of the fault list were assigned to di�erent computation nodes [88], but taking
into account that the technology has changed.
�e study also evaluated the di�erent impact of thread-parallel SAT-ATPG on
easy and hard-to-detect faults. It determined that thread parallelism is mostly
ine�ective for the processing of easy-to-solve ATPG instances, while very hard
instances bene�t strongly from increased resources. In consequence, a two-stage
technique was developed, where all faults are targeted without thread parallelism in
the �rst stage. In the second stage, only faults aborted in the �rst stage are targeted
using thread parallelism. �e approach o�ers the best compromise between test
quality and run-time in comparison to one-staged approaches with and without
thread parallelism.
�e second part of this chapter presented a fault clustering technique that makes use
of incremental SAT solving. �e principle of this technique consists in generating
one single SAT formula for a set of faults (a cluster) and solving the same formula
under speci�c assumptions once for each fault. It was determined that the strategy
by which faults are grouped into clusters has a major in�uence on the speed gain. A
strategy based on fan-out-free regions allowed Tiguan to classify all stuck-at faults
in large industrial circuits in 47.7% less run-time.
One possible direction for future research consists in combining fault clustering
with thread parallelism. �e SAT solver antom, which is used to implement fault
clustering in Tiguan, employs multi-threading to implement the algorithm port-
folio principle, i.e. each computation thread solves the complete SAT instance in-
dependently using di�erent algorithms and di�erent SAT solving parameters. A
modi�cation of antom that would allow to solve the same instance in parallel using
di�erent sets of assumptions would enable the parallel generation of several test
patterns corresponding to one single fault cluster.
Even as the FFR-based clustering method achieved very good results, the best
way of clustering faults is in general not known in advance. Hence, an alternative
approach to combine clustering and thread-parallel processing would consist in
creating several clusters and processing them in parallel, and then choosing the
cluster whose processing is �nished �rst.
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6

SAT-based ATPG with dynamic

compaction

A�er the discussion of techniques to enhance the run-time e�ciency of Tiguan,
also the issue of test set compactness is considered, given that the pattern count
of SAT-based ATPG is generally larger than that of structural ATPG. �is chapter
introduces a dynamic compaction method30 that was developed for dedicated incor-
poration into Tiguan. �e method overcomes the over-speci�cation of SAT-based-
generated test patterns and uses the speci�c interfaces o�ered by the CMS@-based
framework in order to achieve maximum e�ciency. A�er an initial evaluation of
the method’s performance on large industrial circuits, the last part of the chapter
presents an enhancement of the basic technique and analyses the impact of fault
list pre-sorting on its performance.

Author’s contribution — �e author’s contribution consisted in the evaluation
of Tiguan’s initial performance regarding the amount of generated patterns, and
the development, evaluation and enhancement of a dynamic compaction technique
that exploits the possibilities o�ered by the existing CMS@-based framework.

Parts of the work covered in this chapter have been published in [C13] (see author’s publications
on pages 223–226).

30See Section 2.7.2 for an introduction to compaction.
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6.1 Introduction

While the run-time e�ciency of SAT-based ATPG makes it an attractive altern-
ative to structural approaches, in particular for the processing of hard-to-detect
and undetectable faults, one weakness of early SAT-based ATPG methods is their
relatively high pattern count, which results largely from the over-speci�cation of
the generated patterns.

Structural ATPG generally searches for a test pattern starting at the fault site and
moving towards the primary inputs. Hence, only inputs necessary for fault detec-
tion are assigned 0 or 1-values, while all other inputs are le� unspeci�ed. Also,
since structural algorithms perform the search based directly on the net list, the
implementation of heuristic techniques for more compact test sets is o�en easier.
For example, the tool COMPACTEST [185] modi�es the objectives of line justi�ca-
tion dynamically in order to allow new patterns to detect more faults not previously
detected. Another good example is the subscripted D-Algorithm [170] which at-
tempts to sensitise multiple paths simultaneously such as to generate single patterns
that detect more faults. Such approaches, however, are not directly applicable to
SAT-ATPG, as the good performance of SAT-ATPG on undetectable and hard-to-
detect instances stems from the liberty the SAT solver has to apply SAT-speci�c
pruning techniques that are not aware of the structure of the original problem. Also,
contrary to the DPLL-Algorithm, many modern SAT solvers specify all Boolean
variables, because they assign a �xed or random value to all Boolean variables at
the beginning, and then modify the values of single variables until resolving all
con�icts, which results in equally valid solutions of the SAT problem but is usually
more e�cient (see Section 5.1.1).

For this reason, early SAT-ATPG approaches [68] rely on test relaxation a�er the
test pattern has been generated. While all primary inputs outside of the fault site’s
in�uence region are trivially le� unspeci�ed, also many primary inputs within the
in�uence region are relaxable since the justi�cation of controlling values on a gate’s
output (non-controlling value if the gate is inverting) requires the justi�cation of
the gate’s controlling value on only one of its inputs, while all other inputs can be le�
unassigned as long as they are not necessary to satisfy other justi�cation tasks. How-
ever, relaxable inputs within the in�uence region of the fault site cannot be directly
identi�ed using SAT-based ATPG. In Tiguan, an input-output-cone analysis is
performed immediately a�er the SAT solver computes a model of the SAT formula.
�is analysis determines which of the primary outputs towards which the gener-
ated test pattern propagates a fault e�ect requires the smallest number of primary
inputs to be assigned a speci�ed value, and relaxes all primary inputs that do not
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belong to the input cone of the identi�ed optimal primary output (see Section 4.5).
In [68], a technique that consists in analysing local justi�cation conditions is used
to identify further primary inputs that can be relaxed. However, this technique,
which is already widely used in structural ATPG, can be very time-consuming when
combined with SAT-ATPG, as SAT-ATPG does not have additional information
to aid such an analysis, whereas structural ATPG algorithms collect that kind of
information without negative e�ect on their performance. Although high percent-
ages of unspeci�ed bits are reported for industrial circuits in [68], the e�ciency of
this technique may not be high, as faults that belong to the same cone are still likely
to result in test patterns with con�icting assignments to the circuit inputs. Even
though these inputs can be relaxed without sacri�cing detectability, the method
from [68] does not handle such situations. Furthermore, [68] quotes pattern counts
only a�er the execution of static compaction, so that it is impossible to evaluate the
actual impact of their relaxation technique on the compaction quality.
One attempted approach to utilise SAT-speci�c techniques for test relaxation con-
sisted in modifying Tiguan’s SAT solving engine MiraXT, such that the relaxation
of the SAT solutions would be carried out by the SAT solver instead of externally.
However, the percentage of variables that could be relaxed without compromising
MiraXT’s run-time was very low and, in all observed cases, none of the relaxed
Boolean variables corresponded to primary inputs, but to internal lines of the circuit
(see Section 4.5).
Given the di�culty of modifying SAT-ATPG in a way that would render more
relaxed test patterns without signi�cantly compromising the run-time e�ciency of
the test generation progress, the author of this thesis developed a dynamic compac-
tion technique dedicated to the application with SAT-ATPG, a technique that does
not rely on the amount of unspeci�ed bits to achieve good results.
�e generic dynamic compaction approach [99] consists in generating a test pattern
p1 for a primary target fault f1. �en, a secondary target fault f2 is chosen, and a test
pattern p2 is generated for f2 under the condition that the circuit inputs that have
been assigned to speci�ed values by p1 be assigned to the same values by p2. Hence,
if p2 exists, it detects both f1 and f2 and p1 can be dismissed. �is process can be
repeated for further secondary targets until the percentage of unspeci�ed values in
the test pattern is too low to allow the consideration of more targets.
Similarly, the technique proposed in this chapter targets fault groups which are
enlarged consecutively. Whenever a pattern is generated for a fault f , necessary
assignments to the circuit lines are extracted from Tiguan’s internal data structures.
�en, the procedure attempts to add another fault to the current group by generating
a test for the new fault while enforcing that the assignments for detecting the other
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faults in the group are not violated. �e approach di�ers from dynamic compaction
for structural ATPG in that it �xes internal circuit lines instead of primary inputs,
and in that it utilises the CMS@FM to e�ciently handle the set of �xed logic values.

6.2 The dynamic compaction procedure

Tiguan’s dynamic compaction procedure is outlined in Algorithm 5. Given a list of
CMS@ faults, the procedure tries to construct fault groups, i.e. collections of faults
for which a common test pattern exists, and to generate a pattern for each group.
Since it has been reported earlier, e.g. in [185], that the ordering of the fault list has
an in�uence on the quality of dynamic compaction, the procedure �rst sorts the
fault list. Details on sorting are given in Sections 6.3 and 6.4.

�en, fault groups are constructed dynamically as the processing of the fault list
progresses. New generated patterns are not directly inserted into the �nal test set P,
but stored in a variable pgroup which stands for the test pattern that detects all faults
in the currently open fault group. With each new fault that is successfully added
to the open fault group, pgroup is replaced by a test pattern that detects all faults in
the open fault group, including the new fault. pgroup is inserted into the �nal test
set only when the current fault group is closed, i.e. when the procedure decides to
insert no further faults into the fault group and to open a new fault group. �e
value assignments that guarantee the detection of all faults in the currently open
fault group are recorded in the set FGA (fault group assignments). �ese three data
structures (P, pgroup and FGA) are initialised in lines 3–5. �e initial value of pgroup
is the special value nil which stands for an invalid or non-existent test pattern.

�e main part of the ATPG procedure iterates over the fault list. In each iteration
(lines 6–28), the algorithm selects a fault f from the fault list. However, the selected
fault is not directly removed from the fault list because, if the algorithm determines
that the fault is not compatible to the current fault group, i.e. that no pattern exists
which is able to detect f in addition to the faults in the current fault group, then f
needs to be processed again in order to determine whether f ’s incompatibility is
due to contradicting detection conditions between f and the open fault group, or
due to f ’s possible undetectability.

A�er f has been selected, a new fault f ′ is constructed (line 8) which is composed
of all victims and all aggressors of f , and of additional aggressors that specify the
assignment conditions currently recorded in FGA. If FGA is empty, which happens
when f is the �rst fault of a new fault group, then f ′ equals f .
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Algorithm 5

SAT-based ATPG with dynamic compaction

Inputs: CMS@ fault list F
Output: compact test set P

1: atpg-with-dynamic-compaction(F) {

2: sort F
3: P ∶= ∅ ▷ initialisation
4: pgroup ∶= nil
5: FGA ∶= ∅

6: while F is not empty do {

7: f ∶= �rst fault in F
8: f ′ ∶= extend-fault-description(f , FGA)
9: p ∶= generate-test-pattern(f ′)

10: if p = nil and pgroup = nil then { ▷ f is undetectable or aborted
11: if SAT solving has been aborted then {

12: classify f as aborted
13: } else {

14: classify f as undetectable
15: }

16: remove f from F
17: } else if p = nil and pgroup ≠ nil then { ▷ f is incompatible
18: q ∶= merge(P, pgroup)
19: fault-dropping(q)
20: pgroup ∶= nil
21: FGA ∶= ∅

22: } else { ▷ current fault group successfully enlarged by f
23: pgroup ∶= p
24: classify f as detectable and remove it from F
25: extract f ’s detection conditions from the Boolean solution
26: add extracted conditions to FGA
27: }

28: }

29: merge(P, pgroup)
30: rofs-or-flrofs(P)
31: return P
32: }
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�en, SAT-based test pattern generation is performed for f ′ (line 9), i.e. a SAT
formula is generated and passed to the SAT solver, and a test pattern is extracted
from the model computed by the SAT solver if the formula is found to be satis�able.
Note that the returned test pattern p does in general not need to be relaxed in order
to facilitate compaction, because the conditions for the detection of f ′ that will be
passed to the next processed fault are not extracted from the test pattern but from
assignments to internal circuit lines. However, the basic input-output-cone analysis
presented in Section 4.5 is performed by the generate-test-pattern-procedure
in order to facilitate the later merging of the group test pattern pgroup into the �nal
test set. If the generate-test-pattern-procedure is not able to generate a test
pattern, either because f ′ is undetectable, or because the SAT solving is aborted due
to a timeout or due to a reached backtracking limit, then generate-test-pattern
returns the value nil.

A�er invoking the test generation procedure, the algorithm distinguishes between
three cases. In the �rst case (lines 10–16), f is the �rst fault of a new fault group
(pgroup = nil) and the test generation procedure has not been able to generate a test
pattern for f ′ (p = nil), which means that f is either undetectable or that the SAT
solver has aborted due to a timeout. In this case, the fault is classi�ed accordingly
and removed from the fault list (hence excluded from further processing).

In the second case (lines 17–21), f is not the �rst fault of a new fault group
(pgroup ≠ nil) but the test generation procedure has not been able to generate a
test pattern for f ′ (p = nil), which means that f is either incompatible to the current
fault group or that the SAT solver has aborted due to a timeout. In this case, the
currently open fault group is closed, i.e. the test pattern pgroup which detects all
faults in the currently open fault group is added to the �nal test set, and pgroup and
FGA are set to nil and ∅, respectively, thus making the algorithm interpret the next
processed fault as the �rst fault of a new fault group. Note that f is not removed from
the fault list; hence, it becomes the next processed fault. Since the unsatis�ability of
f ′ does not imply the unsatis�ability of f , f has to be reprocessed as the �rst fault
of a new group in order to determine the reason for the incompatibility between f
and the fault group that is being closed.

Adding the fault group test pattern pgroup to the �nal test set (line 18) is implemented
as a merging operation. �at means that pgroup is merged with a compatible test
pattern p′ already in P, i.e. p′ is replaced by p′ ∩ pgroup. As explained in Section 2.7.2,
�nding an optimal test pattern p′ for intersection with pgroup is a computationally
complex problem. Moreover, in contrast to static compaction, where all test patterns
are known in advance, the merging operation executed here does not know what test
patterns will be generated a�er the current pgroup. For this reason, no sophisticated
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techniques for the search for p′ are employed, and p′ is simply chosen as the �rst test
pattern in P found to be compatible to pgroup. If no compatible test pattern p′ exists
in P, pgroup is added to P without merging. In the �rst case, the merge-procedure
returns the pattern q ∶= p′∩pgroup; in the second case, it returns q ∶= pgroup. Hence, in
both cases, q is the newest pattern that makes part of P. �en, the fault-dropping-
procedure performs fault simulation with the new pattern q. Fault dropping can
only be performed with patterns that become part of the �nal test set. Otherwise, a
misclassi�cation of faults detected by simulation could occur. Consequently, fault
dropping is performed only when a fault group is closed. Note that, although the
pattern q can be modi�ed by future merging operations, performing fault dropping
with the current version of q is permissible, as those future merging operations will
not modify the speci�ed values of q, i.e. they will not reduce q’s fault coverage.
In the last case (lines 22–26), where the test generation procedure has been success-
ful, pgroup is replaced by the new generated test pattern p. Due to the construction
of f ′, p is guaranteed to detect not only f , but also all faults in the current fault
group that are detected by the old version of pgroup. Hence, �e old value of pgroup is
discarded without inclusion into the �nal test set.
A�er classifying f as detectable and removing it from the fault list, the dynamic
compaction procedure extracts a compact set of value assignments that are necessary
to detect f . For CMS@ faults with exactly one victim line, these assignments are the
following:

▸ fault excitation assignment — for the s-a-bv victim line v, the assignment of
v to the value ¬bv;

▸ fault activation assignments — for each aggressor line a associated to a value
ba, the assignment of a to the value ba;

▸ fault propagation assignments — for each gate whose output port’s D-variable
has been set to 1 by the computed Boolean solution (i.e. a fault e�ect has been
propagated through that gate), the assignment of all o�-path inputs of the
gate to the gate’s non-controlling value.

An example is shown in Figure 22. Assume that the currently processed fault is
fault f1 ∶ a s-a-0, and that the generated test pattern p propagates the fault e�ect
through the nor gate g with inputs a and b, and through the and gate k with
inputs g, c and d. In this case, the D-variables assigned to the output ports of
g and k (Dg and Dk, respectively) must have the value 1, by construction of the
SAT formula; also, Dh, the D-variable assigned to gate h has the value 0, since no
fault e�ect is propagated through h. �e necessary assignments for fault f1 (shown
within ellipses in Figure 22) are 1 at line a (fault excitation), and 0 at line b and

129



6.2. THE DYNAMIC COMPACTION PROCEDURE

a
b
c

d

e

g

h

k

f: a s-a- Dg = 

Dh = 

Dk = 

f: h s-a-








Figure 22. SAT-ATPG with dynamic compaction — extraction of necessary assignments

1 at lines c and d (fault propagation). Every test pattern p′ that sets these four
lines to these values is guaranteed to detect f1, even if there are primary inputs that
are assigned contradictory values by p and p′. Hence, the extraction of necessary
assignments from internal lines gives the ATPG algorithm more �exibility while
still guaranteeing the detection of all involved faults. In particular, if the fault e�ect
has been propagated through multiple paths, then only the path with the smallest
number of satis�ed D-variables is considered for assignment extraction, such as
to avoid an over-constraining of the test generation problem for subsequent faults.
Finally, note that all D-variables assigned to 1, as well as all extracted assignments are
contained in the Boolean solution that has already been computed by the generate-
test-pattern-procedure. Hence, no further simulation or complex analysis is
necessary to extract the assignments.

Going back to the main procedure in Algorithm 5, the extracted assignments are
added to the fault group assignment set FGA which is empty in the beginning and
every time that a new fault group is opened. In the next iteration, the next pro-
cessed fault is extended (line 8) such that any test pattern that detects the extended
fault detects also all faults in the currently open fault group, whose necessary as-
signments are collected in FGA. Technically, this is implemented by adding FGA
to the aggressor set of the fault to be extended. For example, assume that fault
f2 ∶ h s-a-0 is processed a�er f1 ∶ a s-a-0 (Figure 22). �en, f2 is extended to
f ′2 ∶ if [a = 1, b = 0, c = 1, d = 1] h s-a-0. �is implementation bene�ts from the
CMS@ support already present in Tiguan. �erefore, the core generate-test-
pattern-procedure does not need to be modi�ed in order to support dynamic
compaction.

Regarding the extraction of excitation assignments, it must be remarked that if
the considered fault has more than one CMS@ victim, then simply adding the
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assignment of v to the value ¬bv for each victim line v is not adequate. �at would
result in an over-constrained test generation problem that would classify instances in
which not all victims can be excited simultaneously as undetectable. However, that
would be a wrong classi�cation because the excitation of one victim su�ces to detect
a fault if that victim’s fault e�ect can be propagated, even if the other victims cannot
be excited simultaneously. In consequence, for general CMS@ faults with multiple
victims, the implementation needs to impose the extracted conditions for victim
excitation in the faulty instead of in the fault-free case. �is is easily implemented
by de�ning a new protected type of aggressor that allows the imposition of values
on the B-variable instead of on the G-variable assigned to the aggressor line.
�e processing of the fault list terminates when no unclassi�ed faults remain,
i.e. when the fault list becomes empty. �en, the last value of pgroup is merged
into the �nal test set (line 29). Otherwise, the test pattern for the last fault group
would be lost if the last processed fault has not closed the last fault group.
Finally, the size of P can be further reduced by applying reverse-order fault simula-
tion (ROFS or FLROFS) to the �nal test set (line 30). �e fault simulator integrated
into Tiguan was extended to perform these types of simulation in pattern-parallel
fashion. In the case of FLROFS, which requires the test generation process to record
which test pattern was the �rst to detect which fault, these data are recorded by a
run of in-order fault simulation at the end of the test generation process. Due to
the addition of new test patterns through merging, which dynamically modi�es the
�nal test set every time that a fault group is closed, the data needed for FLROFS
cannot be collected by Tiguan’s main test generation procedure.

6.3 Experimental evaluation

�e dynamic compaction procedure was integrated into Tiguan using MiraXT
as SAT solving back-end, but no thread-parallel SAT solving was employed. All
measurements were performed on a 2.3 GHz AMD Opteron 64-bit computer with
64 GB RAM, but the memory use was limited to 4 GB per Tiguan process, given
that MiraXT is a 32-bit application.
Tests for stuck-at faults in the combinational cores of nxp circuits were generated
using Tiguan in three di�erent con�gurations. No timeout was imposed on SAT
solving such as to enable the classi�cation of all faults. In this experiment, the
input fault list was constructed in the following way. First, all s-a-0 and all s-a-1
faults located at the circuit’s primary outputs are added to the fault list. �en, the
fault list construction algorithm traverses the circuit in reverse topological order,
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Figure 23. Construction of the fault list

i.e. starting at the primary outputs and ending at the primary inputs. For each
gate g, the algorithm inserts all stuck-at faults located at any of g’s ports which are
not equivalent to faults previously added to the fault list. For example, consider
the circuit section shown in Figure 23. Assume that the s-a-0 and s-a-1 faults at
the output of gate k have already been added to the fault list. �en, the algorithm
adds only the s-a-1 faults located at the inputs of gate k to the fault list, because
all s-a-0 faults located at any port of an and gate are equivalent (all these faults
require a test pattern that detects them to set all inputs of the gate to 1). Next,
the algorithm considers gate h. Independently of which faults located on lines h1
and h2 have been added to the fault list, the algorithm adds both the s-a-0 and the
s-a-1 fault at the output of gate h to the fault list, since stuck-at faults on a fan-out
stem are not equivalent to faults on the fan-out branches. �en, the algorithm adds
the s-a-1 faults located at the inputs of gate h. Finally, gate g is considered. No
faults associated to g’s output port are added to the fault list, since these faults are
equivalent to the faults associated to the �rst input of gate k, which has already been
processed. �en, the algorithm only considers the s-a-0 faults at the inputs of gate
g, since the s-a-1 faults are equivalent to the s-a-1 fault at the input of gate k, which
is already in the fault list.

�is algorithm renders a complete stuck-at fault list which is irredundant with
respect to local fault equivalences [12], where the faults are ordered in reverse
topological order with respect to their location. When not otherwise stated, this is
the default fault list ordering employed in all experiments presented in this thesis
and will be referred to as reverse topological sorting (RTOP) in Section 6.4, where
di�erent sorting strategies are evaluated. �e experiment presented in this section
uses reverse topological sorting.

Table 21 compares the pattern counts obtained by Tiguan using the three di�er-
ent con�gurations. In the �rst con�guration (column group no compaction), the
generated test patterns were �lled randomly, and 32-bit PPSFP (parallel-pattern
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single-fault propagation, see Section 2.6) fault simulation was used to drop faults
detected by simulation. No static or dynamic compaction was used in this con�gur-
ation. In the second con�guration (column group static compaction), the generated
patterns were relaxed using the input-output-cone analysis presented in Section 4.5,
32-bit fault dropping was performed using the relaxed patterns, and the �nal test set
was compacted using a greedy merging algorithm: Given a sequence of test patterns
p1, . . . , pr, the algorithm tests the compatibility of each pattern pi to each pattern
pj with j > i and, if found compatible, pi is replaced by pi ∩ pj, and pj is dropped
from the test set. For reference, this con�guration can be loosely regarded as a
reimplementation of [68]. However, it must be noted that Tiguan does not perform
the additional local analysis that is done in [68], and that [68] does not specify
what static compaction algorithm was employed. A comparison with the numbers
published in [68] is not presented. In preliminary experiments it was observed that
Tiguan produced relatively large pattern counts for circuits for which [68] reported
compact test sets, and vice versa. A possible reason for this phenomenon is that,
although the same benchmark suite was used in [68], the circuit versions provided
to the University of Bremen and to the University of Freiburg were probably synthes-
ised using di�erent options, thus resulting in di�erent local structures, as indicated
by the discrepancy in gate counts. For this reason, an objective comparison is not
possible.

Finally, the last con�guration (column group dynamic compaction) corresponds to
the basic dynamic compaction procedure introduced in the previous section.

In order to further reduce the test set size, reverse-order fault simulation (ROFS)
and forward-looking reverse-order fault simulation (FLROFS) were applied to the
�nal test set in all three con�gurations. Hence, three numbers are quoted for each
con�guration. �e �rst number (columns labelled brofs) is the size of the �nal
test set before the application of reverse-order fault simulation, while the second
number (columns labelled arofs) is the number of test patterns that remained a�er
the application of ROFS. �e third number (columns labelled a�ofs) is the amount
of test patterns that remained a�er the application of FLROFS instead of ROFS.
In the second con�guration, where static compaction was applied to the test set
produced by the core test generation algorithm, also the pattern count before the
application of static compaction is quoted (column bcomp).

Row sum quotes the total number of patterns that were generated for all circuits
in each case, while row norm sum 1 normalises these numbers with respect to
the pattern count obtained without compaction and without reverse-order fault
simulation (147,848). Row norm sum 2 compares only the pattern counts obtained
in combination with FLROFS.
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Table 21

SAT-ATPG for stuck-at faults — static and dynamic compaction — test set size

no compaction static compaction dynamic compaction

circuit brofs arofs a�rofs bcomp brofs arofs a�rofs brofs arofs a�rofs

p35k 10,267 7,218 6,577 19,086 10,170 7,483 6,252 5,746 4,594 4,154
p45k 3,567 2,921 2,786 19,196 3,347 3,281 3,122 3,261 3,152 3,058
p77k 5,752 3,854 3,245 27,341 2,500 2,079 1,689 1,937 1,817 1,484
p78k 219 192 162 28,867 282 215 107 206 130 103
p81k 15,124 6,746 5,944 76,929 21,279 7,161 4,779 12,427 7,780 3,586
p89k 10,016 6,898 5,821 54,497 8,286 6,689 4,718 4,942 4,391 3,600
p100k 4,876 3,685 3,001 44,689 3,133 2,961 2,824 3,106 3,013 2,724
p141k 8,105 5,943 5,065 82,901 26,473 7,843 4,230 12,589 5,339 3,380
p267k 12,303 8,770 7,345 125,785 7,641 5,839 4,307 5,234 4,957 3,368
p269k 12,407 8,863 7,404 126,832 7,676 5,851 4,315 5,317 5,001 3,398
p286k 18,932 14,484 12,175 181,672 23,126 12,860 8,118 15,565 11,395 6,927
p295k 21,710 15,751 12,668 180,088 9,805 6,295 4,657 7,819 6,725 4,577
p330k 23,601 18,337 17,596 133,952 17,272 15,068 13,176 9,888 9,205 8,410
p378k 299 272 227 144,374 282 243 126 206 167 133
p469k 670 443 345 2,854 1,244 466 346 938 459 331

sum 147,848 104,377 90,361 1,249,063 142,516 84,334 62,766 89,181 68,125 49,233
norm sum 1 100% 70.6% 61.1% 844.8% 96.4% 57.0% 42.5% 60.3% 46.1% 33.3%
norm sum 2 100% 69.5% 54.5%

Circuit p388k was excluded from the table as the con�guration using static compac-
tion was not able to process it due to the memory limit per Tiguan process, which
also prevented the processing of the three largest nxp circuits, p951k, p1522k and
p2927k, using dynamic compaction.

In all three scenarios, ROFS and FLROFS leads to a large reduction of the pattern
count, and FLROFS signi�cantly outperforms ROFS in all cases.

In combination with FLROFS, dynamic compaction outperforms its static coun-
terpart for every circuit with the exception of p378k. In total (row norm sum 2),
static compaction improves the total pattern count by 30.5% with respect to the con-
�guration without compaction, while dynamic compaction improves it by 45.5%,
reducing the total pattern count by 21.6% with respect to static compaction.

It can also be observed that, using static compaction, FLROFS reduces the �nal
amount of patterns by 55.9%, while the reduction is of only 44.7% using dynamic
compaction. �is means that FLROFS is less e�ective when applied a�er dynamic
compaction than when applied a�er static compaction, which conversely shows
that dynamic compaction is more e�ective in generating essential test patterns.
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�e only case in which both static and dynamic compaction were not able to reduce
the test set size in combination with reverse-order fault simulation is circuit p45k.
However, both static and dynamic compaction outperform the method without
compaction when applied to this circuit without reverse-order fault simulation. �e
reason for this is that p45k is a circuit with very easy-to-solve stuck-at faults. Hence,
the con�guration that uses fault dropping based on randomly �lled patterns is very
e�ective in detecting faults by simulation. But the general observation is that the
methods using compaction are superior to the method without compaction, and
that employing FLROFS in combination with dynamic compaction results in the
best pattern counts.

Table 22 lists the run-times in seconds needed by the three con�gurations in con-
junction with FLROFS. �e last two rows quote the accumulated run-time needed
to process all circuits (row sum), and the total run-times normalised with respect
to the time consumed by the �rst con�guration (row norm sum).

In the �rst (column group no compaction) and third con�gurations (column group
dynamic compaction), the total run-time (columns labelled total) comprises the
time needed for the main test generation process (columns labelled tpg) and the
time needed to apply forward-looking reverse-order fault simulation to the �nal
test set (columns labelled �rofs). Hence, the numbers quoted in the total-columns
are the sum of the numbers quoted in the two predecessor columns. In the second
con�guration (column group static compaction), where the static compaction al-
gorithm is applied to the generated test set prior to FLROFS, also the time of the
static compaction algorithm needs to be considered (column comp).

It is apparent that the run-time of the core test generation algorithm increases when
static and dynamic compaction are applied. �e reason for the di�erence between
the �rst con�guration (no compaction) and the second con�guration (static com-
paction) stems from the di�erence in the number of test generation runs. �e �rst
con�guration performs fault dropping using randomly speci�ed test patterns, while
the second con�guration drops faults based on patterns that have been relaxed for
better static compaction. Hence, in the �rst con�guration, the amount of faults
detected by simulation is signi�cantly larger than the amount of faults detected by
simulation in the second con�guration, as shown by the immense di�erence in the
number of test patterns produced by the core test generation algorithm in both cases
(second versus ��h columns of Table 21). Hence, substantially fewer faults need to
be targeted explicitly by the test generation process in the �rst con�guration. �e
fact that the second con�guration produces 8.4 times more patterns than the �rst,
while the time needed for test generation grows by a factor of less than 2, implies
that the average test generation time per fault is smaller when static compaction is
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Table 22

SAT-ATPG for stuck-at faults — static and dynamic compaction — run-time

no compaction (s) static compaction (s) dynamic compaction (s)

circuit tpg �rofs total tpg comp �rofs total tpg �rofs total

p35k 1,219 259 1,478 1,429 677 279 2,385 1,889 151 2,040
p45k 57 64 121 157 110 58 325 222 61 283
p77k 5,771 839 6,610 6,123 268 370 6,761 6,306 262 6,568
p78k 5 31 36 284 64 13 361 283 12 295
p81k 243 583 826 1,278 10,598 586 12,462 1,460 401 1,861
p89k 209 542 751 677 2,397 381 3,455 772 246 1,018
p100k 112 286 398 599 384 166 1,149 689 178 867
p141k 1,324 590 1,914 6,255 10,502 1,295 18,052 7,502 699 8,201
p267k 522 1,492 2,014 3,999 7,268 1,073 12,340 4,053 586 4,639
p269k 478 1,200 1,678 5,146 7,506 1,078 13,730 4,279 703 4,982
p286k 4,114 3,512 7,626 13,837 38,231 5,660 57,728 16,730 3,331 20,061
p295k 1,288 3,176 4,464 8,427 34,220 1,260 43,907 11,149 1,981 13,130
p330k 15,007 6,661 21,668 20,915 16,061 3,116 40,092 28,535 1,606 30,141
p378k 31 183 214 5,596 1,166 59 6,821 4,226 79 4,305
p469k 33,437 1,620 35,057 26,883 13 800 27,696 129,652 1,370 131,022

sum 63,817 21,038 84,855 101,605 129,465 16,194 247,264 217,747 11,666 229,413
norm sum 100% 291% 270%

applied. However, this is due to the fact that most faults detected by simulation are
very easy-to-detect ATPG instances. �erefore, in the �rst con�guration, the test
generation algorithm was applied to a larger fraction of hard-to-detect faults.

Regarding the run-time of the core test generation algorithm in combination with
dynamic compaction (ninth column of Table 22), various factors have to be taken
into consideration. On the one hand, the average SAT solving time increases when
dynamic compaction is performed. �e reason for this is that the processing of each
fault becomes harder with growing size of the processed fault group. Since each new
fault that is added to a fault group is passed the fault group’s detection conditions
in form of additional CMS@ aggressors, very large fault groups lead to extended
faults that can be on average substantially harder-to-detect than the original faults.
�is is particularly visible for circuits with a large number of hard-to-detect faults,
like p469k, where the test generation run-time increases substantially (129,652
seconds instead of only 26,883 seconds needed in the second con�guration). On
the other hand, since the dynamic compaction algorithm generates test patterns
such as to target multiple faults, the likelihood that additional faults are detected by
simulation increases, which means that less faults need to be targeted explicitly by
the test generation process in comparison to the method that uses static compaction.
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In summary, the run-time performance of the core test generation algorithm in
combination with dynamic compaction depends on how long the fault groups
become on average, on how hard the explicitly targeted faults are and on the e�cacy
of fault dropping which depends on the circuit’s depth and number of inputs among
other factors. Hence, the di�erence in time needed by the core test generation
process in the second and in the third con�guration varies strongly depending
on the circuit, but in general this time is higher when dynamic compaction is
employed. However, in the second con�guration also the time needed to apply the
static compaction algorithm to the generated test set has to be taken into account.
�is time (column comp) depends only on the number of test patterns that are
processed (column bcomp in Table 21), and on the length of the test patterns, i.e. on
the circuit’s number of primary inputs, but not on the circuit’s inherent hardness
because the gate-level net list is not an input of the static compaction algorithm. �is
is perfectly illustrated by the fact that the smallest compaction time was measured
for circuit p469k, which is the hardest benchmark from the point of view of test
generation. Since the implemented static compaction has a quadratic run-time
complexity in the worst case, the compaction time is higher than the test generation
time in several cases. With the exception of circuit p469k, the sum of the these two
times (columns tpg and comp) is consistently higher than the test generation time
of the method that employs dynamic compaction.

Finally, the time needed to perform FLROFS in all three con�gurations has to
be considered. Despite the e�ciency of the used fault simulator, this time is not
negligible due to the large number of simulated patterns. In fact, it constitutes 24.8%
of the total run-time in the �rst con�guration. However, as it depends roughly
linearly on the number of test patterns that need to be simulated (columns labelled
brofs in Table 21), it decreases sensibly in the con�gurations that use static and
dynamic compaction as less patterns are simulated in these cases.

Given all these factors, it is hard to predict the exact di�erence between the total
run-time needed to process each circuit using the methods with static and dy-
namic compaction. In fact, there are circuits for which static compaction requires
considerably more time than dynamic compaction (e.g. p81k, where static com-
paction needs 6.7 times more time than dynamic compaction) as well as circuits
for which the opposite is the case (e.g. circuit p469k, where dynamic compaction
needs 4.7 times more time than static compaction). However, the method using
dynamic compaction was able to process all circuits in 7.2% less time than the
method using static compaction. Disregarding the exceptionally hard circuit p469k,
the dynamic-compaction con�guration processed all circuits in 55.2% less time
than the static-compaction con�guration. �at makes it evident that the proposed
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dynamic compaction method is superior to static compaction in regard to both
pattern counts and run-time.

6.4 Enhanced dynamic compaction

�e basic dynamic compaction algorithm presented in the previous section was
extended such as to enable the formation of longer fault groups. �e modi�ed pro-
cedure, which is described in Algorithm 6, is controlled by a new integer parameter
α > 0, which is called the incompatibility con�ict limit. �is parameter determines
how many faults have to lead to an incompatibility con�ict with the currently open
fault group before the fault group is closed. In order to manage the data that depend
on this new parameter, two new variables cc and IF are de�ned. �e former is a
counter that will hold the current number of incompatibility con�icts that have
arisen for the current fault group, while the latter will hold the faults that need to
be reprocessed a�er they have been found to be incompatible to the currently open
fault group. �ese two variables are initialised to 0 and ∅, respectively, at the end of
the initialisation block (lines 3–7).
Like the basic algorithm from the previous section, the ATPG procedure iterates
over the fault list. In each iteration (lines 8–26), the algorithm selects the �rst fault
f from the fault list F, but in contrast to the �rst algorithm, the fault is removed
immediately from F (line 10). �en, f is extended by the fault group assignments
of the current group (line 11), and the test generation procedure attempts to �nd a
test pattern that detects the extended fault f ′ (line 12).
�en, the enhanced algorithm distinguishes the same three cases handled by the
basic algorithm. In the �rst case (lines 13–14), f has been processed independently
of any fault group, while the test generation process has not been able to generate a
test pattern for f . �us, f is classi�ed as undetectable or aborted, and automatically
excluded from further processing, as it has already been deleted from F.
In the second case (lines 15–22), the test generation for the extended fault f ′ has
failed, which shows that f is incompatible to the currently open fault group. Hence,
the con�ict counter cc needs to be incremented, and f is added to IF which holds
the faults that need to be reprocessed. If the con�ict limit has been reached (cc = α),
the current fault group is closed, i.e. the current value of pgroup is merged into
the �nal test set, fault dropping is performed, and the variables pgroup, FGA and
cc are reinitialised. �e close-current-fault-group-procedure in line 19 is
equivalent to lines 17–21 in Algorithm 5. �en, all faults that have been collected
for reprocessing are moved back from the list of incompatible faults IF to the main
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Algorithm 6

Enhanced dynamic compaction for SAT-ATPG

Inputs: CMS@ fault list F, integer con�ict limit α > 0
Output: compact test set P

1: atpg-with-enhanced-dynamic-compaction(F,α) {

2: sort F
3: P ∶= ∅ ▷ initialisation
4: pgroup ∶= nil
5: FGA ∶= ∅

6: cc ∶= 0 ▷ con�ict counter
7: IF ∶= ∅ ▷ holder of incompatible faults
8: while F is not empty do {

9: f ∶= �rst fault in F
10: remove f from F
11: f ′ ∶= extend-fault-description(f , FGA)
12: p ∶= generate-test-pattern(f ′)
13: if p = nil and pgroup = nil then { ▷ f is undetectable or aborted
14: classify f appropriately
15: } else if p = nil and pgroup ≠ nil then { ▷ f is incompatible
16: increment cc by 1
17: add f to IF
18: if cc = α then { ▷ con�ict limit reached
19: close-current-fault-group( )
20: cc ∶= 0
21: move all faults in IF to the beginning of F
22: }

23: } else { ▷ current fault group successfully enlarged by f
24: enlarge-current-fault-group(f )
25: }

26: }

27: merge(P, pgroup)
28: rofs-or-flrofs(P)
29: return P
30: }
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fault list F. In order to preserve the bene�ts of the sorting performed on the input
fault list at the beginning of the procedure, IF is implemented as a stack, and the
faults in IF are moved to the beginning of F such that they occupy the same position
with respect to the ordering of F a�er the initial sorting.
If the con�ict limit has not been reached yet, the fault group is le� open and the
procedure attempts to add the next processed fault to the fault group.
In the last case (lines 23–24), where the test generation procedure has been success-
ful, the fault group is enlarged like in the basic algorithm. �e enlarge-current-
fault-group-procedure in line 24 is equivalent to lines 22–26 in Algorithm 5. �e
rest of the procedure (lines 27–29) is le� unmodi�ed.
A series of experiments were performed in order to examine how the dynamic
compaction procedure’s performance is in�uenced by the con�ict limit α in com-
bination with di�erent sorting strategies. All measurements were performed on
a 2.3 GHz AMD Opteron 64-bit computer with 64 GB RAM, but with a memory
limit of 4 GB per Tiguan process. FLROFS was employed in all experiments.
In the �rst experiment, tests for stuck-at faults were generated for larger iscas’85
circuits and for the combinational cores of larger iscas’89 circuits without impos-
ing a time limit on SAT solving. For each circuit, �ve di�erent α-values (α = 1,
which corresponds to the basic algorithm evaluated in the previous section, and
α = 25, 50, 75, 100) were tested in combination with three fault list sorting strategies,
hence resulting in ��een di�erent con�gurations. Several simple sorting strategies
were implemented, in part based on sorting techniques proposed in [185]. In this
experiment, only the three strategies that lead to the best results in preliminary
experiments were considered:

▸ Reverse topological sorting (RTOP) — the fault list contains all stuck-at faults
up to local fault equivalence, where the faults are processed in reverse topolo-
gical order with respect to their location. �is is the default sorting used by
Tiguan in all experiments shown in this thesis (see Section 6.3).

▸ Topological sorting (TOP) — the fault list contains the same faults as in RTOP,
but the faults are processed in topological order with respect to their location,
i.e. faults located at the primary inputs are processed �rst, and faults located
at the primary outputs are processed last.

▸ FFR-based sorting (FFR) — the fault list contains the same faults as in RTOP,
but the faults are sorted based on the fan-out-free region to which the fault
location belongs. First, the circuit is partitioned into FFRs, and the faults in
the input fault list are assigned to FFRs depending on their location. �en, the
FFRs are sorted in falling order with respect to their size, i.e. to the number
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of faults that have been assigned to them. If two FFRs have the same size,
the FFR whose root gate is closer to the primary inputs of the circuit is given
precedence.

Let G1, . . . ,Gn be the ordered FFRs of a circuit, with G1 being the largest and
Gn being the smallest FFR. For i = 1, . . . , n, let Fi ∶= f i

1, . . . , f i
mi

be the sequence
of faults located within Gi sorted in reverse topological order, i.e. f i

1 and f i
2

are the s-a-0 and s-a-1 faults located at the output of Gi’s root gate. �en, the
fault list is constructed by iterating over the FFRs. In each iteration, the �rst
fault of each sequence Fi is added to the �nal fault list and removed from
Fi. If a sequence becomes empty, it is excluded from the next iteration. �e
procedure terminates when all sequences have become empty. �en, the �nal
fault list has the form f 1

1 , f 2
1 , . . . , f n

1 , f 1
2 , f 2

2 , . . . , f n
2 , f 1

3 , f 2
3 , . . . , f n

3 , . . ..

�e intuition behind this sorting strategy is that the test generation for faults
located within one FFR is more likely to result in con�icting justi�cation
conditions than the test generation for faults located within di�erent FFRs.
Hence, it is expected that processing faults located in di�erent FFRs a�er each
other will lead to fewer fault group incompatibilities. Also, by processing �rst
the faults located on the root gates of FFRs, it is expected that more faults can
be detected by simulation.

�e total number of patterns generated for all circuits (a�er the application of
FLROFS) and the total run-time needed to process all circuits are shown in graphical
form in Figure 24. �e abscissa corresponds to the di�erent values of α, while the
pattern counts (le�-hand-side ordinate scale) and the run-times in seconds (right-
hand-side ordinate scale) are shown in the form of six curves — one test size and
one run-time curve for each sorting strategy.

�e �rst observation is that increasing the con�ict limit α succeeds in reducing the
pattern counts, where the largest di�erence can be observed when α is incremented
from 1 to 25. Although incrementingα to higher values consistently results in lower
pattern counts, the di�erence tends to become smaller for each increment of α by
25. An interesting observation is that the same progression can be observed for all
three sorting strategies. Hence, the parameter α in�uences the amount of generated
patterns in a form that is independent of the used sorting strategy. Although the
di�erences between the di�erent sorting strategies are small, topological sorting
results in the lowest pattern counts for all α-values.

In experiments conducted to examine the impact of fault dropping both with and
without dynamic compaction, it was observed that each run of the fault dropping
procedure tends to detect fewer faults by simulation than the previous run, espe-
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cially in conjunction with topological fault list sorting. Consequently, the capacity
that the test patterns generated at the beginning of the process have to detect a large
number of faults can be decisive in obtaining compact test sets. �is is a possible
explanation for the good performance of the TOP sorting strategy regarding pat-
tern counts in this experiment. Using this strategy, the �rst fault groups that are
constructed are composed of faults with very small input cones. Hence, the �rst
fault groups are likely to become very large due to a reduced probability of fault
group incompatibility. �erefore, the �rst fault group patterns that are added to the
test set are likely to detect more faults by simulation. However, larger fault groups
lead to an increased average test generation time per fault. In consequence, the TOP
strategy has the largest run-times, especially for α = 100, where the constructed
fault groups are allowed to become particularly large.
In contrast, the FFR-based sorting strategy results in slightly higher pattern counts
for all α-values, but it achieves better run-times, especially for α = 1 and α = 100,
which indicates that combining faults from di�erent FFRs into the same fault group
resulted in extended ATPG instances that were easier to detect due to the reduced
probability of con�ict at the time of propagating fault e�ects towards primary out-
puts. But, since the largest FFRs were given precedence, the input cones of the faults
that were collected in the �rst fault groups were larger. �us, the test patterns that
were constructed at the beginning of the process were less likely to detect as many
faults by simulation as in the case where the TOP strategy was used. In sum, this
shows that it is very hard to optimise pattern counts and run-times using one single
strategy.
In contrast to the progression of the pattern-count curves, the total run-times meas-
ured for di�erent α-values progress slightly di�erently for each sorting strategy. It is
di�cult to assess the exact reasons for the speci�c progression of each curve, given
that the factors that in�uence the run-time of the dynamic compaction procedure
are multiple and not mutually independent. But, in general, it can be observed that
incrementing α leads to run-times that grow faster than the pattern counts fall. Still,
the observed run-times grow only roughly linearly in α.
In summary, although the run-time increment incurred by using large α-values is
not critical, the best compromise between pattern count reduction and run-time
increment is achieved for α-values of 25 and 50. Also, given the small di�erences in
run-time between the di�erent sorting strategies, the TOP strategy, which achieved
the most compact test sets in all cases, can be regarded as the best strategy for
SAT-ATPG with dynamic compaction.
�e detailed results obtained in this experiment using the TOP strategy are quoted
in Table 23. �e row labelled sum shows the total number of patterns generated
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Table 23

Enhanced dynamic compaction for SAT-ATPG with topological fault list sorting —

impact of conflict limit α — iscas circuits

test set size run-time (s)

circuit α = 1 α = 25 α = 50 α = 75 α = 100 α = 1 α = 25 α = 50 α = 75 α = 100

c1355 88 85 85 85 85 3.6 10.2 17.5 22.6 25.9
c1908 125 116 115 122 124 2.8 13.4 19.8 29.4 31.2
c2670 124 92 84 72 70 7.0 15.4 22.7 26.1 32.9
c3540 172 140 130 126 124 10.4 39.9 63.0 88.6 101.0
c5315 123 93 86 84 85 10.0 30.9 42.1 52.9 56.3
c6288 53 41 36 32 36 24.6 57.0 83.6 108.4 138.8
c7552 241 174 141 129 120 17.5 54.3 78.7 106.5 112.7

cs00820 108 104 107 101 104 0.7 3.1 4.7 5.6 7.3
cs00832 107 105 102 103 102 0.7 2.9 3.8 6.4 7.7
cs00838 163 152 150 150 149 1.4 8.0 10.1 15.7 19.6
cs00953 86 86 85 86 86 0.7 3.1 5.1 6.3 8.9
cs01196 163 134 134 130 132 1.5 7.2 11.4 15.3 17.5
cs01238 161 142 142 133 142 1.8 7.9 13.2 15.5 17.6
cs01423 61 46 44 42 39 1.9 4.6 6.7 9.4 10.8
cs01488 124 117 114 112 116 0.8 4.0 5.1 7.6 10.5
cs01494 127 119 113 112 107 1.0 4.2 6.3 7.6 9.4
cs05378 199 159 134 134 136 5.5 23.2 32.4 42.1 46.8
cs09234 347 238 206 196 182 19.1 61.8 98.1 114.5 141.0
cs13207 302 281 279 261 247 23.4 104.8 156.1 205.3 253.0
cs15850 298 208 197 183 178 40.0 117.4 163.0 237.9 283.1
cs35932 36 35 37 31 29 187.5 259.3 284.3 328.0 277.8
cs38417 291 236 230 215 193 94.0 179.6 222.5 246.0 300.5
cs38584 420 369 338 305 289 77.2 173.9 217.6 238.8 317.5

sum 3,919 3,272 3,089 2,944 2,875 533.1 1,186.2 1,568.1 1,936.8 2,227.7
norm sum 100% 83.5% 78.8% 75.1% 73.4% 100% 223% 294% 363% 418%

for all circuits and the total run-time required to process all circuits, and the row
labelled norm sum shows these numbers normalised with respect to the values
obtained for α = 1, which corresponds to the basic dynamic compaction algorithm
presented in Section 6.2.

Regarding each circuit separately, it can be seen that increasing the value of α
does not necessarily have the same e�ect on all circuits. For example, there are
circuits (e.g. cs00953) for which modifying the value of α had nearly no e�ect.
Also, there are circuits (e.g. c1908) for which setting α = 75 and α = 100 results
in slightly higher pattern counts than α = 50, thus con�rming that, although the
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average length of the constructed fault groups has a large in�uence on the �nal
test size, the performance of the dynamic compaction method depends on several
factors. At the same time, there are circuits (e.g. cs09234 and cs38584) for which
the di�erence between α = 75 and α = 100 is still signi�cant. In contrast, increasing
α-values results in consistently larger run-times for all circuits. �is corroborates
the observation that, in general, α-values below 50 lead to the best compromise
between pattern counts and run-time.
A�er this observation, the method was applied in combination with the TOP sorting
strategy and FLROFS to nxp circuits using three di�erent α-values: α = 1, which
corresponds to the basic dynamic compaction algorithm presented in Section 6.2,
and α = 25 and α = 50. A SAT solving timeout of 1,000 seconds per SAT instance
was used in order to prevent too long fault groups from resulting in an explosion of
the total run-time.
�e results are summarised in Table 24 (a). �e �rst column group (test set size)
quotes the number of generated test patterns that remained a�er the application
of FLROFS. Due to the SAT solving timeout of 1,000 seconds, not all faults were
classi�ed in this experiment. Although it is safe to assume, based on previous
experimental evidence, that most aborted faults are undetectable, from the point of
view of compaction the worst case would occur if all aborted faults were detectable
by only one test pattern each, and if that test pattern could not be merged with the
other generated test patterns. Hence, in the worst case, all faults in the circuit can
be tested using a maximum number of patterns that equals the size of the generated
test set plus the number of aborted faults. �is number is quoted in the second
column group (worst-case test set size). �e last column group (run-time) quotes
the total run-time in seconds.
As can be seen, increasing the parameter α is e�ective in reducing pattern counts
also when the algorithm is applied to large industrial circuits. Both the actual num-
ber of generated test patterns and the worst-case number of patterns are reduced by
roughly 25% ifα is increased from 1 to 25, at the expense of a run-time increment by
a factor of 2.6. �erefore, using α = 25 can be regarded as computationally feasible.
Although incrementing the value of α to 50 results in even better pattern counts,
the di�erence in pattern counts between α = 25 and α = 50 is smaller. However, in
comparison to the smaller circuits, it can be seen that larger α-values have a larger
in�uence on run-time e�ciency.
�e results obtained for circuit p469k are shown separately, including more details,
in Table 24 (b). �is circuit is known for leading to extremely hard SAT instances
despite its relatively small size. �e second and third columns of the table quote
the actual test set size a�er the application of FLROFS and the worst-case test size
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Table 24

Enhanced dynamic compaction for SAT-ATPG with topological fault list sorting —

impact of conflict limit α — nxp circuits

(a) all circuits without p469k

test set size worst-case test set size run-time (s)

circuit α = 1 α = 25 α = 50 α = 1 α = 25 α = 50 α = 1 α = 25 α = 50

p35k 4,037 2,715 2,212 4,273 2,946 2,461 2,216 8,849 13,653
p45k 3,095 2,563 2,387 3,095 2,565 2,390 318 1,461 2,495
p77k 1,349 1,133 1,070 1,366 1,158 1,115 6,767 10,583 14,592
p78k 104 83 84 104 83 84 1,134 2,998 4,478
p81k 1,553 1,121 997 1,564 1,133 1,005 1,677 3,594 5,645
p89k 3,925 2,647 2,135 3,927 2,670 2,162 1,440 3,177 4,374
p100k 2,757 2,383 2,281 2,763 2,399 2,293 1,090 3,345 5,263
p141k 3,385 2,234 1,932 3,535 3,106 2,992 9,805 22,127 27,607
p267k 2,859 2,139 2,026 2,868 2,166 2,064 5,872 15,213 23,070
p269k 2,901 2,155 2,062 2,911 2,189 2,108 5,930 14,681 23,289
p286k 6,424 4,823 4,455 6,532 5,041 4,756 21,480 54,222 69,370
p295k 5,971 5,359 5,116 5,983 5,389 5,151 12,923 38,273 52,871
p330k 6,493 4,205 3,871 6,517 4,258 3,951 33,384 118,249 182,311
p378k 129 106 103 129 106 104 38,274 100,769 114,095
p388k 2,821 1,886 1,720 2,873 2,032 1,893 20,659 33,151 34,937

sum 47,803 35,552 32,451 48,440 37,241 34,529 162,969 430,692 578,050
norm sum 100% 74.4% 67.9% 100% 76.9% 71.3% 100% 264% 355%

(b) detailed results for circuit p469k

average per SAT instance

test set size run-time (s)

actual worst case clauses variables formulation solving total time (s)

α = 1 333 338 202,801 53,674 0.112 24.5 165,246
α = 25 319 324 269,297 69,931 0.123 98.0 2,037,428
α = 50 308 313 277,670 71,956 0.123 106.9 3,554,034

which is computed in the same way as for the circuits listed in Table 24 (a). As an
indicator of the average SAT formula size, the next two columns quote the number
of clauses and Boolean variables contained on average in each generated formula.
Note that this includes all generated formulae, i.e. also the formulae that represent
the extended CMS@ faults. Consequently, these numbers are increased by roughly
30% forα = 25, because the fault groups are given the opportunity to become longer.
Although these numbers grow again when α is incremented to 50, the di�erence
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is not as signi�cant as for the α-increase from 1 to 25. �is means, that the fault
groups do not become signi�cantly longer for α = 50.

�e next two columns list the average time in seconds needed to formulate one SAT
formula (column formulation) and the average time to solve it (column solving).
Since larger fault groups mean that the modelled circuit area becomes larger as
well, the SAT formulation time also increases slightly for α = 25 and α = 50, but
the increment is minimal. However, the average SAT solving time is quadrupled
when α is incremented from 1 to 25. But it grows only slightly when α is further
incremented to 50, which agrees with the observation that incrementing α to 50
does not contribute signi�cantly to fault group elongation.

In contrast,α has a large impact on the total run-time (last column), which increases
by a factor of nearly 20 when α is incremented from 1 to 25, and nearly doubles
again when α becomes 50. �e reason why α has a larger in�uence on the total
run-time than on the average SAT solving time is the following: For any �xed α-
value, each created fault group is closed only a�er α incompatibilities have been
found, i.e. a�er the unsatis�ability of α SAT formulae has been determined. �us,
for α = 25, at least 25 times more unsatis�able SAT instances had to be solved than
for α = 1, and the same increment applies when α is further increased to 50. �e
results obtained for all other circuits (Tables 23 and 24 (a)) show that this is in
general not an impediment for the successful application of the enhanced dynamic
compaction procedure, even for α-values as large as 100. p469k constitutes an
extreme example, given that it leads to a large number of unsatis�able instances,
and that its unsatis�able instances are signi�cantly harder to solve in comparison to
its satis�able instances. Hence, the implementation of an adaptive mechanism that
prevents extreme behaviour on exceptionally hard circuits is an important direction
for future research.

Disregarding p469k, the experiments demonstrate the potential of the basic dy-
namic compaction procedure presented in this chapter. By changing only one
parameter, it has been possible to signi�cantly improve the pattern counts with
feasible computational e�ort, for both iscas and large industrial circuits.

For reference, Table 25 shows a comparison between the best pattern counts achieved
by Tiguan using the proposed dynamic compaction procedure, and the number
of patterns produced by a commercial ATPG tool that implements a structural
algorithm. �e results quoted for the commercial tool were obtained in “high
compaction e�ort”-mode.

Tables 25 (a) and 25 (b) list the results obtained for iscas’85 and iscas’89 circuits,
respectively. Neither Tiguan nor the structural tool aborted the processing of
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Table 25

Dynamic compaction for SAT-ATPG — best Tiguan pattern counts from Tables 23 and 24

in comparison to a commercial tool (structural ATPG)

(a) iscas’85 circuits (b) iscas’89 circuits

circuit Tiguan structural

c1355 85 95
c1908 115 140
c2670 70 81
c3540 124 143
c5315 85 101
c6288 32 33
c7552 120 125

sum 631 718

circuit Tiguan structural

cs00820 101 121
cs00832 102 119
cs00838 149 155
cs00953 85 97
cs01196 130 159
cs01238 133 163
cs01423 39 66
cs01488 112 128
cs01494 107 134
cs05378 134 136
cs09234 182 182
cs13207 247 281
cs15850 178 154
cs35932 29 51
cs38417 193 135
cs38584 289 167

sum 2,210 2,248

(c) nxp circuits

Tiguan structural ATPG

circuit no compaction compaction (wc) test size aborts wc test size

p35k 10,267 2,461 1,542 – 1,542
p45k 3,567 2,390 2,099 14 2,113
p77k 5,752 1,115 496 3,575 4,071
p78k 219 83 69 – 69
p81k 15,124 1,005 336 201 537
p89k 10,016 2,162 719 1 720
p100k 4,876 2,293 2,050 251 2,301
p141k 8,105 2,992 601 21 622
p267k 12,303 2,064 899 – 899
p269k 12,407 2,108 887 10 897
p286k 18,932 4,756 1,192 56 1,248
p295k 21,710 5,151 1,688 20 1,708
p330k 23,601 3,951 2,493 173 2,666
p378k 299 104 75 – 75
p388k 11,756 1,893 550 70 620
p469k 670 313 390 221 611

sum 159,604 34,841 16,086 4,613 20,699
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any faults. �e numbers quoted for Tiguan correspond to the lowest pattern count
quoted in columns 2–6 of Table 23. It can be observed that the proposed compaction
method enabled Tiguan to test all faults in iscas circuits using less patterns than
the commercial, structural tool.

Table 25 (c) quotes the results obtained for nxp circuits. Given the large number
of aborts produced by the structural tool for some circuits (e.g. p77k), an exact
comparison is not possible. Nevertheless, this table provides a reference for the
advancement of SAT-ATPG with respect to test compactness that is made possible
by the proposed dynamic procedure. �e �rst column group quotes pattern counts
achieved by Tiguan. �e column labelled no compaction corresponds to the second
column of Table 21, which represents the number of patterns produced by Tiguan
using 32-bit fault dropping, which is very e�ective in detecting a large number of
faults by simulation, but without any additional compaction e�ort. �e column
labelled compaction (wc) corresponds to the lowest pattern count quoted in columns
5–7 of Table 24 (a), i.e. to the best worst-case pattern count achieved by Tiguan
employing enhanced dynamic compaction and topological fault list sorting. �e last
three columns of the table quote the number of patterns the structural tool generated
with high compaction e�ort, the number of aborted faults and the worst-case pattern
count which is the sum of the two previous numbers. Although Tiguan’s worst-case
pattern counts are still higher than those of its structural counterpart, it is evident
that the proposed dynamic compaction procedure allowed Tiguan to reduce the
total pattern count for all circuits from 7.7 times the worst-case pattern count of
the structural tool to only 1.7 times that number with feasible computational e�ort.

6.5 Conclusions

�is chapter presented a dynamic compaction procedure for SAT-based ATPG
which scales to large industrial designs and outperforms the static compaction
method both in terms of test compactness and run-time. In fact, the dynamic com-
paction procedure enabled the SAT-based tool Tiguan to generate more compact
test sets for iscas circuits than a commercial ATPG tool that implements a struc-
tural algorithm. Regarding the application to the large industrial circuits provided
by NXP, the test sets produced by the commercial tool are still more compact than
those produced by the SAT-based method, but the dynamic compaction procedure
allowed Tiguan to signi�cantly shrink the gap between structural and SAT-based
ATPG in terms of test compactness.
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�e most important property of the presented technique is its tight integration
into the ATPG tool. �e technique makes use of the SAT-ATPG core’s speci�c
data structures and interfaces. �is allows the dynamic compaction procedure to
impose the smallest possible number of necessary conditions on internal lines of
the circuit when the enlargement of the currently open fault group is attempted.
Hence, the test generation algorithm encounters a less constrained instance that
is more likely and more e�ciently solvable. Moreover, the extraction of necessary
conditions from internal lines of the circuit is more suitable for combination with
SAT-ATPG than the traditional extraction from assignments made to the primary
inputs, given that SAT-based test generation produces only patterns that are fully
speci�ed within the modelled circuit section.

Although the implemented form of extraction of minimal assignments does not
require the relaxation of the generated test patterns, an input-output-cone analysis
is performed for this purpose in order to allow for the merging of new test patterns
into the �nal test set. Since the relaxation is performed for every pattern that is
generated, the local relaxation analysis presented in [68] was not performed on top
of the input-output-cone analysis, such as to avoid a�ecting the overall run-time
e�ciency of the SAT-based test generation process.

Di�erent SAT, QBF and simulation-based approaches for the generation of test
patterns with a maximum amount of unspeci�ed bits have been published re-
cently [194, 212]. In [212], a QBF-based method is presented which is able to
generate tests with a provably optimal fraction of unspeci�ed bits. Optimal results
were generated at the expense of impractically large run-times, but that allowed
the authors of [212] to evaluate alternative methods that achieve nearly-optimal
densities of unspeci�ed bits. �e incorporation of such techniques would allow for
better merging of the patterns generated by the dynamic compaction procedure
into the �nal test set.

An important topic for future research is the enhancement of the run-time e�-
ciency of the proposed dynamic compaction technique. A promising approach
consists in utilising incremental SAT solving to reduce the average SAT solving
time, which grows strongly when fault groups become very large. Since every new
SAT instance that is generated for a given fault group shares a large part of the cir-
cuit model covered by the previous SAT instance, it is expected that the application
of incremental learning within each fault group will lead to strongly reduced SAT
solving times. However, in contrast to the fault clustering technique discussed in
Section 5.2, where all faults that will be processed using one single incremental SAT
solving process are given advance, in the presented dynamic compaction method,
the composition of fault groups is not known at �rst. �erefore, the approach of
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the fault clustering technique, which generates only one SAT formula and solves it
multiple times using di�erent sets of assumptions, is not directly applicable to fault
groups in dynamic compaction. Instead, the underlying circuit model (i.e. the col-
oured parts of the circuit for a given fault and the assignment of Boolean variables
to lines in those circuit sections) needs to be extended dynamically for each new
fault that is tested in combination with a fault group. In this context, it is important
to guarantee that all lines in the circuit are represented by the same Boolean vari-
ables in all SAT formulae that are processed incrementally. In sum, the dynamic
extension of the underlying circuit model has to be performed such as to satisfy
this condition and such that a minimum number of Boolean variables is used.
A further point of interest is the suitability of SAT-based ATPG in the context of test
compression. State-of-the-art test compression methods [192] rely on very high
densities of unspeci�ed bits. Alternative approaches to test compression which
utilise the strengths of SAT-based ATPG, such as the ability to set a large number
of constraints and to quickly identify unsolvable instances, are required.
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7

Complex fault models and

optimisation problems

�is chapter focuses on the use of SAT-based methods for the generation of test
patterns for complex fault models. A�er a motivation for the need of complex fault
models, this chapter introduces a further application of the CMS@FM that has not
been discussed in previous chapters. �en, an extension of the CMS@FM is intro-
duced — the ECMS@FM. Like its predecessor, the ECMS@FM allows the de�nition
of multiple stuck-at victims, but it also enlarges the range of possible conditions
that can be imposed on aggressor lines, and it also enables the speci�cation of addi-
tional optimisation goals. �e text explains the implementation of ECMS@-based
SAT-ATPG, which was deployed into Tiguan utilising the SAT solver antom’s
ability to solve SAT problems with qualitative preferences. Finally, two important
applications of the new ECMS@FM are discussed and evaluated.

Author’s contribution — �e author’s contribution consisted in the de�nition
of the new ECMS@ fault model, and the adaption of the existing SAT-ATPG frame-
work in order to perform ECMS@-based ATPG. In addition, the author explored
applications of the new model that would result in particularly hard ATPG instances
and would thus demonstrate the applicability of SAT-ATPG to test generation prob-
lems that cannot be solved trivially using structural test generation algorithms.

Parts of the work covered in this chapter have been published in [J2, C16, C7, W2] (see author’s
publications on pages 223–226).

153



7.1. INTRODUCTION

7.1 Introduction

As was discussed earlier, the SAFM has been the dominant fault model used in prac-
tical applications, especially because years of practice have shown that test patterns
generated for stuck-at faults cover many permanent defects. However, it has been
shown that the SAFM does not re�ect accurately several defect types encountered
in the currently dominant CMOS technology [91, 110, 161, 11]. Approaches like
gate-exhaustive [169, 43] or n-detection [186, 38] testing, which attempt to over-
come this shortcoming by testing each stuck-at fault many times under di�erent
conditions, increase the coverage of realistic defects but fail to address more speci�c
failures. For instance, shorts and opens account for a large portion of physical defects
in CMOS ICs [91, 49], and the SAFM provides only a very rough approximation
to the behaviour caused by these defects, especially considering that a substantial
fraction of shorts and opens are resistive [200]. Also phenomena that a�ect signal
integrity, such as capacitive crosstalk [149, 42, 261, 143], ground bounce [236] and
power supply noise [228, 229], belong to the type of complex defects that cannot
be modelled properly using the SAFM.

As a consequence, sophisticated non-standard fault models have been de�ned. One
example, the RBF model, was introduced in Section 2.5. However, such models
can reach a complexity level that makes it necessary to rede�ne the concepts of
detectability and fault coverage. Moreover, even the implementation of dedicated
ATPG tools for each individual fault model is o�en required [77, 182, 118, 92]. Aside
from the cost of implementing multiple tools, each tool may need to model the
problem at its own abstraction level, which complicates the integration of di�erent
tools. For this reason, the need for more generic approaches to model complex faults
has been recognised in academia [64, 119] and industry [144, 158]. For example,
in [64], fault tuples are used to model arbitrary misbehaviour in cycle timing. [144]
de�nes the generalised fault model as a means of description of crosstalk-related
defects. In [119], a similar model is used for diagnosis without fault dictionaries.
�e recent publication of [158] corroborates that user-de�ned fault models have
gained relevance also in industry.

�e author of this thesis introduced the CMS@FM (see Section 4.2) in [54]. �is
fault model allowed the development of one single SAT-based ATPG framework able
to handle the SAFM and also more complex approaches like gate-exhaustive testing
without the need to modify the basic algorithm for each fault model. Instead, the
original problem is mapped to a set of CMS@ faults that can be processed e�ciently
thanks to SAT-based techniques, which are especially suitable for the application
to hard-to-detect and undetectable ATPG instances, as shown in Chapters 4 and
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5. In this chapter, a further application of the CMS@FM is presented. A sectioning
analysis is performed on resistive-bridging faults in order to perform CMS@-ATPG
based on the extracted information.

While these generic approaches have been proved to work well in modelling complex
fault behaviour, there are cases in which not only the detection of faults is desirable,
but also the satisfaction of additional optimisation goals. For example, maximising
the number of primary outputs towards which the fault e�ect is propagated has
been shown to increase the coverage of transition delay faults [247], while the
minimisation of the number of fault-a�ected primary outputs is used to allow for
better diagnosis [124].

In order to enable the speci�cation of such optimisation goals, the CMS@FM model
was extended. �e new fault model, called enhanced conditional multiple-stuck-at
fault model (ECMS@), is de�ned in Section 7.3. �en, the chapter introduces the
implementation details on ECMS@-based SAT-ATPG. Finally, the chapter reviews
selected applications of the ECMS@FM. For each application, the adequate mapping
from the original problem to the ECMS@FM is discussed in detail, and experimental
data are evaluated.

7.2 CMS@-based SAT-ATPG for resistive-bridging

faults

Bridging faults with non-zero bridge resistance may impact the behaviour of a
digital circuit in a non-trivial way. As explained in Section 2.5, in general, a short
defect with resistance R between an interconnect node a driven by a gate g and
a node b driven by a gate h induces voltages Va and Vb, Va, Vb ∈ [0, VDD], on the
a�ected nodes. �ese voltages depend not only on the actual resistance R, but also
on the electrical parameters of the transistors within the gates g and h and on the
number of transistors that are activated. Hence, Va and Vb depend on the pattern
that is applied to the inputs of g and h. Figure 25 shows an example, where the
pattern 00 is applied to the inputs c1 and c2 of gate g and the pattern 11 is applied
to the inputs c3 and c4 of gate h.

How the voltages Va and Vb are interpreted by the gates k and m which are driven
by a and b depends on threshold values between 0V and VDD, which are de�ned
individually for each gate and each input of the gate. In the example, the thresholdϑk
determines whether gate k interprets the voltage Va as logic 0 or logic 1. If Va < ϑk,
which holds if R < Rk, gate k interprets Va as logic 0; otherwise, it interprets the
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Figure 25. Mapping of resistive bridging faults to CMS@ faults

voltage as logic 1. Analogously, if Vb > ϑm, which holds if R < Rm, gate m interprets
Vb as logic 1; otherwise, it interprets the voltage as logic 0.

In general, the continuous space of resistance values R can be partitioned into n
sections [R1, R2], [R2, R3], . . . , [Rn,∞], where R1 ∶= 0 < R2 < ⋯ < Rn < ∞, such
that the logical behaviour of the circuit is identical for all R-values within each
section [199, 225, 74].

In order to demonstrate that the CMS@ fault model can be employed to perform
defect-based ATPG, Tiguan was used to generate test patterns for CMS@ faults
derived from resistive-bridging faults. In particular, RBFs are a good example of a
realistic fault model that requires the modelling of multiple simultaneous stuck-at
victim lines.

For each circuit, 10,000 pairs of interconnects were selected randomly. �e section
partitioning was extracted from the internal data of the RBF simulator SUPERB [74]
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assuming the same technology parameters as in [74]. �e following example illus-
trates the mapping from sectioning information to CMS@ faults. Assume that the
application of the pattern 0011 to the lines c1, c2, c3 and c4 leads to the voltage
distributions shown in Figure 25 (b). Given the thresholds ϑk and ϑm, this leads to
the sectioning [0, Rk], [Rk, Rm], [Rm,∞]. In the �rst section, [0, Rk], the voltage Va
is interpreted as logic 0 by gate k, whereas the correct logic value in absence of the
bridge is logic 1. Hence, node a can be regarded as having s-a-0 behaviour under
the presence of the bridge. Analogously, node b can be regarded as having s-a-1
behaviour under the in�uence of the bridge. In the diagram, the presence of stuck-at
behaviour is marked by the bold sections of the curves for Va and Vb. Altogether,
if the bridge is present and its resistance R belongs to the interval [0, Rk], nodes a
and b simultaneously display s-a-0 and s-a-1 behaviour, respectively. However, this
is only valid for the regarded input combination 0011 applied to c1, . . . , c4, because
di�erent input combinations result in di�erent voltage curves. In summary, the
circuit’s faulty behaviour under the presence of the bridge can be expressed for the
section [0, Rk] by one CMS@ fault:

f1 ∶ if [c1 = 0, c2 = 0, c3 = 1, c4 = 1] a s-a-0, b s-a-1.

Analogously, the circuit’s faulty behaviour for the section [Rk, Rm] can be modelled
by the CMS@ fault

f2 ∶ if [c1 = 0, c2 = 0, c3 = 1, c4 = 1] b s-a-1,

while the last section, [Rm,∞], is disregarded, as both nodes have voltages that are
interpreted as fault-free behaviour for R-values greater than Rm.

�e same analysis needs to be repeated for all input combinations that can be applied
to c1, . . . , c4. In the end, the analysis produces a set of CMS@ faults {f1, f2, . . . , fn},
where each of them corresponds to one section and one input pattern to be applied to
the gates that drive the bridged nodes. Each of these CMS@ faults can be processed
separately by Tiguan without further knowledge of the technology parameters. A
test set that detects all faults f1, f2, . . . , fn is guaranteed to detect the original RBF
independently of the actual resistance that is present in an a�ected circuit. Note that
some of these CMS@ faults may be undetectable. However, that does not render the
original RBF undetectable. As explained in Section 2.5, the concept of detectability
and fault coverage is more complex for resistive fault models. Instead of regarding
an RBF as categorically detectable or undetectable, the RBF’s detection probability
is determined depending on how many sections can be detected, and depending
on the probability that the actual resistance R lies in each section.
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Table 26

CMS@-based SAT-ATPG with 32-bit fault dropping for RBFs — iscas’85, iscas’89 and

itc’99 circuits

classi�cation run-time (s)

circuit faults detected undetectable patterns avg/�t total

c1355 20,433 5,169 15,264 610 0.0016 32
c1908 30,338 12,906 17,432 492 0.0013 40
c2670 28,276 17,661 10,615 2,045 0.0009 26
c3540 28,459 17,715 10,744 1,226 0.0019 54
c5315 28,214 19,594 8,620 1,661 0.0008 24
c6288 33,603 20,086 13,517 1,320 0.0037 125
c7552 32,028 19,024 13,004 1,224 0.0013 42

cs01196 19,647 10,510 9,137 819 0.0004 8
cs01238 19,532 9,997 9,535 824 0.0005 9
cs01423 23,767 16,681 7,086 862 0.0003 7
cs01488 13,589 8,964 4,625 336 0.0002 2
cs01494 13,480 8,586 4,894 321 0.0002 2
cs05378 28,929 27,388 1,541 1,520 0.0001 3
cs09234 21,835 15,853 5,982 1,514 0.0010 21
cs13207 20,366 15,107 5,259 1,115 0.0007 14
cs15850 20,061 14,803 5,258 1,090 0.0014 28
cs35932 27,160 9,332 17,828 133 0.0015 42
cs38417 25,976 20,174 5,802 1,619 0.0011 27
cs38584 26,602 17,207 9,395 1,486 0.0012 32

b13c 14,889 4,126 10,763 314 0.0002 3
b14c 44,837 7,692 37,145 2,236 0.0060 268
b15c 41,514 6,542 34,972 1,932 0.0119 495
b17c 41,651 7,966 33,685 2,925 0.0142 591
b18c 42,881 8,753 34,128 3,926 0.0250 1,070
b20c 44,378 8,073 36,305 2,285 0.0104 462
b21c 44,915 8,027 36,888 2,293 0.0104 468
b22c 44,824 8,551 36,273 2,170 0.0108 483

�e experiment was carried out for iscas’85 circuits and for the combinational
cores of iscas’89 and itc’99 circuits, as well as for the industrial nxp circuit suite,
on a 2.3 GHz AMD Opteron computer with 4 Quad-Core processors (hence, up to
sixteen computation threads can run in parallel, each on an own processor core)
and 64 GB RAM, as usual with the limitation of 4 GB memory per Tiguan process
independently of the number of SAT solving threads.

Table 26 summarises the results obtained for iscas and itc’99 circuits, and Table 27
shows the results obtained for nxp circuits. �e test generation was combined with
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Table 27

CMS@-based SAT-ATPG with 32-bit fault dropping for RBFs — nxp circuits

classi�cation run-time (s)

circuit faults detected undetectable aborted patterns avg/�t total

p35k 21,809 19,985 1,824 – 6,325 0.0419 913
p45k 25,491 20,249 5,242 – 2,454 0.0026 67
p77k 23,580 17,738 5,841 1 3,413 0.1824 4,300
p78k 28,007 23,687 4,320 – 489 0.0016 46
p81k 31,144 22,703 8,441 – 3,618 0.0068 211
p89k 24,837 22,202 2,635 – 5,338 0.0050 123
p100k 26,077 21,381 4,696 – 2,687 0.0038 100
p141k 24,099 20,567 3,532 – 2,794 0.0235 567
p267k 22,504 19,645 2,859 – 3,519 0.0093 209
p269k 22,377 19,683 2,694 – 3,588 0.0093 207
p286k 25,676 20,478 5,198 – 3,901 0.0186 477
p295k 22,771 18,979 3,792 – 4,927 0.0143 327
p330k 23,716 20,991 2,725 – 4,428 0.0216 511
p378k 27,898 23,659 4,239 – 529 0.0060 166
p388k 24,637 21,495 3,142 – 2,139 0.0112 275
p469k 45,528 13,444 31,837 247 774 0.4523 20,594
p951k 21,967 20,106 1,861 – 1,958 0.0149 327
p1522k 22,731 19,167 3,564 – 5,731 0.0522 1,187
p2927k 22,638 19,351 3,286 1 3,761 0.0634 1,434

32-bit fault dropping (with random �lling), and a timeout of 20 seconds per fault was
imposed on SAT solving. No multi-threading was used. �e second column of these
two tables shows the number of targeted faults, which equals 10,000 multiplied by
the average number of sections per RBF in which a fault e�ect needed to be encoded
as CMS@ fault. �e columns labelled detected and undetectable indicate how many
faults were detected by pattern generation or by simulation, and how many faults
were proved undetectable, respectively. Note that the undetectability numbers refer
to the derived CMS@ faults and not to the original RBFs. �e realistic detection
probability of the original RBFs was not computed as this was out of the scope of
this experiment.

�e column labelled aborted quotes the number of faults that were le� unclassi�ed
due to a SAT solving timeout. No faults were aborted for the circuits in Table 26;
hence, a column aborted is not included in that table. As for the nxp circuits,
all but three circuits were processed without aborts; two circuits have only one
abort, and p469k has a number of aborts which stands out among all circuits, which
however amounts to only 0.54% of all faults. Given the large number of undetectable
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faults found in this circuit, it is probable that these aborts correspond to further
undetectable RBF sections.
�e column patterns shows the amount of generated test patterns, which is smaller
than the number of detected faults due to the use of fault dropping. For some
circuits, like p469k, the number of patterns is signi�cantly smaller than the number
of detected CMS@ faults (i.e. RBF sections) despite the fact that no compaction
techniques were employed. �is shows that a large number of sections was detected
by simulation.
�e last two columns quote the average run-time needed to process each fault (this
time comprises SAT formulation, SAT solving and fault simulation times), and the
total run-time needed to process the whole fault list. Like in the experiment with
CMS@ faults for gate-exhaustive testing (see also Tables 10 and 11), the average
time needed to process each fault is higher than the average run-time measured for
stuck-at faults (see also Tables 4 and 5), but it roughly remains in the same order
of magnitude. �e average run-time per fault amounts to only 0.003759 seconds
for the iscas and itc’99 circuits, and to 0.049511 for the nxp circuits (0.016105
without considering the hard benchmarks p77k and p469k), which allowed Tiguan
to process a very large number of CMS@ faults in reasonable total time.
�e two-stage approach introduced in Section 5.1.2 was also applied to this set of
CMS@ faults. �e �rst stage was applied to all nxp circuits using an aggressive SAT
solving time limit of 1 second per fault. In the second stage, Tiguan was applied
to the faults that were aborted in the �rst stage, however using a higher timeout of
20 seconds per fault and employing thread parallelism. Table 28 (a) summarises
the results for circuits with at least one abort during the �rst stage. �e second
and third columns quote the run-time of the �rst stage and the number of faults
aborted during the �rst stage, respectively. �is is also the number of faults targeted
in the second stage. �e remaining columns are organised in three groups reporting
the performance of the second stage using multi-threaded SAT solving with 1, 2
and 4 threads. �e columns labelled abr quote the number of faults that remained
unclassi�ed a�er the second stage, while the columns labelled time and total quote
the total run-time in seconds of the second stage and the accumulated run-time of
both stages, respectively.
Table 28 (b) compares the best results observed for the two-stage approach to the
results obtained by the one-stage approach with a timeout of 20 seconds and without
a timeout (there are no aborts in this case). �e experiment without timeout was
only performed for circuits where not all faults could be classi�ed with a timeout of
20 seconds. �e second column indicates the number of threads employed during
the second stage that leads to the results quoted in the third and fourth columns.
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Table 28

Two-stage thread-parallel CMS@-based SAT-ATPG for resistive-bridging faults

(a) two-stage approach

�rst stage second stage (20s timeout)

(1s timeout) 1 thread 2 threads 4 threads

circuit time (s) abr abr time (s) total (s) abr time (s) total (s) abr time (s) total (s)

p77k 2,379 948 5 3,468 5,847 – 1,337 3,716 – 945 3,324
p141k 848 1 – 1 849 – 1 849 – 2 850
p330k 850 2 – 6 856 – 2 852 – 2 852
p469k 13,430 1,956 216 11,047 24,477 134 5,453 18,883 113 4,797 18,227
p1522k 1,695 6 – 12 1,707 – 6 1,701 – 6 1,701
p2927k 2,220 23 1 76 2,296 1 65 2,285 1 62 2,282

(b) comparison to one-stage approach

best results of one-stage approach

two-stage approach 20s timeout no timeout

circuit threads aborted time (s) aborted time (s) time (s)

p77k 4 – 3,324 1 4,300 4,671
p141k 2 – 849 – 567 761
p330k 4 – 852 – 511 772
p469k 4 113 18,227 247 20,594 34,847
p1522k 4 – 1,701 – 1,187 2,090
p2927k 4 1 2,282 1 1,434 2,358

As was the case for stuck-at faults and for CMS@ faults for gate-exhaustive testing,
the two-stage method is advantageous for several circuits. In nearly all cases, a
higher number of employed threads translates into better run-times and less faults
le� unclassi�ed. However, with exception of the hard benchmarks p77k and p469k,
the di�erence in performance between the second stage with two SAT solving
threads and the second stage with four SAT solving threads is minimal, which
corroborates the general observations made in Section 5.1.2. Yet the two-stage
approach o�ers the best compromise between number of aborts and run-time.

Also an experiment without SAT solving timeout was executed successfully. Tiguan
was able to classify all RBF sections in all industrial circuits within acceptable times,
which again shows the applicability of the Tiguan framework to complex fault
models.
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7.3 The ECMS@ fault model

In this section, the enhanced conditional multiple-stuck-at fault model (ECMS@) is
de�ned. �is model is an extension of the CMS@FM and replaced it as the internal
fault model used in Tiguan.
�e description of an ECMS@ fault is composed of three elements: the set of
condition lines A ∶= {a1, . . . , ar}, which may be empty, the set of victim lines
V ∶= {v1, . . . , vs}, and an optional optimisation constraint.
A condition cai is imposed on each condition line ai, and each victim line vj has a
�xed stuck-at behaviour s-a-bvj . Tiguan supports two classes of conditions that can
be combined in arbitrary ways. �e �rst one is the class of hard conditions which
encompasses the following:

▸ 0 — a test pattern p satis�es this condition on a line l if the application of p
to the primary inputs of the circuit induces the logic value 0 on l;

▸ 1 — p satis�es this condition on l if p induces the logic value 1 on l;
▸ F — p satis�es this condition on l if l is fault-a�ected under p, i.e. if the

application of p propagates a fault e�ect through l;
▸ NF — p satis�es this condition on l if l is non-fault-a�ected under p, i.e. if the

application of p propagates no fault e�ect through l.

An ECMS@ fault is activated under any input vector that satis�es all hard conditions;
then, each victim line vj behaves as s-a-bvj . A test pattern that detects such a fault
needs to satisfy all conditions imposed on condition lines, to excite at least one
victim line vj (i.e. set its fault-free value to¬bvj), and to propagate the error produced
on at least one of the excited victim lines to a primary output.
�e ECMS@FM also allows for the speci�cation of additional optimisation goals
which are expressed in function of the second class of conditions that can be imposed
on condition lines, the class of so� conditions:

▸ P0 — the ATPG process has to try to generate a test pattern that induces the
logic value 0 on lines with this condition;

▸ P1 — the ATPG process has to try to induce the logic value 1 on lines with
this condition;

▸ PF — the ATPG process has to try to propagate a fault e�ect through lines
with this condition;

▸ PNF — the ATPG process has to avoid propagating a fault e�ect through
lines with this condition.

162



7. COMPLEX FAULT MODELS AND OPTIMISATION PROBLEMS

Since all these conditions have a P (which stands for preferred) in their names, these
conditions will also be referred to as P-type conditions. A P-type condition on a
line l instructs the ATPG process to try to satisfy the corresponding non-P-type
condition on l. �e intuition behind trying is that the ATPG process shall pursue
the detection of the fault as primary goal, but if there is more than one test pattern
that detects the fault as de�ned by its hard conditions and the behaviour of its victim
lines, then the ATPG process shall give preference to test patterns that also satisfy
the fault’s so� conditions. For example, assume that the sectioning analysis of an
RBF determines that one of two sections needs to be tested, and assume that the
�rst section is valid if the pattern 1111 is applied to the inputs c1, . . . , c4 of the gates
whose outputs are bridged, while the second section is valid if the pattern 0111 is
applied to those lines. Assume that the victim lines behave equally in both sections,
but the �rst section is preferred over the second because it covers a wider range of
resistances. �en, an ECMS@ fault that models this situation would declare c2, c3
and c4 as condition lines with hard 1-conditions and c1 as a condition line with a
so� P1-condition. �en, the ATPG process will try to �nd a solution that assigns
the logic value 1 to c1, and search for solutions that assign the value 0 to c0 only if
no such solution exists.
As a means to increase the �exibility of this model, also an additional optimisation
constraint can be imposed on the number ω of P-type conditions that are satis�ed
by a test pattern. For instance, ω can be maximised or minimised, orω can be forced
to lie between some application-speci�c bounds, or ω can be forced to be even or
odd. With all these options, the ECMS@FM provides a �exibility that cannot be
achieved using previously introduced fault models. Moreover, the framework can
be easily extended by integrating new types of more speci�c basic conditions and
new types of optimisation constraints.
For better legibility, an ECMS@ fault with hard conditions {cl1 , . . . , clr} imposed on
lines {l1, . . . , lr}, so� conditions {clr+1 , . . . , clr+t} imposed on lines {lr+1, . . . , lr+t}, and
victim lines {v1, . . . , vs} where each victim line vj has the behaviour stuck-at-bvj , is
written as follows:

if [l1 cl1 , . . . , lr clr] v1 s-a-bv1 , . . . , vs s-a-bvs [lr+1 clr+1 , . . . , lr+t clr+t ∶ constraint on ω].

For example, if [l1 = 1] v s-a-0 [l2 PF, l3 PF, l4 PF ∶ maximise ω] stands for a fault
that is activated if line l1 is set to logic 1, in which case line v displays s-a-0 behaviour.
Additionally, the ATPG process shall try to propagate it through as many of the
lines l2, l3 and l4 as possible.
�e new type of conditions made available with the introduction of this fault model
can be applied in a large number of di�erent �elds. One example is the test gener-
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ation for fault tolerant31 circuits that have been designed employing information
redundancy. Such circuits operate on data encoded using error-detecting or error-
correcting codes [141]. Such codes contain a redundant amount of data, based on
which it is possible to detect or to correct up to a certain number of errors in the
base data. In addition to the normal functional logic, self-checking circuits contain
also checking logic that checks whether the inputs and outputs of the circuit are valid
code words.
ATPG for such circuits needs to generate test patterns that are valid code words.
Moreover, depending on the used coding scheme, the checking logic may also
be able to automatically correct up to a certain number of errors contained in
the circuit’s output. Hence, the generated test patterns must produce valid code
words also in the faulty case. Otherwise, some fault e�ects would be masked by the
checking logic, and the corresponding faults would escape detection.
Special applications such as arithmetic circuits can be e�ciently encoded using
complex codes, like Berger or Bose-Lin codes [156, 104], but general applications
are usually encoded with low-cost linear or parity codes [193]. For parity codes,
for instance, the key to generating responses that are valid code words lies in ma-
nipulating the exact number of primary outputs towards which the fault e�ect is
propagated, or in specifying the parity of sub-sets of primary outputs. �ese con-
straints are easily expressed by declaring the primary outputs as lines with PF or
PNF-conditions and imposing the respective constraint on the numberω of satis�ed
P-type conditions.
Further applications of the ECMS@FM are discussed and evaluated in Section 7.5.

7.4 Implementation of ECMS@-based SAT-ATPG

�e main Tiguan framework presented in Section 4.4 was extended in order to
support ECMS@-based ATPG. �e SAT solver antomwas employed as SAT solving
back-end, as antom’s capability to solve SAT problems with qualitative preferences
(see Section 3.3.4) is the mechanism that was utilised to enforce the satisfaction of
so� conditions.
In a large part, the main CMS@-based framework remained unchanged, i.e. the
core algorithms that colour the modelled circuit part, that assign Boolean variables
to circuit lines and that generate SAT clauses are the same. Hard 0 and 1-conditions

31See Section 9.1 for a more detailed overview of various fault tolerance measures.
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are equivalent to CMS@ aggressors that need to be set to 0 or 1, respectively. Hence,
enforcing that a test pattern satis�es a 0 or a 1-condition is achieved by adding
clauses that require that the G-variable of each line with one of these conditions is
assigned to the appropriate value by any Boolean assignment that satis�es the SAT
formula. Analogously, enforcing the satisfaction of F and NF-conditions is done by
imposing the appropriate values on the D-variables that have been assigned to lines
with these conditions.

In contrast, the enforcement of so� conditions is not performed by adding new
clauses to the SAT formula. Lines with so� conditions are treated like lines with hard
conditions by the colouring algorithm such as to ensure that the parts of the circuit
which have an in�uence on the imposed conditions become part of the model, but
the conditions are passed to the SAT solver in form of qualitative preferences. �at
means, Tiguan does not need to modify the SAT formula. Instead, it passes the
SAT solving function a set of literals that should be preferably assigned to 1, and the
SAT solver is in charge of internally taking into account Tiguan’s preferences. �us,
for every G or D-variable X that would need to be assigned to 1 and every G or
D-variable Y that would need to be assigned to 0 in order to enforce a non-P-type
condition, Tiguan declares X and ¬Y as preferred literals in order to enforce the
corresponding P-type conditions.

Finally, the ECMS@FM allows for the speci�cation of an optional optimisation
constraint imposed on the number ω of satis�ed P-type conditions. �e formalism
of SAT solving with qualitative preferences also allows the user to de�ne a partial
ordering that determines which preferred literals are more important than others.
�is is the mechanism that Tiguan uses in order to enforce the satisfaction of
constraints imposed on ω.

7.4.1 Maximisation and minimisation of ω

Let f be a fault, let ϕf be the SAT formula that Tiguan has generated for f , and
let Xf be the set of Boolean variables that occur in ϕf . Let Y ∶= {Y1, . . . , Yn} ⊆ Xf
be the target set of variables. �e aim of the following algorithm is to extend ϕf
into a SAT formula ϕ′f , and to generate qualitative preferences (L,≺), such that the
model of ϕ′f generated by the SAT solver under consideration of (L,≺) satis�es ϕf
and assigns the largest possible number of variables in Y to 1.

First, n sets of new Boolean variables Ni ∶= {N i
1, . . . , N i

i}, i = 1, . . . , n, are introduced
such that Ni ∩Xf = ∅ for all i = 1, . . . , n.
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Figure 26. Sorting bit arrays using SAT

�en, the original SAT formula ϕf is extended such that any Boolean assignment w
that satis�es the extended formula ϕ′f meets the following conditions:

▸ w(Y1) = w(N1
1);

▸ and for each i = 2, . . . , n:

◾ (w(N i
1), . . . , w(N i

i)) = (w(N i−1
1 ), . . . , w(N i−1

i−1), 0) if w(Yi) = 0, or
◾ (w(N i

1), . . . , w(N i
i)) = (1, w(N i−1

1 ), . . . , w(N i−1
i−1)) if w(Yi) = 1.

�e intuition behind this method (see example for n = 4 in Figure 26) is that if
w satis�es these conditions, then w assigns the N i

j -variables values such that the
sequences N1

1 , N2
1 N2

2 , . . . , Nn
1⋯Nn

n represent a step-by-step sorting of the 0 and 1-
assignments made to the variables in Y. �e �rst encountered value (Y1) is copied
into a sequence of length 1 (N1

1 ). �en, every encountered 0-value is appended to
the right-hand end of the sequence, while 1-values are appended to the le�-hand
end of the sequence. In the end, the sequence Nn

1⋯Nn
n is composed of a block of 1s

followed by a block of 0s, and the number of 1s and 0s is the same as in the input
sequence Y1⋯Yn.

�is sorting algorithm is added to the SAT instance ϕf in the form of new clauses.
For each N i

j -variable, clauses that describe its value in function of the appropriate
Y and N i

j -variables are generated. For instance, the value of N1
1 has to be equal

to the value of Y1 in the above example. �is is enforced by adding the clauses
{¬Y1, N1

1} and {Y1,¬N1
1} to ϕf . Analogously, the value assigned to N4

3 has to be
equal to the value assigned to N3

2 if Y4 is assigned to 1, or it must be equal to the value
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assigned to N3
3 if Y4 is assigned to 0. �is is enforced by the clauses {¬Y4,¬N4

3 , N3
2},

{¬Y4, N4
3 ,¬N3

2}, {Y4,¬N4
3 , N3

3} and {Y4, N4
3 ,¬N3

3}.

In order to maximise the number of 1-values assigned to the variables in Y, it is
necessary to maximise the number of 1-values assigned to the variables inNn, which
is achieved by passing the SAT solver the preferences (Nn, Nn

n ≺ . . . ≺ Nn
1 ). �at

means, all literals in Nn should preferably be assigned to logic 1. However, since
it will in general not be possible to assign all preferred literals to 1, the literals on
the right-hand side are to be given precedence (Nn

n ≺ . . . ≺ Nn
1 ). Since the sequence

Nn
1⋯Nn

n is constructed such that all variables to the le� of any variable set to 1 are
also set to 1, the number of assigned 1-values becomes larger if the last 1 in the
sequence is further on the right.

�e same basic algorithm is used for the minimisation of 1-assignments to the
target variables. Minimising the number of assigned 1-values is equivalent to
maximising the number of assigned 0-values. �is is achieved with preferences
({¬Nn

1 , . . . ,¬Nn
n},¬Nn

1 ≺ . . . ≺ ¬Nn
n).

Going back to the ECMS@FM, for each P-type condition line a of a fault f , a
new Boolean variable Ya is introduced, and clauses are generated for Ya such that
Ya is assigned to 1 if and only if the line a has its preferred behaviour. �en,
maximising or minimising the number ω of satis�ed P-type conditions in f is
achieved by applying the algorithm introduced in this section to the target set
{Ya ∶ a is a P-type condition line of f }.

7.4.2 Forcing ω to lie between application-specific bounds

Given a set of target variables Y ∶= {Y1, . . . , Yn} ⊆ Xf , the second type of constraints
that can be imposed on the number ω of variables in Y assigned to 1, is whether
ω lies between a pair of application-speci�c bounds, i.e. whether ml ≤ ω ≤ mh for
some �xed ml, mh ∈ {1, . . . , n}.

�e sorting algorithm from Section 7.4.1 serves also as basis for the encoding of
this type of constraint. For any m ∈ {1, . . . , n}, the sequence Nn

1⋯Nn
n contains at

least m 1-assignments if Nn
1 = ⋯ = Nn

m = 1, independently of the values assigned
to Nn

m+1, . . . , Nn
n . In addition, in order for the sequence to contain exactly m 1-

assignments, also Nn
m+1 = ⋯ = Nn

n = 0 must hold.

Hence, testing whether ω ≥ ml is equivalent to testing whether Nn
ml
= 1. �us, it

su�ces to either pass Nn
ml

as only preference to the SAT solver (so� constraint on
ω), or to add the clause {Nn

ml
} to the SAT-instance (hard constraint on ω).
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�e conditionω = mh is met if Nn
mh
∧¬Nn

mh+1 is satis�ed. Hence, ω ≤ mh is equivalent
to testing whether ¬Nn

mh
∨ ¬Nn

mh+1 is satis�able. Enforcing that this condition is sat-
is�ed is achieved by introducing a new variable that is equivalent to this expression
and passing it as preference or �xed clause to the SAT solver.

7.4.3 Controlling the parity of ω

Given a set of target variables Y ∶= {Y1, . . . , Yn} ⊆ Xf , also the parity of the number
of variables in Y assigned to 1 can be controlled.
�is is easily achieved by de�ning a new variable N and applying Tseitin transform-
ation to an imaginary n-input xor gate with inputs Y1, . . . , Yn and output N. �us,
if an even number of variables in Y is assigned to 1, N is assigned to 0, while an
odd number of Yi-variables assigned to 1 implies N being assigned to 1. Hence, it
su�ces to declare either N or ¬N as the only preferred literal (so� constraint on ω),
or to add the clause {N} or {¬N} to the SAT formula (hard constraint on ω).

7.5 Advanced applications of the ECMS@FM

�is section presents advanced applications of the ECMS@FM and discusses the
obtained experimental results. All measurements were performed on a 2.3 GHz
AMD Opteron 64-bit computer with 64 GB RAM. In all experiments, an unlimited
SAT solving time budget was assigned to every processed fault. Hence, all targeted
faults were classi�ed, but the total run-times are also in�uenced by the time needed
for very hard instances.

7.5.1 Controlling the amount of fault-affected POs

�e �rst advanced application reviewed in this section is the generation of test
patterns that constrain the number of activated propagation paths. Maximising
the number of fault-a�ected primary outputs behaves similarly to n-detection ap-
proaches [186, 38] and increases coverage of transition delay faults [247]. Also the
minimisation of the number of fault-a�ected primary outputs �nds application,
for instance in diagnosis. For example, in [124], a better localisation of faults is
achieved using test patterns that propagate fault e�ects towards single outputs.
In order to test ECMS@-based SAT-ATPG as an application to this problem, patterns
for stuck-at faults were generated for larger iscas’85 and for the combinational cores
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Table 29

ECMS@-based SAT-ATPG for stuck-at faults — controlling the amount of fault-

affected primary outputs

fault-a�ected POs (%) run-time (s)

circuit faults basic min max basic min max

c2670 594 38.4 35.8 91.7 0.8 1.1 1.5
c3540 601 32.9 18.2 81.7 2.2 5.7 5.5
c5315 929 16.7 10.9 97.7 2.3 3.5 3.9
c6288 1,488 7.8 6.2 99.7 17.3 21.2 1,142.5
c7552 1,408 27.8 15.9 98.8 7.6 11.8 9.3

b14c 2,401 8.1 2.9 40.8 33.0 100.8 4,911.2
b15c 2,989 4.5 1.3 35.2 86.4 512.8 149,851.4
b17c 9,155 7.0 1.6 41.7 516.8 1,583.7 416,221.3
b18c 28,395 3.6 1.7 32.6 2,844.9 3,821.1 817,311.4
b20c 5,090 4.8 2.2 33.1 167.5 249.9 102,311.0
b21c 5,187 5.6 2.2 32.2 215.3 302.1 107,265.7
b22c 7,397 6.4 2.2 34.1 311.4 503.8 1,858,574.3

avg/sum 13.6 8.4 59.9 4,205.5 7,117.5 3,457,609.0

of itc’99 circuits under the additional constraint of maximising or minimising the
number of fault-a�ected primary outputs. Expecting the resulting SAT instances
to be extremely hard due to the large amount of preferred literals, only faults at the
roots of fan-out-free regions were targeted.
For each targeted stuck-at fault v s-a-b, the ECMS@ fault

v s-a-b [ov
1 PF, . . . , ov

n PF ∶ maximise ω]

was processed by Tiguan, where ov
1, . . . , ov

n are the primary outputs in the output
cone of v. �is means that all primary outputs that can be a�ected by an error on v
are declared via P-type conditions as lines that should be preferably fault-a�ected
and the maximisation of the number of satis�ed P-type conditions is requested.
For the minimisation of the number of fault-a�ected primary outputs, only the
optimisation constraint [maximise ω] needs to be replaced by [minimise ω].
Table 29 lists the obtained results. �e �rst and second columns quote the circuit
names and the number of targeted faults, respectively. �e column group labelled
fault-a�ected POs show the percentage of primary outputs that displayed a fault e�ect
under the generated test patterns. �e group run-time lists the total run-time needed
to process all faults. In both column groups, the columns labelled basic show the
results of normal ATPG without maximisation or minimisation constraints, while
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the columns labelled min and max list the numbers achieved when the number of
fault-a�ected outputs was minimised or maximised, respectively. �e last table row
labelled avg/sum shows the average percentage of fault-a�ected primary outputs in
all circuits and the accumulated run-time needed to process all circuits.

�e optimisation ATPG is able to minimise the average percentage of fault-a�ected
POs from 13.6 to 8.4%, while the maximisation experiment achieves very high
percentages (up to 99.7%). Note that these numbers are guaranteed to be the best
achievable percentages, because antom was extended such as to return the optimal
model under the given set of preferences according to the optimality de�nition
introduced in Section 3.3.4. However, the satisfaction of the minimisation and
maximisation goals results in a run-time increase which essentially stems from
the increased SAT-solving time due to the handling of qualitative preferences. For
instance, the average SAT solving time per fault measured for circuit b22c increased
from 0.0051 seconds to 0.0325 seconds when minimisation was applied, and to
251.1935 seconds when maximisation was applied.

�e run-time increment is especially severe in the maximisation experiments, where
the di�erence in the number of fault-a�ected POs is larger. Although it must be
remarked that the algorithm that the current antom version uses to handle prefer-
ences was not tuned for e�ciency, the disproportionate growth of the SAT solving
time is not only attributable to the large number of literals declared as preferred.
Maximising the number of fault-a�ected outputs means maximising the number
of paths along which the fault e�ect is simultaneously propagated. �is triggers a
high amount of reasoning along paths that would otherwise be ignored by an ATPG
algorithm that is only advised to �nd any propagation path as fast as possible. And
this applies not only to SAT-based, but also to structural algorithms. Hence, this is
an inherently hard optimisation problem.

Aiming for better run-times, the maximisation experiment was repeated, but in this
case only half of the primary outputs were declared as preferred. �e percentage of
fault-a�ected primary outputs and the needed run-time are quoted in the columns
labelled max/2 in Table 30. �e columns labelled max quote the same numbers as
in Table 29 and are included here for comparison. As can be seen, the achieved
percentages are nearly as high as in the �rst experiment. �ese numbers are optimal
given the set of preferences, but they are not optimal given the original problem any
more, as only half the primary outputs were explicitly constrained. However, the
achieved percentages represent a good compromise between optimality and run-
time e�ciency, given that the required time falls to less than 10% of the time needed
during the �rst experiment. �is shows that the way in which original problems
are mapped to ECMS@-ATPG has a very strong in�uence on the optimality of
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Table 30

ECMS@-based SAT-ATPG for stuck-at faults — run-time-efficient, nearly-optimal con-

trol of the amount of fault-affected primary outputs

fault-a�ected POs (%) run-time (s)

circuit max max/2 max max/2

c2670 91.7 88.8 1.5 1.2
c3540 81.7 73.1 5.5 3.4
c5315 97.7 86.8 3.9 3.0
c6288 99.7 97.1 1,142.5 1,108.0
c7552 98.8 94.7 9.3 7.9

b14c 40.8 35.1 4,911.2 573.7
b15c 35.2 30.3 149,851.4 12,484.9
b17c 41.7 35.3 416,221.3 51,350.3
b18c 32.6 28.0 817,311.4 75,449.1
b20c 33.1 29.0 102,311.0 6,651.3
b21c 32.2 28.4 107,265.7 5,861.2
b22c 34.1 30.0 1,858,574.3 61,715.9

avg/sum 59.9 54.7 3,457,609.0 215,209.9

the achieved results and on the required run-time. �is also demonstrates the
strength of ECMS@-based ATPG, which provides the �exibility to solve related but
not identical ATPG problems without the need to modify the overall SAT-ATPG
framework.

7.5.2 SAT-ATPG with control of switching activity

�e second ECMS@ application discussed in this chapter is the generation of tests
for some basic fault model while inducing speci�c switching behaviour on a num-
ber of observed lines in the vicinity of the fault location. For instance, slow-down-
crosstalk testing [30] requires that a number of aggressor lines switch in the opposite
direction in which the victim line switches, such as to increase the fault e�ect. In
contrast, the creation of maximal noise stemming from the chip’s power distribution
network necessitates the induction of transitions in the same direction on the out-
puts of the gates connected to the same segment of the network. As a consequence,
the power supply voltage of the involved gates is reduced and their propagation delay
increases due to power starvation [182]. In this context, minimising the switching
activity on other lines in the circuit intensi�es the desired e�ect.
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�is ECMS@ application was tested by generating tests for transition faults while
controlling the switching activity on neighbouring lines of the fault site. �e trans-
ition fault model (TFM) is a simple static fault model that assumes that there is
a faulty gate that cannot produce a rising or a falling transition. Transition faults
can also be regarded as GDFs with an in�nite delay [129]. Similarly to other delay
fault models (see Section 2.4.3), the test of a TF requires the application of two test
patterns — an initialisation pattern that brings the CUT into a known and stable
state, and a propagation pattern that makes the fault e�ect visible. For example, a
test pair that detects a rising-transition fault on the output l of a gate g has to justify
the value 0 on l in the �rst cycle and the value 1 in the second cycle in order to
excite the fault, and the second pattern has to propagate the fault e�ect to a primary
output.
Given a combinational or sequential circuit C and a rising-transition fault on a line
v, m neighbour lines a1, . . . , am were chosen. Since no layout and technology data
were available for this experiment, the neighbours were chosen randomly among
all lines on the same topological level as v. Hence, under the unit-delay assumption,
the fault location and all neighbours switch at the same time.
�e mapping to an ECMS@ fault was done as follows. Assuming a full-scan and
launch-o�-capture testing mode, a two-time-frame expansion C′ of the original
sequential circuit is constructed. Let l be a line in C. �en, l@1 and l@2 denote
the lines in C′ which correspond to l in the �rst and in the second time frame,
respectively. An example is shown in Figure 27.
In order to minimise the switching activity on the neighbours, for each neighbour
ai, i ∈ {1, . . . , m}, a new observation gate of type xor with inputs ai@1 and ai@2 and
output oi is added to the sequential expansion. �is means, whenever a neighbour
switches, the output of its corresponding observation gate is 1. Hence, the minim-
isation of switching on all observed neighbours can be achieved by enforcing the
assignment of the value 1 to a minimum number of observation gate outputs. �e
resulting ECMS@ fault in C′ is the following:

if [v@1 = 0] v@2 s-a-0 [o1 P1, . . . , om P1 ∶ minimise ω].

�e hard 0-condition on v in the �rst time frame and the s-a-0 ECMS@ victim on v
in the second time frame constitute the conditions to the detect the transition fault
independently of any optimisation goals, and the so� conditions on the observation
gates enforce that the found pattern induces the minimum amount of switching
on the neighbours. No conditions are imposed on the o�-path inputs in the �rst
time frame. While none are explicitly imposed in the second time frame either, a
propagation of the stuck-at e�ect in the second time frame is only possible if all
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Table 31

ECMS@-based SAT-ATPG for transition faults — minimising the switching activity of

neighbours

switch (%) run-time (s)

circuit faults basic min basic min

s01196 528 25.1 1.0 4.6 7.4
s01238 508 24.0 0.5 4.3 7.1
s01423 650 34.2 7.8 11.4 20.1
s01488 652 30.7 12.1 13.3 31.6
s01494 645 30.9 12.6 13.2 31.8
s05378 2,779 28.9 0.4 177.9 288.2
s09234 5,597 22.1 1.8 798.9 702.0
s13207 7,948 17.7 0.9 1,150.3 764.5
s15850 9,772 14.0 1.3 2,155.5 2,035.1
s35932 16,065 32.2 2.1 1,405.6 1,868.8
s38417 22,173 14.0 0.1 6,396.2 8,705.3
s38584 19,245 19.2 3.0 6,366.3 4,863.7

b12 874 8.3 1.7 25.9 25.0
b13 244 15.1 5.8 0.9 1.1
b14 5,346 20.5 0.3 1,770.2 1,560.7
b15 7,022 15.2 0.6 6,086.8 6,355.2
b17 22,757 12.7 0.2 39,465.2 36,861.9
b18 69,913 13.8 0.0 257,210.3 244,630.2
b20 11,948 16.0 0.1 12,520.0 10,987.4
b21 12,125 15.0 0.1 11,111.7 10,791.0
b22 17,326 15.5 0.1 23,498.9 20,461.8

avg/sum 20.2 2.5 370,187.4 350,999.9

o�-path inputs of the propagation path are set to the non-controlling value of their
respective gate. Hence, these conditions will be satis�ed by the SAT solver. Overall,
this corresponds to strong non-robust (see Section 2.4.3) test generation for the
original transition fault.

�e experiment was carried out targeting the rising-transition fault at every gate
output of sequential iscas’89 and itc’99 benchmark circuits. For every fault loca-
tion, the switching activity on 10 neighbours was minimised. �e results are listed
in Table 31. �e column group switch quote the percentage of observed neighbours
that underwent a falling or rising transition under the application of the generated
test patterns. �e single-column labels have the same meaning as in Table 29. Again,
the achieved percentages of satis�ed P-type conditions are optimal. In contrast to
the experiment from Section 7.5.1, however, the total run-time is on average lower
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Table 32

ECMS@-based SAT-ATPG for transition faults — controlling the transition direction

of neighbours

same-direction transitions opposite-direction transitions

switch (%) run-time (s) switch (%) run-time (s)

circuit faults basic max basic max basic max basic max

s01196 528 12.1 56.5 4.0 4.4 12.8 57.1 4.1 5.6
s01238 508 11.7 54.5 3.9 4.1 12.1 56.7 4.0 4.7
s01423 650 19.2 65.6 10.5 9.9 16.2 66.3 11.2 12.8
s01488 652 15.3 34.3 12.5 17.3 15.3 37.9 11.0 15.7
s01494 645 15.3 35.1 11.8 19.1 15.4 37.5 10.4 15.8
s05378 2,779 13.6 84.8 156.9 177.7 14.9 86.0 203.4 155.5
s09234 5,597 11.9 82.2 693.9 717.7 10.2 81.7 691.1 685.4
s13207 7,948 9.3 81.4 828.0 879.6 8.4 81.5 866.5 844.0
s15850 9,772 7.7 80.2 2,172.7 2,503.0 6.1 80.5 2,308.9 1,970.4
s35932 16,065 22.0 91.8 1,882.6 1,663.2 10.3 90.9 1,537.5 1,592.0
s38417 22,173 6.9 95.3 7,693.4 6,117.3 7.2 95.4 6,983.4 7,924.6
s38584 19,245 10.7 83.4 4,422.5 5,245.3 8.5 82.4 4,301.9 4,692.9

b12 874 4.2 24.8 31.7 35.3 4.3 24.9 31.4 40.3
b13 244 7.9 57.0 1.1 1.4 6.8 50.4 1.2 1.5
b14 5,346 11.0 71.8 1,932.5 2,348.6 9.3 68.6 1,460.8 2,679.6
b15 7,022 7.9 45.7 5,537.3 7,068.7 6.9 43.0 5,865.0 8,657.6
b17 22,757 6.3 65.6 40,152.7 41,375.1 6.2 64.3 40,250.4 41,419.1
b18 69,913 7.0 81.0 248,677.0 220,822.2 6.8 79.5 254,168.1 236,724.5
b20 11,948 8.1 80.5 12,222.1 12,487.0 7.9 79.7 11,772.7 13,088.3
b21 12,125 7.7 80.5 10,490.5 13,062.3 7.1 79.9 10,659.9 11,650.0
b22 17,326 8.0 83.7 19,857.4 22,102.2 7.6 83.7 23,815.4 24,541.6

avg/sum 10.6 68.3 356,795.0 336,661.4 9.5 67.9 364,958.3 356,721.9

when the optimisation goal is enforced. �e reason for this is that the number of
preferred literals is considerably smaller, and it also shows that a moderate number
of preferences is o�en able to constrain the SAT problem in a way that speeds up
the SAT solving.

Two further experiments were performed using these settings. In the �rst one, the
number of aggressors switching in the same direction in which the victim switches
was maximised, and the number of aggressors switching in opposite direction was
maximised in the second. �e construction of the circuit expansion is the same, but
the observation gate of type xor is replaced by gates of appropriate types, such that
the output of each observation gate is 1 whenever an observed internal line behaves
as desired. �e results of these two experiments are summarised in Table 32. �e
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column groups switch quote the percentage of observed neighbours that underwent
a transition in the desired direction under the application of the generated test
patterns. �e single-column labels have the same meaning as in Table 31. Like in the
experiment presented in Section 7.5.1, it could be expected that the enforcement of
the maximisation constraint would increase the run-time due to the large di�erence
in the number of satis�ed P-type conditions. However, the average run-time is on
average lower, which corroborates the observation that SAT-ATPG with preferences
is not universally harder than SAT-ATPG without preferences.

7.6 Conclusions

�e �rst part of this chapter discussed a further application of the CMS@FM which
permitted the generation of test patterns for bridging faults with non-zero resistance,
which are a very good example of a realistic defect model that requires the handling
of multiple stuck-at victims. �e test generation for RBFs was done by performing
a sectioning analysis of the targeted bridges and by mapping the single sections to
generic CMS@ faults, which allowed to take advantage of the bene�ts of SAT-based
ATPG with regard to the processing of hard-to-detect faults. �e experimental
results demonstrated the applicability of the approach, as all targeted RBF sections
were successfully classi�ed, even in large industrial circuits. Also the two-stage
approach previously introduced to speed up test generation for stuck-at faults was
successfully applied to RBF-ATPG.

�e second part of this chapter introduced an extension of the SAT-ATPG frame-
work around the CMS@FM. �e new model (ECMS@FM) allows to generically
emulate highly complex defect modelling approaches; for instance, sophisticated
aggressor-victim models that describe non-trivial signal integrity phenomena like
crosstalk or power supply noise. �e most important feature of the ECMS@FM is
that it provides an easy-to-use method to specify optimisation constraints that guide
the SAT-ATPG process towards the generation of preferred patterns. For example,
test patterns were generated which sensitise the maximum achievable number of
primary outputs, as well as test patterns that provide precise control of local switch-
ing activity. All these applications exemplify the type of non-trivial optimisation
problems that are very di�cult to solve using tools based on structural ATPG. Fur-
thermore, the ECMS@-based approach provides a framework that is universally
applicable, while previous non-generic approaches required the implementation
and maintenance of individual tools for each considered problem.
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While the test patterns that control local switching activity could be generated
without incurring a loss of run-time e�ciency, the generation of patterns that
maximise the number of fault-a�ected primary outputs lead to a very important
observation. Complex optimisation problems can be mapped to the ECMS@FM in
di�erent ways. While the generated solutions are always guaranteed to be optimal
with respect to the chosen model at ECMS@ level, the mapping from the original
problem to ECMS@-ATPG can be done with di�erent levels of accuracy, and the
used level of accuracy needs to be chosen carefully such as to achieve the best
compromise between solution optimality and run-time e�ciency. �e next chapter
presents the application of the ECMS@-ATPG framework to ATPG for power droop
test, an extremely hard optimisation problem in which the global switching activity
has to be controlled over a very large number of clock cycles, which serves as
example to demonstrate the high relevance of appropriate ECMS@ mapping.
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Power droop testing

Power droop is a non-trivial e�ect on signal integrity triggered by speci�c power
supply conditions over a large number of clock cycles. Hence, ATPG for power
droop testing is an extremely hard problem that has not yet been solved optim-
ally using structural methods. �is chapter discusses the use of ECMS@-based
SAT-ATPG to generate test patterns for power droop test, which shall illustrate the
versatility of the ECMS@ framework. A�er reviewing the physics behind power
droop, the chapter brie�y introduces a structural test generation method previously
developed by the author of this thesis for his undergraduate studies (Studienarbeit).
�en, the ECMS@-based test generation method is introduced and evaluated ex-
perimentally. In particular, important directions for future research are analysed in
order to achieve further performance improvement for ECMS@-based SAT-ATPG.

Author’s contribution — �e author’s contribution consisted in the application
of the SAT-ATPG tool Tiguan to the extremely complex test generation problem
for power droop testing, where the main challenge is posed by the question how
to choose the optimisation criteria that best re�ect the original ATPG problem
without rendering the resulting SAT-ATPG instances impractically hard. �e author
explored several strategies and evaluated them experimentally.

Parts of the work covered in this chapter have been published in [J3, C18, C5, W2] (see author’s
publications on pages 223–226).
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8.1 Introduction

�e test of signal integrity is o�en associated with e�ects between logic lines. For
example, capacitive crosstalk [149, 261, 143, 42], inductive oscillatory noise [228]
and combinations of these e�ects [229] have been considered in the past. �e
generation of patterns to test a circuit’s vulnerability to such e�ects needs to take the
induction of speci�c signal behaviour, e.g. noise, into consideration. For example,
noise is maximised on the gates along a sensitised path in [142]. In contrast, test
sequences that avoid high noise levels are generated in [22, 251, 252]. However,
these works consider only the noise induced by the transition of one single signal,
while it has been shown that e�ects that stretch over several clock cycles cannot be
neglected [123, 138].
Furthermore, signal integrity is not solely challenged by noise e�ects between logic
lines. Also the characteristics of the power distribution network can lead to signal
integrity errors. In [123], for instance, genetic algorithms are used to �nd test
sequences that most accurately estimate the peak power over various time durations.
Aside from peak power, also sharp changes in energy consumption are of concern.
Such changes can occur during normal operation. For instance, a microprocessor
that has been in idle mode for several cycles may considerably increase its power
consumption within only few cycles when it starts complex calculations that involve
simultaneous use of several functional units.
Ground bounce and power droop are two example e�ects of power consumption
transients. Ground bounce [236, 39, 40, 41] denotes a phenomenon caused by
voltage transients on the chip’s power and ground, which result from rapid changes
in current demand. Such transients can cause the ground potential on-chip to rise
above the power supply ground potential. �e rise may be su�cient to provoke false
highs, i.e. voltage levels are erroneously interpreted as logic 1. If the rise is strong
enough, it may even make VDD appear to be negative, which leads to unstable states
in circuit components, e.g. in �ip-�ops.
Power droop (PD) [245, 177] describes an even more complex mechanism that can
result in transition delays. In [182], an ATPG method aimed at creating worst-case
power droop conditions was proposed. �e method tries to generate a long test
sequence that induces two types of power droop e�ects in succession. �e �rst e�ect,
called low-frequency power droop, occurs when the voltage regulation module is
unable to handle large transients in the power consumption of the whole device
due to non-negligible inductance in the interconnect. It results in a drop of voltage
on certain lines (power starvation), and it requires several clock cycles to cause the
worst impact. In contrast, the source of the second e�ect, called high-frequency
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power droop, is chip-internal. It results from the limited capability of the power
distribution network on-chip to deliver power quickly enough. If a number of
lines supplied by the same power distribution node increase their power demand
simultaneously, the power grid might not be able to deliver the required amount of
current in appropriate time, which leads to delay e�ects.

�e proposed test procedure applies three sub-sequences of test patterns in succes-
sion. �e �rst sub-sequence induces minimum switching activity (and thus low
power consumption) in the circuit under test, while the second sub-sequence max-
imises global switching activity. �e induced transient then leads to low-frequency
power droop. When its e�ects have reached their largest impact, a �nal test pair is
applied which induces worst-case high-frequency power droop by imposing sim-
ultaneous signal transitions in the same direction on a victim line and on several
aggressor lines that draw power from the same segment of the power grid. If the
circuit is vulnerable to power droop, this leads to a delay e�ect on the victim line.

Since this test sequence needs to be applied in functional mode, using scan for any
test vector of the sequence except for the �rst one is not possible. In consequence,
the generation of such a test sequence constitutes sequential ATPG involving a
large number of time frames. In addition, each sub-sequence has to minimise or
maximise speci�c switching behaviour, either globally or on the set of aggressor
lines. All these aspects make the ATPG problem for power droop test (PD-ATPG)
an extremely hard ATPG problem.

In [182], the dynamically constrained D-Algorithm was proposed. �e method
works in a greedy fashion and gives lines in later time-frames preference over lines
in earlier time frames when making search decisions. Hence, the overall solution is
not optimal. Decisions made in order to augment the e�ect of high-frequency PD
during later time frames may result in less severe low-frequency PD e�ects during
earlier time frames, although a better global solution might exist with a weaker high-
frequency-PD e�ect in later time frames and considerably better low-frequency-PD
e�ects during earlier time frames.

In contrast, the ECMS@-based method presented in this chapter considers all mod-
elled time frames simultaneously, which enhances the quality of the overall solution.
It makes use of the SAT solver antom’s capability to solve SAT instances under a
given set of qualitative preferences (see Section 3.3.4), thus guaranteeing the gen-
eration of optimal solutions with respect to the speci�ed optimisation constraints.
However, as shown in the previous chapter, the way in which the original prob-
lem is mapped to ECMS@-ATPG has a strong in�uence on Tiguan’s run-time
performance. �is means that a well-balanced set of criteria has to be chosen for
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the mapping in order to obtain solutions of su�cient quality without rendering the
generated SAT instances impractically hard.

8.2 Power droop testing

�is section brie�y reviews the physics behind low-frequency and high-frequency
power droop, as well as the test method that was proposed in [182].
Let L denote the parasitic inductance of the interconnect between the circuit under
test and power supply. �e sudden increase in current I demanded per time unit t,
i.e. the sudden increase in power consumption, is referred to as a dI/dt event. A�er
a dI/dt event, the circuit under test sees its power supply voltage VDD reduced by
L ⋅ dI/dt, where dI is the amount by which the current demand increases and dt is
the time within which that increase occurs. �is e�ect is known as low-frequency
power droop. In modern designs, where VDD has been scaled down at the same time
that the operation speed lies in the range of several GHz, the inductive voltage drop
L ⋅ dI/dt is non-negligible. For example, on a chip operated at 3 GHz, a transient of
10W (dI = 10A for VDD = 1V) occurring within 3 clock cycles (10−9 seconds) leads
to a voltage drop of L ⋅ 1010 A

s , which equals to 0.1V (10% of VDD) for an inductance
as low as 0.01nH. SPICE simulations have shown that a 10–15% voltage drop can
cause gate delays to increase by 20–30% [132].

voltage
regulation
module

circuit
under
test

C

parasitic
inductance
L

Figure 28. Circuit under test connected to power supply

�e e�ect of low-frequency power droop can be diminished by adding a capacitance
C intended to cover the circuit’s short-term demand for current a�er a dI/dt event
(see Figure 28). Since the inductance of the line between the capacitor and the
circuit is lower than L, the inductive voltage drop is less severe. However, if C is
discharged before the voltage regulation module is ready to supply the full amount
of needed current, a VDD drop is still observed, albeit of a smaller extent and some
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Figure 29. Voltage seen by CUT after a dI/dt event

time a�er the initial dI/dt event (see Figure 29). VDD decreases more slowly, and
a�er some time a point is reached at which the power supply provides enough
current and starts recharging the capacitor. Whether the VDD drop is large enough
to cause a logic or delay failure depends on the extent of the dI/dt event, i.e. on
how much more current is demanded over how small a period of time, and on the
values of L and C, as well as on the characteristics of the voltage regulation module.
However, the key observation is that the impact of low-frequency power droop is
most severe several clock cycles a�er the actual dI/dt event.
As opposed to low-frequency power droop, high-frequency power droop is caused
only by conditions inside the IC. �e power distribution network or power grid
of CMOS ICs is organised in multiple metal layers, where each layer is composed
of several parallel rails, with vertical vias connecting rails of di�erent layers (see
Figure 30). �e power rail part located between two vias is called a segment. �e
upper layers are o�en reserved for power rails and the clock-distribution network
while lower layers are shared with logic signal lines. For this reason, rails and vias
tend to be smaller in lower layers. In particular, vias are relatively small with respect
to the rail size. In consequence, they are an obvious bottleneck for power delivery.
High-frequency power droop occurs when multiple cells drawing current from the
same power grid segment suddenly increase their current demand simultaneously.
If the current cannot be provided quickly enough from other parts of the chip, a
voltage drop is observed in the a�ected area. In contrast to low-frequency power
droop, this is a highly localised and transient phenomenon: one of the involved
cells is slowed down for one clock cycle.
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Figure 30. Four-layer power grid

�e test method introduced in [182] is designed such as to maximise the e�ects of
both low-frequency and high-frequency power droop. First, low-frequency power
droop is induced by creating a global dI/dt event that stretches over multiple clock
cycles. When the voltage droop is most severe due to the e�ects of low-frequency
PD, high-frequency PD is imposed on a victim line v. For this purpose, line v and a
number of aggressor lines that draw power from the same segment as v, are required
to switch simultaneously and in the same direction. Combined power starvation
due to both low-frequency and high-frequency power droop leads to an increased
switching delay on line v. Finally, a path from line v to an output or �ip-�op is
sensitised, such that the fault e�ect can be observed.

Given a victim line v and a set of aggressor lines, the aim is to generate a test sequence
p1, . . . , pM+1, . . . , pM+N+1, pM+N+2 that satis�es the following conditions:

▸ condition κ1 — the last two test patterns pM+N+1 and pM+N+2 have to be a
strong non-robust test for a transition fault located at v;

▸ condition κ2 — the application of pM+N+1 followed by pM+N+2 has to induce
a transition in the same direction in which v switches on as many aggressor
lines as possible;
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▸ conditionκ3 — the global switching activity has to be as low as possible during
the application of the test sequence p1, . . . , pM+1; this sequence is referred to
as LSS (low-switching-activity sequence);

▸ condition κ4 — the global switching activity has to be as high as possible
during the application of the test sequence pM+1, . . . , pM+N+1 (HSS — high-
switching-activity sequence).

κ1 is a necessary condition for the test, while κ2, κ3 and κ4 are all optimisation
conditions. �e extent to which κ2, κ3 and κ4 are satis�ed will determine the
quality of the generated test sequence.

8.3 Mapping to ECMS@-based SAT-ATPG

Given the gate-level net list of a sequential circuit C, a victim line v and a set of
aggressor lines, the aim is to generate a sequence of M + N + 2 test patterns that
complies with the conditions κ1, κ2, κ3 and κ4 that were de�ned in the previous
section. In order to simplify the description of the algorithm, it is assumed that the
victim undergoes a rising transition. Figure 31 illustrates the mapping of PD-ATPG
to ECMS@-ATPG for M = N = 2, i.e. for a total of six modelled time frames.
First, assuming that all secondary inputs are controllable in the �rst time frame, and
that all secondary outputs are observable in the last time frame, an M +N + 2-time-
frame expansion C′ of the original sequential circuit C is constructed. For any line
l in C, and i = 1, . . . , M +N + 2, let l@i denote the line in the sequential expansion
C′ which corresponds to l in the i-th time frame.
�en, for each PD aggressor line a, a new and gate with inputs ¬a@M +N + 1 and
a@M +N + 2 is added to C′. �e output oa of this new gate will produce the logic
value 1 if and only if a undergoes a rising transition under the application of the
last two test patterns of the generated test sequence.
�e next step consists in selecting a set of control lines in the original circuit C.
�en, for each control line c, and i = 1, . . . , M, a new xnor gate with inputs c@i and
c@i + 1 is added to C′. �e output oi

c of the new gate will produce the logic value
1 if and only if line c does not change its value (i.e. c does not switch) following
the application of the i-th and the i + 1-th patterns of the generated test sequence.
For i = M + 1, . . . , M + N, gates of type xor are used instead of xnor, such that
the output of those new gates produce the logic value 1 when the corresponding
control line c switches following the application of the i-th and the i + 1-th patterns.
In the example in Figure 31, there is only one control line c.
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Figure 31. SAT-ATPG for power droop test — mapping to ECMS@ faults
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All and, xnor and xor gates that have been added to C′ in these �rst two steps
are referred to as observation gates. On the whole, all observation gates are con-
nected such that they produce the logic value 1 whenever some line in C exhibits
the behaviour that is desired for that line at a certain time point during the test
application.

Finally, given aggressor lines a1, . . . , ar and control lines c1, . . . , cs, the constructed
ECMS@ fault is as follows:

if [v@M +N + 1 = 0] v@M +N + 2 s-a-0
[o1

c1 P1, . . . , oM+N
c1 P1, . . . , o1

cs P1, . . . , oM+N
cs P1, oa1 P1, . . . , oar P1 ∶ maximise ω].

�e hard 0-condition on v in the last-but-one time frame and the s-a-0 ECMS@
victim on v in the last time frame constitute the conditions to detect the transition
fault independently of any optimisation goals. �e so� conditions on the outputs
of all observation gates, together with the constraint of maximising the number ω
of satis�ed so� conditions, enforce that the found test sequence simultaneously:

▸ maximises the number of control lines that do not switch during the applica-
tion of the sub-sequence LSS,

▸ maximises the number of control lines that switch during the application of
the sub-sequence HSS,

▸ and maximises the number of PD aggressors that undergo a rising transition
during the application of the last two test patterns.

Given that the SAT solver antom guarantees to generate an optimal SAT model
with respect to a given set of preferences according to the optimality de�nition
presented in Section 3.3.4, the produced test sequence is also optimal with respect
to the speci�c choice of control lines. However, the optimality of the test sequence
with respect to the original problem depends on the strategy employed to choose
the control lines.

�e intuition behind a good strategy for the selection of control lines is that as few
control lines shall be chosen, however such that controlling the switching activity
of the chosen control lines has a su�ciently large in�uence on global switching
activity. �e reason why only few control lines may be selected is the large number
of P1-conditions that need to be set, which equals s ⋅ (M +N) + r. In a preliminary
experiment, in which all circuit lines were selected as control lines, the large number
of preferences made SAT solving infeasible even for small SAT formulae: average
SAT solving times of more than 5,000 seconds per SAT instance were measured for
a circuit with only 200 gates.

187



8.4. EXPERIMENTAL EVALUATION

8.4 Experimental evaluation

�is section discusses the experimental evaluation of the presented method. All
measurements were performed on a 2.3 GHz AMD Opteron 64-bit computer with
64 GB RAM. In all experiments, an unlimited SAT solving time budget was assigned
to every processed fault. Hence, all targeted faults were classi�ed, but the total run-
times are also in�uenced by the time needed for very hard instances.

8.4.1 Comparison to structural ATPG

In a �rst experiment, the SAT-based approach was compared to the dynamically
constrained D-Algorithm presented in [182]. As in [182], only one fault site per
circuit was targeted, namely the node with the largest fan-out. Five aggressors
were selected randomly among all lines in the vicinity of the victim. �e selected
aggressors belong all to the same level as the victim. Hence, the fault location
and all aggressors switch at the same time under the unit-delay assumption. Like
in [182], an LSS length M and an HSS length N of 10 were chosen, which yields a
test sequence of length 22. For the SAT-based method, �ve randomly chosen FFR
(fan-out-free region, see Section 2.2.2) roots were used as control lines.

�e results are shown in Table 33. �e columns labelled κ2 quote the number
of aggressors (max. 5) that complied with test condition κ2, i.e. that switched in
the same direction in which the victim switched. �e columns labelled κ3 list
the percentage of all lines in the circuit that switched in any direction during the
application of LSS; according to test condition κ3, low percentages are desired
in these columns. �e columns labelled κ4 quote the percentage of all lines in
the circuit that switched in any direction during the application of HSS; in these
columns, larger numbers are better. Finally, the columns labelled time report the
needed processor time in seconds.

Since the SAT solver returns the optimal solution under the given set of preferences,
Tiguan’s solution to the problem of satisfying all three conditions κ2, κ3 and κ4
is optimal as well, whereas the structural approach from [182] is heuristic and not
guaranteed to return the optimal solution. �is is clearly re�ected by the numbers
reported in the table. For nearly all circuits, Tiguan achieves better numbers for all
three conditions. However, since the employed ECMS@ mapping gives the same
weight to all conditions, there are cases in which single conditions are better satis�ed
by the structural algorithm, e.g. κ2 for circuit s00444. Here, Tiguan makes only one
aggressor comply with κ2. In contrast, the di�erence in switching activity between
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Table 33

ECMS@-based SAT-ATPG for power droop test — comparison to structural ATPG

structural [182] Tiguan

satis�ed conditions satis�ed conditions

circuit κ2 κ3 (%) κ4 (%) time (s) κ2 κ3 (%) κ4 (%) time (s)

s00027 1 0 70 0 5 1 53 0.2
s00208 3 3 40 1 5 2 81 1.1
s00298 2 4 46 1 1 17 69 1.9
s00344 1 0 46 1 3 0 58 1.3
s00349 1 4 47 2 3 1 58 1.4
s00382 2 2 34 1 2 14 76 5.5
s00386 1 2 38 3 3 26 70 1.2
s00400 2 3 35 2 2 13 82 25.7
s00420 4 0 36 6 4 0 87 5.3
s00444 2 2 40 2 1 13 81 22.3
s00510 2 16 39 7 0 6 70 5.8
s00526 5 1 37 3 3 14 77 14.8
s00641 5 5 55 5 5 1 75 1.0
s00713 5 2 53 6 5 1 74 1.9
s00820 1 17 42 12 3 17 65 0.9
s00838 2 0 32 4 2 4 95 6.8
s00953 4 1 34 103 4 2 77 8.0
s01238 1 0 39 19 1 9 70 0.8
s01423 2 1 40 35 5 16 75 9.7
s01488 2 8 34 96 2 6 63 10.6
s01494 2 14 31 246 3 6 63 12.7
s05378 2 4 55 9,024 5 23 78 150.1
s09234 4 8 44 4,465 5 18 72 355.6

the application of LSS and HSS achieved by Tiguan amounts to 68, while the D-
Algorithm achieves a di�erence of only 38. Hence, the solution found by Tiguan is
likely to induce more suitable conditions for power droop testing.

As opposed to ATPG for simple fault models like the SAFM, where structural ap-
proaches are faster than SAT-based algorithms except for very hard instances, the
run-times reported in Table 33 show that SAT-based ATPG is more suitable for
complex fault models. In this case, where not only the fault model is more complex,
but where optimisation objectives are also to be satis�ed, the SAT-based approach
performs considerably better than the structural approach in terms of run-time.
By expressing the optimisation constraints by means of qualitative preferences, the
complexity of the optimisation problem is passed to the SAT solver. �e sophist-
icated learning techniques allow the SAT solver to �nd an optimal solution more
quickly than the dynamically constrained D-Algorithm.
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8.4.2 Evaluation of strategies for the selection of control

lines

In a second series of experiments, di�erent strategies for the choice of control
lines were evaluated. �e aim is to �nd a strategy that produces the best quality of
patterns while avoiding an explosion of SAT solving time. �e method was applied
to iscas’89 and itc’99 benchmark circuits.
An interesting �nding of [245] is that the number of possible sites for high-frequency
power droop is very limited — less than 100 for a microprocessor of 128,000 stand-
ard gates. Based on this experience and on the expected hardness of the problem,
only up to 100 power droop victims per circuit were considered. In general, the
number of possible power droop victims depends on the actual layout of the circuit.
Determining realistic victim and aggressor candidates requires a thorough analysis
of the power grid. A higher load on a power grid segment results in a higher prob-
ability that one of the lines connected to that segment is a�ected by high-frequency
power droop. No such analysis was performed for the experiments reported here, as
no layout data was available at the time of execution. �e choice of the victims to be
targeted was done based on the gate-level net list’s topology. �e benchmark circuits
were partitioned into fan-out-free regions, and their root gates were targeted as PD
victims, as these nodes are more likely to have the largest load. If there were more
than 100 FFR roots, the 100 FFR roots with the largest fan-out were chosen.
In [138], time stretches of several dozen time frames are considered. However,
given the problem’s hardness and that the proposed algorithm generates optimal
solutions, the number of time frames was limited to 22 time frames, like in the �rst
experiment.
�e �rst strategy that was tested consisted in choosing primary or secondary inputs
as control lines. First, all primary or secondary inputs in the victim’s input cone are
determined. �en, a number of these inputs are de�ned as control lines, choosing
those which in�uence the largest number of signals. Table 34 (a) compares the
results that were generated using this strategy for di�erent numbers of control lines.
Column strat shows the fraction of primary or secondary inputs taken as control
lines in the corresponding table row. For instance, 1/2 means that half the inputs
found in the victim’s input cone were chosen as control lines.
�e second column shows the number of targeted power droop sites (victims).
Column κ2 lists the percentage of aggressors that complied with test condition κ2,
i.e. that switched in the same direction in which the victim switched. Column κ3
lists the percentage of all lines in the circuit that switched in any direction during the
application of LSS (lower percentages are better), and column κ4 lists the percentage
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Table 34

ECMS@-based SAT-ATPG for power droop test — choice of control lines

(a) using PIs/SIs as control lines

satis�ed
conditions (%) run-time (s)

circuit faults strat κ2 κ3 κ4 slv/�t total

s00344 28 1/16 30.8 10.1 23.8 0.05 2
1/8 23.9 9.8 27.3 0.22 7
1/4 33.7 8.9 27.6 1.25 37
1/2 33.6 8.5 27.8 7.49 211

s00400 19 1/16 36.3 11.5 15.2 0.32 7
1/8 38.5 11.5 16.1 0.60 12
1/4 35.8 11.5 17.4 6.39 123
1/2 34.8 11.1 17.6 152.31 2,895

s00444 23 1/16 40.1 12.6 17.1 0.27 7
1/8 43.9 12.4 17.6 0.54 14
1/4 44.8 10.4 18.2 7.80 181
1/2 41.6 10.9 18.9 480.59 11,056

s00713 63 1/16 27.3 4.0 11.6 0.22 22
1/8 29.9 7.9 19.8 0.59 47
1/4 33.0 5.5 22.5 45.21 2,863

s00953 99 1/16 33.0 8.7 18.9 0.88 103
1/8 34.2 9.6 20.9 21.87 2,181
1/4 39.2 8.0 20.9 261.56 25,917

s05378 100 1/16 36.3 16.7 21.4 72.44 7,380
1/8 35.8 16.8 21.5 537.01 53,839

(b) using internal lines as control lines

satis�ed
conditions (%) run-time (s)

circuit faults strat κ2 κ3 κ4 slv/�t total

s00713 63 1/8 29.9 7.9 19.8 0.59 47
agg 38.5 6.6 17.9 0.78 59
�r 24.0 5.2 28.4 1.10 79

s00953 99 1/8 34.2 9.6 20.9 21.87 2,181
agg 37.3 9.5 23.9 14.75 1,483
�r 31.6 5.1 25.1 24.01 2,392

s05378 100 1/8 35.8 16.8 21.5 537.01 53,839
agg 36.5 16.4 21.5 39.36 4,073
�r 26.6 24.7 25.3 14.78 1,668
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of all lines in the circuit that switched in any direction during the application of
HSS (higher percentages are better). �ese numbers represent the average over all
faults. �e last two columns list the measured run-times in seconds. Column slv/�t
lists the average SAT solving time per instance, while total run-times are quoted in
column total.
Note that columns κ3 and κ4 list the percentage of lines in the whole circuit that
exhibited switching activity, not the percentage of lines with P-type conditions that
were satis�ed. �e percentage of satis�ed P-type conditions is not listed in the
table, as it is in the same order of magnitude (more than 90% in the average) for all
strategies and it does not directly re�ect the quality of the generated test patterns.
�e quality of the generated test sequences is measured by the compliance with
rules κ2, κ3 and κ4, i.e. a strategy is better than another if the number in column
κ2 is larger, and if the number in column κ3 is smaller while the number in column
κ4 is greater. As expected, using more control lines leads to better test quality,
however at the expense of heavily increased SAT solving times. As explained at the
end of Section 8.3, increasing the number of control lines not only increases the
SAT instance’s size, but imposes more qualitative preferences on the SAT solving,
thus compelling the SAT solver to the generation of more Boolean solutions until
�nding the optimal one. In addition, using more control lines does not necessarily
constitute the best choice. Consider e.g. circuit s00400. In average, the 1/2-mode
needs 23.8 times more time for the solution of an average SAT instance than the
1/4-mode. However, the quality of the solution improves only minimally. Hence, a
di�erent kind of strategy is required.
�e second class of strategies that were considered consist in using internal circuit
lines as control lines. Results for example circuits are listed in Table 34 (b). �e
column labels have the same meaning as in Table 34 (a). Column strat shows which
strategy was used in the corresponding table row. 1/8 is the same strategy from
Table 34 (a), listed here for comparison. agg means that the PD aggressor lines were
used as control lines. �r means that 5 randomly chosen FFR roots were used as
control lines. As can be seen, the strategies that use internal lines for the control of
switching activity are better than the strategies that use circuit inputs. In particular,
the FFR-based strategy results in visibly better κ4-numbers. At the same time, the
SAT solving times are considerably better. �is shows that the number of control
lines seems to have the largest in�uence on run-time, while an intelligent selection
of control lines has an in�uence on pattern quality.
Figure 32 (a) illustrates the κ4-numbers produced by the same three strategies for
several other iscas’89 and itc’99 circuits. �e FFR-based strategy’s results are better
than those of the other two strategies, thus corroborating the previous observations.
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Figure 32. ECMS@-based SAT-ATPG for power droop test — choice of control lines
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In all cases, the run-time of the FFR-based strategy was also better than the run-time
of the other two strategies.
In addition, the di�erence between the switching activity during LSS and HSS
application (κ4 − κ3) was considered. A larger di�erence stands for a stronger low-
frequency PD e�ect. As shown in Figure 32 (b), the strategies that use internal lines
of the circuit for control of global switching activity achieve better pattern quality.

8.5 Conclusions

In order to demonstrate the versatility of the ECMS@-based test generation frame-
work for problems with additional optimisation constraints, the framework was
used to generate test patterns for power droop testing. ATPG for power droop
constitutes an extremely hard variant of sequential test generation, given that three
di�erent optimisation objectives need to be satis�ed simultaneously.
�e experimental results show the applicability of the method to mid-sized bench-
mark circuits. In particular, the analysis performed in this chapter demonstrates
the relevance of intelligent mapping from the original problem to ECMS@-ATPG.
For any given ECMS@-based model of the original problem, the produced solution
is guaranteed to be optimal. But di�erent ways of mapping can lead to signi�cant
di�erences in run-time performance and test quality with respect to the original
problem.
In order to permit the use of more sophisticated strategies and the application
to large industrial circuits, the basic algorithm presented in this chapter can be
improved with respect to di�erent aspects. One important direction for future
research is the incorporation of heuristic methods into the SAT solver, such that the
minimisation or maximisation of the number of Boolean literals set to speci�c values
can be achieved by carefully guiding the SAT solver’s search instead of employing
preferences. Solution optimality would be the expense of such a heuristic extension,
but it has been shown both in Chapter 7 and in this chapter that nearly-optimal
solutions can be obtained with signi�cantly reduced run-times if the mapping is
done based on carefully chosen circuit lines.
Regarding test generation for power droop ATPG, future research should include
an electrical evaluation of the quality of the generated test sequences, e.g. by means
of SPICE simulation.
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9

Applications to process variations

and fault tolerance

�e aim of this chapter is to present a further area of research in which SAT-based
test generation methods have found application. First, the chapter discusses the
basic principles behind the interface of a C++ library that was implemented in order
to allow other researchers to integrate Tiguan as a SAT-ATPG back-end engine
into their client applications. �en, the text reviews two works carried out by fellow
doctoral students at other universities, where the Tiguan library was successfully
deployed.

Author’s contribution — �e author’s contribution consisted in the develop-
ment of a C++ library that allowed other researchers to use Tiguan as a SAT-ATPG
back-end engine. Also, extensive documentation and support for their applications
was provided.

Parts of the work covered in this chapter have been published in [C14, C8, W6, W4] (see author’s
publications on pages 223–226).
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9.1. INTRODUCTION

9.1 Introduction

As was explained in Chapter 1, modern, nano-scale CMOS technologies have be-
come increasingly di�cult to control, for example due to the use of new materials
with di�erent properties. With these innovations, also the topic of process variations
has strongly gained in importance lately. �is term refers to variations that occur
among the population of manufactured circuits due to the natural variability of the
manufacturing process. For example, any given gate usually has minimally di�er-
ent nominal delays in two di�erent copies of the same circuit, because the exact
delay depends on several parameters like the actual transistor dimensions. Process
variations have a large impact on the performance of circuits, and this impact is
expected to increase even further [28, 25, 8, 9].
Variability can be addressed using design techniques [106, 191, 44, 61, 58, 62],
or self-adaption and fault tolerance [139, 174, 150, 154]. Fault tolerance refers
to measures to design robust or fault-tolerant circuits, i.e. circuits that can tolerate
(i.e. detect or correct) a certain amount of errors. �e main principle of robust circuit
design is redundancy, which can be implemented in the form of time, hardware or
information redundancy [141].
Hardware redundancy, for instance, means that components that are more prone to
fail are either replicated or designed using redundant structures such that the failure
of some of these structures can be tolerated up to a certain extent. A well-known
example is triple modular redundancy (TMR) [141], which consists in triplicating
a component and adding a voter module that decides that component’s correct
output in function of the outputs produced by the majority of the three component
instances. However, TMR implies a high hardware cost in terms of area and power
consumption. �us, TMR is o�en implemented at component rather than at system
level. �at means, only critical components are triplicated. A gate or a design block
are said to be critical if excessive variation a�ecting them is likely to result in circuit
misbehaviour. Further examples of the application of fault tolerance measures
only to critical components is the use of error-resilient �ip-�ops [260] or selective
hardening [175, 262].
Another possibility to counter the cost of hardware redundancy is the use of in-
formation redundancy, which means that the circuit is designed such as to operate
on data encoded using error-detecting or error-correcting codes [141]. Such codes
contain a redundant amount of data, based on which it is possible to detect or cor-
rect up to a certain number of errors in the base data. Circuits designed in this way
are called self-checking. In addition to the normal functional logic, self-checking
circuits contain also checking logic that checks whether the inputs and outputs of
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the circuit are valid code words. In order for the checking logic to serve its purpose,
undesired component sharing between the functional and the checking logic has
to be avoided during synthesis. However, this cannot always be controlled when
synthesis is automated using CAD tools. Moreover, designers may also decide to
give up some checking ability in order to reduce the overall hardware cost. Hence,
there is a need to analyse the synthesised logic’s secureness, i.e. the degree to which it
will be able to detect and correct errors. Section 9.3 presents an approach to reduce
this problem to ATPG. �e work was performed by Marc Hunger at Paderborn
University [126] and employed Tiguan as a SAT-ATPG back-end engine.
Test tools that address variability also need to adapt the concepts of detectability and
fault coverage. In the case of gate delay variations, for example, the variation may be
very small for single gates, but it occurs in all gates. Hence, the accumulated delay
along a path can vary su�ciently such that a path that is the longest sensitisable path
in a speci�c circuit instance is not the longest path in a di�erent circuit instance [52].
For path-based delay testing, this means that a larger number of paths need to be
identi�ed because di�erent circuit instances need to be considered (the same net
list, but varying nominal delays). In consequence, the e�cient search of longest
sensitisable paths is a topic that is receiving considerable attention [190, 209]. In
Section 9.4, a method that optimises the KLPG-Algorithm [190] is presented. �e
work was performed by Jie Jiang at Passau University [131] and also employed
Tiguan as a back-end engine.

9.2 The Tiguan library

In order to give the users of the Tiguan engine maximum �exibility, the author of
this thesis implemented a C++ library [2] with an advanced interface. �is section
reviews the most relevant details on the Tiguan library.
Aside from �exibility, the most important feature of the library interface is that it
allows for a tight integration between the client application and the Tiguan library.
For instance, all data are passed to the Tiguan library via dedicated functions and
do not need to rely on run-time-expensive �le system operations.
In order to ease the use of the library, the main concept behind the implemented
interface is the encapsulation of all ATPG-related data into an object that is managed
by the library. �us, the client application communicates with the library solely
over that central object and does not need to take care of tasks like the collection
of statistics (total and average test generation run-times, SAT formula sizes, etc.)
and the management of memory for the data structures that represent, for example,
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Tiguan’s internal fault list, test set, original circuit and, if required, the sequential
expansion of the original circuit.
For each aspect of the test generation process, the Tiguan library provides a set of
functions that allow the client application to interact with the library independently
of how Tiguan’s internal data are managed. For example, the following set of
functions allow the client application to construct a circuit step by step:

▸ void add_circuit(circuit_name);

▸ void add_gate(gate_type, gate_name);

▸ void add_line(source_gate, sink_gate, gate_port);

▸ void commit_circuit();

�e idea behind this set of functions is that di�erent client applications will usu-
ally operate on circuit speci�cations given in di�erent formats (Verilog, VHDL,
BLIF, etc.), and each client application needs to parse those speci�cations in any
case. �ese functions can be called at the time of parsing with minimum overhead.
When the client application has �nished reading the circuit speci�cation, also the
Tiguan object will have built its internal circuit representation. As was explained
in Section 4.4, Tiguan’s internal representation of circuits is optimised such as to
allow for the e�cient formulation of SAT instances. For this reason, Tiguan needs
to manage an own internal representation of the circuit.
Tiguan’s interface also allows the client application to construct an n-time-frame
expansion of the original circuit, and to switch between the original circuit and
the expanded circuit at any time. �e client application can address gates in the
sequential expansion by the names that those gates have in the original circuit and
by the identi�cation number of the desired time frame, and the internal Tiguan
manager takes care of mapping those addresses to the correct gates. In addition,
functions are provided which allow the client application to query any type of data
(numbers of inputs, outputs, gates, etc.) about the original or the expanded circuit
at any time. For debugging purposes, the Tiguan library also o�ers functions to
generate di�erent types of graphical representations of the circuit and of Tiguan’s
internal processes.
Analogously to the construction of circuits, also a set of functions is provided which
allows the client application to construct CMS@ (see Section 4.2) or ECMS@ (see
Section 7.3) fault descriptions step by step:

▸ void add_new_fault();

▸ void add_aggressor(aggressor_gate, aggressor_type);
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▸ void add_victim(victim_gate, gate_port, stuck_at_type);

▸ void commit_fault();

Also, the interface lets the client application add aggressors and victims in any
order. �is allows to collect the information that is required for the construction of
fault descriptions in the way that is more suitable for the client application, and the
appropriate Tiguan functions can be called on the �y with minimum disruption.
In addition, several functions are provided with which the client application can
operate on the fault list. For example, faults can be added and deleted at any time,
and aggressors and victims can be added to existing fault descriptions. Furthermore,
faults can be grouped into clusters (see Section 5.2), and the client application is able
to form clusters according to its own criteria, and to process faults within clusters
in any desired order.
Regarding the test generation process, the Tiguan interface allows the client applic-
ation to customise a large number of parameters. Among other options, the client
application can:

▸ set the simulation width for pattern-parallel fault simulation (see Section 4.5)
or decide to not employ fault dropping;

▸ set timeouts or backtracking limits for the SAT solver;
▸ set the number of computation threads used by the SAT solver;
▸ set whether the SAT solver is to use pre-processing.

All these parameters can be set globally so that they will be valid for all calls of the
generate_pattern-function, but they can also be overridden by custom values on
a per-call basis. �is allows to build client applications that process each fault using
di�erent parameters, for example for multi-stage processing (see Section 5.1.2).
Finally, the Tiguan interface also provides various functions for the management of
the test set. For instance, the client application can decide whether a new generated
test pattern shall be added to the test set, merged into the test set (see Sections 2.7.2
or 6.2), or discarded.
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9.3. GRADING OF STRONG FAULT SECURENESS

9.3 Grading of strong fault secureness

�is section reports on a work published by Hunger et al. in [126]. �e proposed
approach reduces the estimation of a circuit’s fault secureness to a test pattern
generation problem where multiple stuck-at victims need to be considered at the
same time, and where the outputs of some logic parts need to be restricted. Since
such problems are easily formulated and e�ciently solved using Tiguan’s ECMS@-
based test generation, Tiguan was used as back-end ATPG engine in this work.
�e term “fault secureness” is a term used to characterise self-checking circuits. Let
C be a self-checking combinational circuit, and let ϕC and ϕf

C denote the Boolean
functions that are computed by C in absence of faults and in presence of a fault f ,
respectively. Also, let Cin and Cout be C’s input code and output code, respectively32.
In this context, the detectability of a fault f is de�ned only with respect to valid
input patterns. �at means that f is detectable if and only if there is an input pattern
p ∈ Cin with ϕf

C(p) ≠ ϕC(p). Conversely, f is undetectable if ϕf
C(p) = ϕC(p) holds

for all input patterns p ∈ Cin.
C is called fault-secure with respect to a fault f if and only if the following holds for
all valid input patterns p ∈ Cin:

If ϕf
C(p) ≠ ϕC(p), then ϕf

C(p) /∈ Cout.

�is means that the checking logic can detect the presence of f if an output generated
by C is not a valid code word. C is called fault-secure with respect to a fault list F if
it is fault-secure with respect to all faults f ∈ F.
Note that fault secureness is trivially satis�ed for undetectable faults. Such faults do
not a�ect the circuit’s functionality and are also not detected by the checking logic,
but they can cause malfunction if further faults are present. In order to account for
this, the notion of strong fault secureness was introduced in [232].
C is called strongly fault-secure with respect to a fault list F if and only if one of the
following properties holds for each fault f ∈ F:

1. If f is detectable, C is fault-secure with respect to f .
2. If f is undetectable, then for all faults f ′ ∈ F that can occur simultaneously

with f , either Property 1 or Property 2 holds for the multiple fault < f , f ′>.

32A code C is de�ned as a set of words over the alphabet {0, 1}. Any word over {0, 1} is called
valid with respect to C if and only if it belongs to C. Hence, the circuit’s input code is the set of input
patterns that are valid with respect to the used error-detecting or error-correcting coding scheme,
while the circuit’s output code is the set of valid output patterns.
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Figure 33. Test of a circuit’s fault secureness — reduction to ECMS@-ATPG

In [125], Mr. Hunger presented a method to test a circuit’s fault secureness with
respect to a fault by reduction to ECMS@-ATPG. �e principle of the reduction is
explained in Figure 33. �e circuit under test (CUT) includes the functional logic
and the checking logic. For simplicity, the functional logic and the checking logic
are shown as separate entities in Figure 33, but they can share components a�er
the synthesis process. �e checking logic reads the output pattern produced by the
functional logic and produces the output 1 if and only if the output pattern is not a
valid code word. �e test bench also includes a code generator that restricts the set
of inputs that can be applied to the CUT to valid input patterns. Alternatively, the
conditions imposed by the code generator can also be integrated into the ECMS@
fault speci�cation. In this work, however, the explicit modelling of the code gen-
erator’s net list was preferred in order to enable the evaluation of various complex
coding schemes.

For a given natural number n ≥ 1 and n single-stuck-at faults f1, . . . , fn that can
occur simultaneously, the method tests the CUT’s fault secureness with respect to
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the multiple fault < f1, . . . , fn> by testing the detectability of an ECMS@ fault33. �e
complete test bench is passed to Tiguan as a single combinational circuit. Each
single-fault fi within the functional logic is mapped to an ECMS@ victim line of
appropriate type (s-a-0 or s-a-1), and a 0-condition is imposed on the output of the
checking logic. �us, the constructed ECMS@ fault can only be detected by test
patterns under which the functional logic produces a wrong test response that is a
valid output code word nonetheless. In consequence, the CUT is fault-secure with
respect to the multiple fault < f1, . . . , fn> if and only if the constructed ECMS@ fault
is undetectable.
In order to measure the strong fault secureness of a circuit C with respect to a fault
list F, Mr. Hunger proposed in [126] a metric which is de�ned such as to re�ect
the circuit’s tolerance to the accumulation of single faults. Hence, it is de�ned in
function of each fault’s critical multiplicity. For a single fault f0 ∈ F, f0’s critical
multiplicity κ(f0) is de�ned as follows34:

κ(f0) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if C is strongly fault-secure with respect to f0.
1 if C is not fault-secure with respect to f0.

min
⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ(< f0, f1, . . . , fn>) ∶

f1, . . . , fn ∈ F such that C is not fault-secure
with respect to < f0, f1, . . . , fn>, and such that
< f0, f1, . . . , fi> is undetectable for all
i = 0, . . . , n − 1.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
else.

�e algorithm for the computation of the proposed metric works as follows: Start-
ing with multiplicity 1, fault sequences of increasing multiplicity are analysed by
reduction to ECMS@-ATPG as illustrated in Figure 33. For a multiplicity n, let Fn
be the set of faults of that multiplicity that need to be analysed. At the beginning
of the algorithm, Fn is set to F. (Single faults have multiplicity 1.) If the circuit is
classi�ed as strongly fault-secure with respect to a fault < f1, . . . , fn >∈ Fn (i.e. the
derived ECMS@ fault is undetectable), then < f1, . . . , fn> is removed from Fn and no
additional fault accumulation is considered for that fault. Otherwise, the combina-
tion < f1, . . . , fn, f ′> is added to Fn+1 for all faults f ′ ∈ F that can occur simultaneously
with < f1, . . . , fn>.
If the circuit is strongly fault-secure with respect to F, the algorithm eventually
terminates when Fn becomes empty. In practice, however, the run-time depends
strongly on the number of faults with higher multiplicity that need to be analysed,
and this number can become very large a�er only few iterations. If the algorithm is

33For the ECMS@ fault, detectability is de�ned as usual, i.e. it is not restricted to an input code.
34�e critical multiplicity κ is denoted by c in [126].
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stopped at multiplicity N, the classi�cation is not yet complete and the computed
metric constitutes an optimistic estimation of the circuit’s strong fault secureness. In
order to reduce the number of multiple faults that need to be analysed explicitly by
reduction to ATPG, several rules were derived which allow to analyse multiple faults
based on the detectability of the single faults of which they are composed. Using
these rules, the method was applied e�ciently to iscas’85 benchmark circuits for
N = 2. �e experimental results are not presented here because their interpretation
is out of the scope of this thesis. Details can be found in [126].
Recently, Viktor Fröse, doctoral student at Paderborn University, implemented
an extension of this method that utilises Tiguan’s fault clustering technique in
order to incrementally handle multiple faults with common pre�xes. �e aim of
this extension is to increase the algorithm’s run-time e�ciency such that larger N-
values can be reached, which improves the proposed metric’s accuracy. �e results
obtained for this implementation have not been published yet, but speed-up factors
of more than 100% were measured in preliminary experiments.

9.4 Optimisation of the KLPG-Algorithm

Section 2.3.3 introduced di�erent basic models for the test of defects that a�ect
the timing behaviour of the circuit. �e two most important models are the gate
delay fault model (GDFM), which assumes that a single defective gate propagates
either rising or falling transitions too slowly, and the path delay fault model (PDFM)
which re�ects reality better than the GDFM, as it models the accumulated e�ect of
delay variations along a path. However, in the worst case, the number of paths in a
circuit is exponential in the number of fan-out nodes. Hence, the generation of test
patterns for every existing path is impractical.
For this reason, practical delay fault testing relies strongly on the e�cient com-
putation of a number of longest sensitisable paths in a given circuit. Although
structurally longest paths are easily found by graph-traversal algorithms, the identi-
�cation of sensitisable paths is signi�cantly more challenging [257], as these paths
must satisfy a large number of constraints depending on the robustness of the test
pairs that are to be generated (see Section 2.4.3).
�e e�cient search for longest paths has been addressed by several authors, e.g.
in [190, 222, 112, 45]. In [190], for instance, the well-known KLPG-Algorithm
(K longest path generation) was presented, a structural algorithm that constructs K
longest paths through each circuit gate. �e procedure maintains a path store data
structure that collects a number of partial paths and an estimate upper bound for the
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maximum length that those paths can reach upon completion. �ose partial paths
are continuously extended until they either become complete paths, or until their
unsensitisability can be proved. In practice, the size of the path store data structure
is restricted due to memory limitations. A positive e�ect of the size restriction is
that the algorithm’s run-time e�ciency is improved, as the size restriction limits the
size of the search space, but it can result in optimality loss. Due to the size limit of
the path store, some partial paths can be excluded prematurely, i.e. before they have
been completed or before their unsensitisability has been proved. �us, actually
longest sensitisable paths can be missed.

In [131], Jiang et al. presented an approach to improve the general KLPG-Algorithm
introduced in [190]. Ms. Jiang implemented a KLPG-algorithm based on [190],
and used this implementation to systematically evaluate the impact of limiting the
maximum path store size πmax on the optimality of the results. Moreover, the cost of
generating an optimal solution was investigated, and a provably optimal algorithm
named Opt-KLPG was proposed. Opt-KLPG outperforms the conventional KLPG-
Algorithm which requires larger path stores to produce better solutions.

Next, a brief description of the implemented algorithm follows. Details can be
found in [131]. Given a set of targeted gates, the algorithm searches for the K
longest sensitisable paths that pass through each targeted gate. For each target gate,
the path store is progressively �lled with the partial paths that start at a primary
input in the targeted gate’s input cone. �e partial paths are extended gate by gate
until K sensitisable paths have been found, or until the path store becomes empty. In
order to extend a path, the o�-path inputs of the gate by which the path is extended
are assigned logic values according to the required sensitisation condition (robust,
non-robust, etc., see Section 2.4.3), and the implications of those assignments are
calculated. If an assignment results in a local con�ict, the partial path is excluded
from further consideration. For each partial path under consideration, a value
called max esperance is computed and continuously updated. It represents the
upper bound for the length that the partial path can reach upon completion, and
it determines which partial paths are selected �rst for extension. Whenever a path
of su�cient length and without local con�icts is completed, the algorithm tests
its global sensitisability. For this purpose, the algorithm constructs a CMS@ fault
employing the interface introduced in Section 9.2. For each value that needs to
be assigned to the o�-path input of a gate on the candidate path, an aggressor of
appropriate type is added to the fault description. �e only victim added to the
fault description corresponds to a stuck-at fault located at the output of the targeted
gate in the second time frame. Note that the circuit and its sequential expansion
need to be instantiated only once. Once the Tiguan object has been initialised and
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a circuit has been set up, any number of fault descriptions can be constructed and
solved in any order without the need to reinitialise the Tiguan object. �us, the
communication overhead between the KLPG-Algorithm and the Tiguan engine is
reduced. If Tiguan �nds a test that detects the constructed CMS@ fault, that test
also sensitises the tested path. If Tiguan reports that the CMS@ fault is undetectable,
the path is unsensitisable.

�e proposed Opt-KLPG-Algorithm corresponds to an iterative version of this
basic algorithm. It starts by running KLPG using a path store with a �xed capacity
πmax. �e �rst iteration of Opt-KLPG yields a set of sensitisable paths through
each targeted gate. However, this set of sensitisable paths may be sub-optimal with
respect to the length of the found paths. In contrast to KLPG, however, Opt-KLPG
records the partial paths that cannot be kept in the path store due to its capacity limit
(over�ow paths). If a target gate is a�ected by an over�ow, subsequent iterations
of Opt-KLPG invoke further KLPG runs (using the same πmax-value). In these
iterations, the path store is initialised with the over�ow paths generated in previous
iterations. �e procedure is repeated until all over�ow paths have been processed.
�us, the solution produced by Opt-KLPG is always optimal for any πmax-value.
However, πmax has an e�ect on the algorithm’s run-time e�ciency.

An example is shown in Table 35. �is corresponds to one iscas’85 circuit and one
nxp circuit out of eight circuits reported on in Table I in [131]. �e second column
quotes the πmax-value used in the corresponding row. �e next �ve columns show
the results obtained by KLPG, and the last six columns show the results obtained by
Opt-KLPG. �e columns labelled over�ows quote the number of partial paths that
were dropped due to path store over�ow. For Opt-KLPG, this number is always
higher because KLPG constitutes only the �rst iteration of Opt-KLPG. For Opt-
KLPG, Column rep quotes the number of repetitions, i.e. the number of iterations
that were required a�er the initial KLPG run until no more over�ows occurred. �e
quoted values are the averages over all target gates. �e columns labelled length show
the sum of the lengths of the identi�ed paths. In the case of KLPG, this number is
optimal only if the number of over�ows is 0. For Opt-KLPG, this number is always
optimal.

�e last three columns of each fault group quote the run-time of the respective
approach in seconds, partitioned into the time needed for the actual path search
(columns labelled srch) and the time consumed by all runs of Tiguan in order to
check the sensitisability of candidate paths (columns labelled chck). �e columns
labelled total quote the sum of these two numbers. For both circuits and all πmax-
values less than or equal to 3000, the total run-time of KLPG lies below the run-time
of Opt-KLPG, which is owed to the additional iterations executed by Opt-KLPG.
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Table 35

Search for longest sensitisable paths with Opt-KLPG (taken from [131])

KLPG Opt-KLPG

run-time (s) run-time (s)

circuit πmax over�ows length srch chck total over�ows rep length srch chck total

c1908 10 143,619 75,569 4 32 36 332,249 42.25 86,185 26 320 346
50 215,713 82,819 8 68 76 280,743 7.56 86,185 22 315 337

100 125,803 85,717 8 60 68 163,067 2.46 86,185 21 288 309
500 13,356 86,155 13 69 82 29,950 0.08 86,185 42 264 306

1,000 14,932 86,181 30 92 122 23,696 0.03 86,185 77 266 343
1,500 16,278 86,181 56 121 177 20,164 0.02 86,185 122 264 386
3,000 12,902 86,181 186 189 375 12,902 0.01 86,185 252 274 526

30,000 0 86,185 510 305 815 0 0.00 86,185 490 284 774

p78k 10 166,206 6,342 101 139 240 689,810 1.20 7,149 418 6,721 7,139
50 177,257 7,039 112 279 391 501,469 0.18 7,149 198 5,253 5,451

100 99,069 7,147 108 227 335 373,759 0.07 7,149 174 5,309 5,483
500 135,763 7,148 125 578 703 321,940 0.01 7,149 245 4,995 5,240

1,000 150,340 7,148 180 988 1,168 299,284 0.01 7,149 413 6,649 7,062
1,500 151,226 7,149 208 1,136 1,344 283,626 0.00 7,149 498 4,601 5,099
3,000 148,676 7,149 461 1,796 2,257 243,633 0.00 7,149 927 4,618 5,545

30,000 0 7,149 5,859 4,731 10,590 0 0.00 7,149 5,840 4,720 10,560

However, KLPG’s solution is sub-optimal in all of these cases. KLPG is able to return
the optimal solution only for πmax =30,000, and in this case, KLPG’s run-time is
larger than the run-time needed by Opt-KLPG using any path store size. �us,
Opt-KLPG is superior, in particular when memory limitations need to be observed.

Regarding the performance of the SAT-based checking of the sensitisability of can-
didate paths in Opt-KLPG, it can be seen that the total time consumed by all Tiguan-
calls (chck) tends to decrease for larger πmax-values, as the Tiguan-procedure needs
to be called less o�en because the necessity for re-iterations decreases. But, in gen-
eral, the SAT-based checking of candidate paths accounts for a large fraction of the
total run-time. However, it must be remarked that Tiguan’s incremental capabilit-
ies (e.g. the fault clustering technique, see Section 5.2) were not employed in this
application. Given that Opt-KLPG constructs large sets of CMS@ faults that are very
similar (corresponding to complete paths with many common partial sub-paths,
especially in the re-iterations), this is an application that will probably bene�t very
strongly of Tiguan’s most advanced speed-up techniques. Hence, an interesting
direction for future research consists in the incorporation of those techniques into
this promising application.
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9.5 Conclusions

�e aim of this chapter was to provide the reader with an idea of how vast the
application possibilities of SAT-based ATPG are. �e SAT-ATPG tool Tiguan,
which was introduced in Chapter 4, and whose numerous enhancements have been
the subject of the subsequent chapters, was made available to other researchers in
the form of a C++ library that allowed to incorporate Tiguan’s functionality into
diverse client applications. �e interface was designed such as to give the client
applications maximum �exibility.
In order to illustrate the applicability of the library, the rest of the chapter summar-
ised two works that made use of this library. �e �rst work (Section 9.3), which
consisted in evaluating a self-checking circuit’s tolerance to the accumulation of
multiple faults by reduction to ECMS@-based SAT-ATPG, constitutes an especially
interesting application of Tiguan, because the topic of fault tolerance as a measure
to counter process variations is expected to continue gaining in importance. �e de-
fect behaviour studied in these areas is characterised by high variability. �is makes
it necessary to either address the same targets multiple times using di�erent para-
meters, or to formulate problems in a �exible way that allows to specify preferred
solutions. Tiguan has been shown to handle these two cases with great e�cacy,
e.g. using the fault clustering technique (see Chapter 5), or using SAT solving with
preferences (see Chapter 7).
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Summary and concluding remarks

�e application of the exhaustive test set composed of 2n test patterns to a combin-
ational n-input circuit is factually impermissible for any circuit of practical interest.
2n amounts to 65,536 for an n-value as low as 16, and to 4,294,967,296 for n = 32
(the number of inputs of a 16-bit adder). �us, the dedicated computation of spe-
ci�c test patterns is the most important task in hardware testing. Without powerful
ATPG algorithms able to process large numbers of modelled faults with feasible
computational e�ort, hardware test would be impossible altogether.

Although the reduction of ATPG to the problem of Boolean satis�ability was pro-
posed as far back as 1968, SAT-based ATPG remained of purely academical interest
until fairly recently. Relevant optimisations of the basic algorithm were proposed
in the beginning of the 1990s, but the run-time e�ciency achieved by structural
algorithms was still ahead of SAT-based approaches of that time.

However, research on e�cient SAT solving made a�er the year 2000 changed the
landscape. Driven by problems in the �eld of formal veri�cation, where the typical
workload is characterised by few, but very hard and usually unsatis�able SAT in-
stances, SAT solving research engendered techniques that allow modern SAT solvers
to prune large parts of the search space very e�ciently. Transferred to test pattern
generation, this meant that SAT-based ATPG was now able to process undetectable
and especially hard-to-detect faults more e�ciently than structural ATPG, and this
lead to a resurgence of the study of SAT-based ATPG.

�is doctoral thesis revolved around the e�cient implementation and the improve-
ment of various aspects of the SAT-based ATPG tool Tiguan (Thread-parallel
Integrated test pattern Generator Utilising satis�ability ANalysis). Starting with the
basic principles of Tiguan’s core algorithms, the �rst half of the thesis discussed in
detail di�erent techniques that signi�cantly improved Tiguan’s run-time e�ciency.
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But run-time e�ciency is not the only criterion to evaluate the quality of test pat-
tern generation tools. Due to the high cost that test application time represents
to the semiconductor industry, and due to the memory limitations of automatic
test equipment, also the ATPG tool’s capability to produce compact test sets is a
relevant indicator. �us, also the compaction capability of Tiguan was systematic-
ally studied and improved until turning SAT-ATPG into an attractive alternative to
structural approaches.

�e second half of the thesis went even further and showed that the potential of SAT-
ATPG goes beyond being an alternative or a complement of structural methods in
the test generation for standard fault models. �e �exibility o�ered by the basic
Tiguan framework was combined with newest advances in SAT solving in order
to venture into the solution of realistic, defect-based ATPG problems that require
the satisfaction of additional optimisation goals. In general, such problems cannot
be solved optimally using structural approaches. �us, the versatile, generic fault
models de�ned in this thesis, and the integration of their support into Tiguan,
constitute a signi�cant, non-trivial contribution to the area of test pattern generation.
A�er the demonstration of this powerful framework’s range of capabilities by means
of an example application, also various applications relevant in the context of process
variations and fault tolerance were discussed.

In more detail, Chapter 4 introduced the SAT-based test pattern generator Tiguan
and explained in detail all aspects that were considered in order to allow for an es-
pecially e�cient implementation. From the beginning, Tiguanwas cra�ed around a
new, generic fault model — the conditional multiple stuck-at fault model
(CMS@FM), which allows to model defects with fault e�ects on multiple victim
lines that are activated simultaneously if a number of aggressor lines satisfy certain
conditions. �e �rst application introduced in order to illustrate the possibilities
o�ered by the CMS@FM was the test generation for gate-exhaustive testing, an
approach that tests each stuck-at fault under all input combinations that can be
applied to the gate driving the fault location in order to sensitise the fault.

�e experiments discussed in Chapter 4 showed that Tiguan was able to classify all
single-stuck-at faults in large industrial circuits provided by NXP Semiconductors
GmbH Hamburg. Moreover, Tiguan outperformed not only the tool PASSAT
developed at the University of Bremen, but also a commercial tool that uses a
structural algorithm; the latter was not able to classify all faults in nxp circuits, even
using a high con�ict limit. In particular, the obtained results showed that SAT-based
ATPG performs especially well for faults that are too hard for structural algorithms.
Although structural algorithms continue to display better run-times for the majority
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of easy-to-detect faults, this proves that SAT-based ATPG is indispensable in order
to obtain full fault coverage.

Chapter 5 was dedicated to the study of techniques that allow to improve the general
run-time e�ciency of SAT-based ATPG. �e �rst part of the chapter concentrated
on how to speed up SAT-ATPG based on the best utilisation of the SAT solving
engine. First the most relevant details of the SAT solver MiraXT’s core algorithms
were introduced, and special attention was paid to customisations implemented
into the SAT solver in order to achieve the best SAT solving performance for the
type of SAT instances generated by Tiguan. In addition, the scalability of Tiguan
to multi-core systems was evaluated, as MiraXT is able to distribute the SAT solving
process among multiple threads that can be executed in parallel. It was determined
that Tiguan bene�ts from thread-parallel SAT solving on systems with around
4–6 available cores, while larger numbers of cores do not lead to further speed-up.
�e reasons for this phenomenon were analysed in order to derive directions for
future research. Furthermore, the study discovered that thread parallelism is mostly
ine�ective for the processing of easy-to-solve ATPG instances, while very hard
instances bene�t strongly from increased resources. In consequence, a two-stage
technique that employs thread parallelism only for the processing of harder faults
was implemented and successfully applied to stuck-at faults and to CMS@ faults for
gate-exhaustive testing.

�e second part of Chapter 5 introduced the SAT engine antom and explained the
most important di�erences between antom and MiraXT from the point of view of
a SAT-ATPG application. An important observation made in Chapter 4 was that
the time needed for the formulation of SAT instances is not only non-negligible,
but on average even higher than the time needed for SAT solving. Motivated by
this, a fault clustering technique was implemented, which reduces the number of
SAT generation runs signi�cantly, while the SAT solving runs bene�t from antom’s
incremental SAT solving. Finally, various criteria for the grouping of faults into
clusters were evaluated. �e best strategy allowed Tiguan to classify all stuck-at
faults in large industrial circuits in 47.7% less run-time.

A�er the discussion of techniques to enhance the run-time e�ciency of Tiguan, test
set compactness was addressed in Chapter 6. A dynamic compaction procedure was
introduced, which was specially designed for integration into a SAT-based frame-
work, and which makes use of Tiguan’s speci�c data structures and interfaces. �e
technique was found to scale also to large industrial designs, and it outperformed
static compaction both in terms of test compactness and run-time. Furthermore,
the dynamic compaction procedure enabled Tiguan to generate more compact test
sets for iscas circuits than a commercial ATPG tool that implements a structural

211



algorithm. Regarding the application of the proposed technique to nxp circuits,
the test sets produced by the commercial tool are still more compact than those
produced by Tiguan, but the gap between structural and SAT-based ATPG in terms
of test compactness was signi�cantly diminished.

From Chapter 7 onwards, the thesis concentrated on the application of SAT-ATPG
to complex fault models. Although the stuck-at FM has been the dominant fault
model used in practical applications for a long time, it has been shown beyond
doubt that it does not accurately re�ect several defect types encountered in currently
employed technologies. �e �rst part of this chapter discussed the application of
CMS@-based SAT-ATPG to generate test patterns for bridging faults with non-zero
resistance, which are a very good example of a realistic defect model that requires the
handling of multiple stuck-at victims. �e second part of the chapter introduced an
extension of the SAT-ATPG framework around the CMS@FM. �e most important
feature of the new model — the enhanced conditional multiple-stuck-at fault model
(ECMS@FM) — is that it provides an easy-to-use method to specify optimisation
constraints that guide the SAT-ATPG process towards the generation of preferred
patterns. �e implementation of ECMS@ support was explained in detail and
several applications were discussed. For instance, test patterns were generated
which sensitise the maximum achievable number of primary outputs, as well as test
patterns that provide precise control of local switching activity. �ese applications
exemplify the type of non-trivial optimisation problems that are very di�cult to
solve using tools based on structural ATPG.

An important aspect of ECMS@-based SAT-ATPG is that the generated solutions
are always optimal with respect to the chosen problem formulation at ECMS@
level. However, the way in which the mapping from the original problem to the
ECMS@FM is done has a large e�ect on the accuracy of the solutions and on the
algorithm’s run-time e�ciency. �is problem was explored in Chapter 8, where
ECMS@-based SAT-ATPG was used to generate test patterns for power droop test-
ing. ATPG for power droop constitutes an extremely hard variation of sequential
test generation, given that a large number of times frames need to be modelled and
that three di�erent optimisation objectives need to be satis�ed simultaneously. �e
experimental results showed the applicability of the method to mid-sized bench-
mark circuits. In particular, the analysis performed in this chapter demonstrated
the relevance of intelligent mapping from the original problem to ECMS@-ATPG,
and called attention to important subjects of interest in future research.

Finally, Chapter 9 provided insight into further application possibilities for SAT-
based ATPG. �is chapter introduced the interface of the Tiguan library, a C++ lib-
rary that was developed in order to allow client applications to incorporate Tiguan’s
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functionality. �e interface was designed with two main goals in mind: maximum
�exibility for the client application and e�cient communication between the client
application and the SAT-ATPG back-end. One of the discussed examples is an ap-
proach developed at Paderborn University, where the evaluation of a self-checking
circuit’s tolerance to the accumulation of multiple faults was reduced to ECMS@-
based SAT-ATPG. �is demonstrated the applicability of SAT-ATPG to problems
that are relevant in the context of process variations and fault tolerance. �ese
topics are expected to continue gaining importance, and they o�en require to either
address the same targets multiple times using di�erent parameters, or to formulate
problems in a �exible way that allows to specify preferred solutions. �roughout
this thesis, it was shown that Tiguan is especially well-suited for such tasks.
In summary, the most important contributions of the work presented in this thesis
are as follows:

▸ �e general run-time e�ciency of SAT-ATPG was increased through intelli-
gent mapping of the ATPG problem to SAT, through the optimal utilisation
of multiple computing cores, and through the employment of advanced SAT
solving techniques.

▸ Dynamic compaction was integrated into SAT-ATPG. �e application of
the method to iscas and itc’99 circuits resulted in smaller test sets than
those produced by a commercial, structural tool. For industrial circuits, the
compaction e�ciency gap between SAT-based and structural ATPG was
signi�cantly diminished.

▸ Generic fault models were de�ned which allow to represent complex defect
behaviour. In addition, a �exible SAT-based framework for the generation
of provably optimal test patterns for complex fault models was implemen-
ted. �e applicability of the framework was illustrated by several example
applications whose replication using structural methods is not trivial.

▸ �e performed work opened the path to advanced research in small-delay test,
variability and fault tolerance. A well-documented C++ library with a multi-
functional interface was provided for the incorporation of the developed
SAT-ATPG methods into client applications. In addition, the expertise gained
by the author in the �eld of SAT-ATPG and the created so�ware code base
served as starting point for numerous SAT-based methods developed by
fellow doctoral students in Freiburg [208, 206, 209, 211, 210, 207, 52].

Given all these advancements in the �eld of SAT-based ATPG, one important ques-
tion remains to be discussed, namely whether SAT-based techniques will eventually
be integrated into commercial ATPG tools. �e level of attention that industry
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attendees have paid to works on SAT-ATPG presented at international symposia
in recent years has been very high, which means that the potential of SAT-based
methods has been recognised.
Most importantly, it has been shown beyond doubt that SAT-based ATPG out-
performs structural methods regarding the application to undetectable and hard-
to-detect stuck-at faults. However, structural ATPG continues to display a better
run-time performance for the majority of easy-to-detect faults. It is probable that
industry researchers have been attempting to enhance existing structural ATPG al-
gorithms by importing some of the strategies and principles employed in SAT-based
ATPG. But the point of view of the author is that that is possible only up to a limited
extent, because SAT-based and structural methods have di�erent properties. Much
of the e�ciency of SAT solving stems from the fact that clauses are very simple and
homogeneous data structures, and that a SAT formula can be represented internally
as a low-cost queue of clauses. In contrast, reasoning based on a gate-level net
list requires the implementation of data structures for graph traversal algorithms.
Hence, the SAT domain is signi�cantly more e�cient in deriving the implications
of decisions made during the search process.
Going into more detail, the search tree of a structural ATPG algorithm, e.g. the
D-Algorithm, is di�erent from a SAT solving search tree. Since each line is repres-
ented by several Boolean variables, in SAT there are more variables, and the SAT
search tree is larger; but it is more uniform because all nodes are of the same type.
In the D-Algorithm’s search tree, in contrast, each node has a type (the gate type)
that determines what kind of implications can be derived at that speci�c node. Also,
the D-Algorithm needs to observe more constraints that do not exist in the SAT
domain, e.g. whether propagation shall be given precedence over justi�cation or
vice versa. Altogether, the uniformity of the SAT search tree has given rise to easy-
to-apply, provably correct inference rules that allow to identify large sub-spaces that
can be excluded from the search process. SAT is o�en able to infer implications
that may refer to structurally distant points in the net list, i.e. implications that are
not easily identi�able using the D-Algorithm.
�is is the main reason why SAT-based ATPG is better suited to prove a fault’s
unsatis�ability, or to process hard-to-detect faults. In contrast, the D-Algorithm
usually needs to make a large number of decisions in order to prove undetectability,
and in consequence, the cost of backtracking is accumulated during the search.
In summary, it can be said that structural ATPG performs best on instances in
which the amount of con�icts is lower. �e attempt to incorporate SAT-speci�c
learning techniques into structural algorithms would inevitably slow down their
performance on easy-to-detect faults. Reasoning in SAT is based on the collection
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and management of a large amount of learnt clauses, which can outnumber the
clauses in the original SAT instance signi�cantly. For structural algorithms, the
implementation and maintenance of such a learning infrastructure would result in
a computational e�ort that is not justi�ed for most ATPG instances.

An alternative that has been proposed is the combination of structural and SAT-
based ATPG, where both types of methods are applied to di�erent faults [242]. �is
solution, however, results in the need to implement and maintain two di�erent
ATPG engines, the cost of which could be a factor delaying the industry’s eventual
adoption of SAT-based techniques.

For industrial applications, another critical issue is the over-speci�cation of patterns
generated using SAT-based methods. In this thesis, a dynamic compaction method
was presented which overcomes this shortcoming by extracting necessary detection
conditions not from the values assigned to the primary inputs, but from internal
circuit lines. �e presented compaction technique was successful in constructing
compact test sets, but test patterns with high densities of unspeci�ed bits are needed
also for other purposes; for instance, for test data compression. In consequence, an
important direction for future research on SAT-ATPG will be the incorporation of
e�cient pattern relaxation techniques (see also Section 6.5).

Still, in the author’s opinion, industry may have to resort to SAT-based methods in
the long run. Not as a substitute for structural algorithms, but at least as a comple-
ment — SAT-based ATPG can handle highly constrained problems more e�ciently.
And increasingly, SAT-ATPG may become indispensable to manage di�erent kinds
of problems that require complex fault modelling. Chapters 7 and 8 of this thesis
discussed several applications in which realistic, defect-based modelling made it
necessary to impose a large number of conditions on aggressor or observation lines,
to dynamically control the paths through which fault e�ects are propagated, and to
satisfy optimisation criteria, whereas the solution of such problems using structural
methods is more di�cult.

And even more complex modelling approaches can be expected to emerge in the fu-
ture. An interesting example is the robust enhanced aggressor-victim model (REAV)
proposed by Hillebrecht et al. in [118] to emulate the behaviour of interconnect
opens. �e main challenge of realistic modelling of interconnect open defects is
that the actual behaviour of the gate that is driven by the open line depends on
physical parameters that are usually unknown, like the amount of charge trapped in
the disconnected segment of the line. �e model needs to take the analog behaviour
of the involved gates into account, albeit without increasing the complexity of the
ATPG problem to a computationally unfeasible level [116].
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In the REAV model, the open line is the victim, while a set of neighbouring lines
are seen as aggressors. Due to the coupling capacitance between the victim line
and the aggressor lines, the exact voltage on the victim will vary depending on
what values are justi�ed on the aggressor lines. �e gate driven by the victim
line will behave correctly or erroneously depending on the exact voltage measured
on the victim. In contrast to the test generation for resistive-bridging faults (see
Sections 2.5 and 7.2), where the values applied to the inputs of the gates driving
the bridged lines are �xed for each tested section, in this work, the number of
aggressors can be very large. �erefore, �xing all their values in advance can result
in a large fraction of unsatis�able ATPG instances. Moreover, it is not necessary to
�x the value of all aggressors. Di�erent aggressor assignments will usually result
in di�erent voltages on the victim line, but for the purpose of fault detection, it
su�ces to justify any aggressor assignment that induces a voltage on the victim
above or below certain thresholds. Hence, this is an ATPG problem that accepts
various assignment combinations made to the aggressors.

In Chapter 7, it was shown that it is possible to integrate conditions that a�ect the
behaviour of a number of lines into the SAT-ATPG problem (e.g. maximise the
number of observed lines that switch), and that optimal solutions can be guaranteed
using ECMS@-based SAT-ATPG, whereas the computation of optimal solutions
using structural algorithms is more di�cult. �erefore, ECMS@-ATPG is more
suitable for an application such as the test generation for REAV-modelled open
defects. �e REAV-model, however, necessitates the satisfaction of conditions that
depend on real-valued parameters, like the coupling capacitance between the victim
and the aggressors, and the voltage thresholds. �us, a further extension of ECMS@-
ATPG in order to allow it to handle such conditions in an e�cient way constitutes
a very important topic for future research.

Aside from further topics for future research discussed in detail in the conclud-
ing section of each chapter of this thesis, SAT-based diagnostic ATPG35 is also an
interesting application. Recently, a Tiguan-based prototype was implemented by
an undergraduate student under the advice of the author of this thesis. �e po-
tential advantages of ECMS@-based diagnostic ATPG are multiple. For example,
the internal representation of defects as ECMS@ faults allows to explicitly distin-
guish between faults corresponding to di�erent fault models or between arbitrary
defects whose behaviour can be properly mapped to the ECMS@FM. Furthermore,

35Diagnostic ATPG has the aim of constructing test patterns that distinguish faults. Two faults f1

and f2 are distinguished by a test pattern p if ϕf1
C(p) ≠ ϕ

f2
C(p), i.e. if the response to p’s application is

di�erent under the in�uence of f1 and f2.
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the ability of ECMS@-ATPG to control the behaviour of observation lines can be
used to achieve a number of di�erent goals in diagnostic ATPG; for instance, the
minimisation of the number of a�ected outputs in order to increase the diagnostic
resolution. In addition, diagnostic ATPG can also be combined with Tiguan’s fault
clustering technique such that certain sets of fault pairs to be distinguished can be
processed incrementally. A systematic exploration of the possibilities o�ered by
such a combination will lead to improve the quality of diagnostic test patterns.
As can be seen, the methods and techniques presented in this thesis have gone
far beyond enhancing the run-time e�ciency and compaction abilities of SAT-
based ATPG for stuck-at faults. �e de�nition of powerful and �exible, generic
fault models, paired with the handling of optimisation goals, has given rise to
e�cient, defect-based test generation using SAT, and it has opened the door to a
myriad of relevant applications in a time in which complex fault models are no
longer a concept of mere academic interest. It was already pointed out in [179]
that academic developments typically require several years to be integrated into
commercial CAD so�ware, but in the long run, industry will likely start embracing
SAT-based methods due to the indisputable reasoning power they bear. And then,
feedback from industry will surely lead to even more interesting problems.

217



218



Appendix A

Benchmark details

�is appendix presents detailed information on the four suites of benchmark cir-
cuits that were employed in the experiments reported on in this thesis. Each table
contains the circuit names employed throughout this thesis, along with the circuits’
number of gates, depth, number of primary inputs and number of primary outputs.
In the case of sequential circuits, also the number of �ip-�ops is quoted.

Table 36

iscas’85 benchmark circuits [32]

circuit gates depth inputs outputs

c0017 13 5 5 2
c0095 39 6 5 7
c0432 203 19 36 7
c0499 275 13 41 32
c0880 469 26 60 26
c1355 619 26 41 32
c1908 938 42 33 25
c2670 1,566 34 233 140
c3540 1,741 49 50 22
c5315 2,608 51 178 123
c6288 2,480 126 32 32
c7552 3,827 45 207 108
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Table 37

iscas’89 benchmark circuits [31]

circuit gates depth inputs outputs �ip-�ops

s00027 21 8 4 1 3
s00208 131 13 10 1 8
s00298 156 11 3 6 14
s00344 210 22 9 11 15
s00349 211 22 9 11 15
s00382 209 11 3 6 21
s00386 185 13 7 7 6
s00400 213 11 3 6 21
s00420 269 15 18 1 16
s00444 232 13 3 6 21
s00510 249 14 19 7 6
s00526 245 11 3 6 21
s00641 476 76 35 24 19
s00713 489 76 35 23 19
s00820 336 12 18 19 5
s00832 334 12 18 19 5
s00838 545 19 34 1 32
s00953 492 18 16 23 29
s01196 593 26 14 14 18
s01238 572 24 14 14 18
s01423 827 61 17 5 74
s01488 692 19 8 19 6
s01494 686 19 8 19 6
s05378 3,221 27 35 49 179
s09234 6,094 60 36 39 211
s13207 9,441 61 62 152 638
s15850 11,067 84 77 150 534
s35932 19,876 31 35 320 1,728
s38417 25,585 49 28 106 1,636
s38584 22,447 58 38 304 1,426

�e �rst three suites are widely used in academia. Details on the combinational
iscas’85 circuits are listed in Table 36.
Details on the iscas’89 suite are given in Table 37. �ese circuits are sequential. In
experiments in which an algorithm for combinational circuits was applied to the
combinational cores of these circuits, the circuits are denoted by the names listed
in Table 37 preceded by c. For example, the combinational core of circuit s00027 is
denoted by cs00027.
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Table 38

itc’99 benchmark circuits [7, 48]

circuit gates depth inputs outputs �ip-�ops

b01 54 8 2 2 5
b02 31 7 1 1 4
b03 183 12 4 4 30
b04 694 34 11 8 66
b05 608 39 1 36 34
b06 64 7 2 6 9
b07 476 33 1 8 49
b08 192 14 9 4 21
b09 188 11 1 1 28
b10 197 14 11 6 17
b11 579 39 7 6 31
b12 1,127 21 5 6 121
b13 370 13 10 10 53
b14 5,923 43 32 54 245
b15 8,026 47 36 70 449
b17 25,719 46 37 97 1,414
b18 76,513 92 37 23 3,270
b20 12,991 75 32 22 490
b21 13,168 75 32 22 490
b22 18,789 80 32 22 703

�e itc’99 suite is a further set of well-known sequential circuits. �eir details are
quoted in Table 38. In experiments in which an algorithm for combinational circuits
was applied to the combinational cores of these circuits, the circuits are denoted by
the names listed in Table 38 succeeded by c. For example, the combinational core
of circuit b01 is denoted by b01c.
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Table 39

Industrial benchmark circuits provided by NXP Hamburg [5]

circuit gates depth inputs outputs remarks

p35k 48,927 68 2,912 2,229 p44k
p45k 46,075 57 3,739 2,550 –
p77k 75,033 568 3,487 3,400 –
p78k 80,875 48 3,148 3,484 –
p81k 96,722 57 4,029 3,952 p80k
p89k 92,706 110 4,683 4,557 p88k, tri-state
p100k 102,443 102 5,902 5,829 p99k
p141k 185,360 75 11,290 10,502 p177k, tri-state
p267k 296,404 72 17,332 16,621 –
p269k 297,497 72 17,333 16,621 tri-state
p286k 373,221 127 18,411 17,827 tri-state
p295k 311,901 116 18,508 18,521 tri-state
p330k 365,492 73 18,010 17,468 –
p378k 404,367 48 15,732 17,420 –
p388k 506,034 224 25,005 24,065 tri-state
p469k 49,771 128 635 403 p49k
p951k 1,147,491 135 92,027 104,747 p1330k, tri-state
p1522k 1,193,824 515 71,414 68,035 tri-state
p2927k 2,539,052 400 101,844 95,143 –

Finally, also a set of nineteen large, industrial circuits containing up to two and a half
million gates were employed. �ese circuits were provided by NXP Semiconductors
GmbH Hamburg [5] and are referred to as nxp circuits throughout this thesis.
�ese circuits are sequential, but since only their combinational cores were used
in all experiments, the original number of �ip-�ops is not listed in Table 39. �e
last column of this table (remarks) gives additional information on some of these
circuits, for instance whether they contain tri-state elements.
Also, the thesis compares the performance of Tiguan to a SAT-ATPG tool de-
veloped by a research group at the University of Bremen (see Section 4.6). However,
the name employed in Bremen to refer to some of these circuits is di�erent. Where
that is the case, the name used in Bremen is listed in column remarks.
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