
Student Research Project on
“Parallelisation in SAT Preprocessing”

Linus Lutwin Feiten

Chair of Computer Architecture
University of Freiburg

Abstract. Taking advantage of parallel computation on multi-core pro-
cessors to decrease the runtime of SAT preprocessing is possible but not
trivial. In this work we particularily examined the parallelisation of the
preprocessing steps Subsumption and Self-Subsuming Resolution. Sorting
the clauses to be checked by clause length decreases the preprocessing
runtime for very large SAT instances even further.

1 Introduction

The Boolean satisfiability problem (SAT) (see section 2.1) is of great importance
in contemporary electronic design automation but also in AI planning and other
fields where NP-complete problems need to be solved in reasonable time. During
the last ten years, there has been a lot of progress in the field of so called SAT
solver programs [5,6,10] and the continuing mission of the SAT community is to
develope new SAT solvers which can solve the SAT problem faster and handle
bigger SAT instances (i.e. Boolean formulas).

It has been shown that the preformance of SAT solvers can be improved
drastically when certain preprocessing procedures are run on the SAT instances
before the actual SAT algorithm starts [1,3,4,8]. In this work we are describing
our approach to take advantage of modern multi-core processors’ parallelisation
capabilities in order to achieve a speed-up for some of the most time consuming
preprocessing steps: Subsumption and Self-Subsuming Resolution (see section
2.2).

This article is structured as follows: Section 2 gives an introductory overview
of the SAT problem and a detailed description of the preprocessing concepts
used in our algorithm. In section 3 we discuss our ideas for parallelisation of
these preprocessing concepts and describe our multi-threaded implementation.
The benchmark results achieved with these parallel implementations compared
to conventional sequential ones are presented in section 4. A discussion of these
result concludes the work in section 5.

2 Preliminary considerations

2.1 SAT and CNF

In the following, familiarity with propositional logic formulas is assumed. Most
of the time we will just use the word formula if we mean propositional logic

2 L. L. Feiten

formula. Furthermore, we will use ∧ and ∨ for the propositional connectives
and and or and we will use x for the negation of any propositional expression
x. An example for such a formula over a set of variables V = {a, b, c} could be
f = (a∧b)∨(a ∨ c). An assignment for a formula is a relation V → {true, false}
that assigns true or false to each variable v ∈ V . For such an assignment, which
assigns true or false to every variable, the propositional expression (x ∧ y) is
true iff x is true and y is true; otherwise it is false. Similarly, (x∨y) is false iff
x is false and y is false; otherwise it is true. The negation x of a propositional
expression x is true iff x is false; otherwise it is true.

To decide whether there exists an assignment such that an arbitrary for-
mula evaluates to true is known to be NP-complete. That means that there is
no known algorithm to produce an answer in polynomial time and solve the
so called SAT (for satisfiability) problem. However, there have been major pro-
gresses within the last decade regarding SAT solvers, which use algorithms based
on resolution (see below) and canny search space pruning techniques so that
results for many SAT instances can be computed in reasonable time despite
NP-completness [5, 6, 10].

In order to apply a SAT solver the formula has to be in conjunctive normal
form (CNF). A CNF is a conjunction of clauses and a clause is a disjunction of
literals. A literal again is a variable v in its positive phase v or negative phase v.
In order for a CNF to be satisfiable there has to be an assignment such that each
clause evaluates to true; i.e. in each clause there has to be one literal evaluating
to true.

Every propositional logic formula can be transformed into an equivalent CNF
through expansion and application of the boolean distributive law. That, how-
ever, has in the worst case an exponential complexity and is therefore not effec-
tively applicable. But there is a method with polynomial complexity to transform
any formula f into a CNF that is satisfiable by the same assignments as f : the
so called Tseitin transformation [9]. To achieve that, a set of fresh variables has
to be introduced which is not appearing in the original formula.

The formula f = (a ∧ b) ∨ (a ∨ c), for example, would be transformed into a
CNF as follows: For each non-atomic sub formula (i.e. a propositional expression
within the formula which is not a literal on its own) and for the whole formula
itself we have to introduce one distinct fresh variable. In our example we need
three. One for the sub formula (a∧b), one for the sub formula (a∨c) and one for
the whole formula. We name our set of fresh variables U = {d, e, f} and begin
to construct the new formula Cnf(f, U).

f = (a ∧ b) ∨ (a ∨ c)

Cnf(f, U) = d ∧(d↔ (e ∨ f))
∧(e↔ (a ∧ b))
∧(f ↔ (a ∨ c))

It should be obvious that every satisfying assignment of Cnf(f, U) is also a
satisfying assignment of f , if we ignore the fresh variables. But we still do not

Parallelisation in SAT Preprocessing 3

have a CNF yet. Some rewriting has to be done, so we substitute (x∨y)∧ (x∨y)
for every (x↔ y) and get

Cnf(f, U) = d ∧(d ∨ (e ∨ f)) ∧ (d ∨ (e ∨ f))
∧(e ∨ (a ∧ b)) ∧ (e ∨ (a ∧ b))
∧(f ∨ (a ∨ c)) ∧ (f ∨ (a ∨ c)).

Now we can use De Morgan’s laws (x ∨ y) ⇔ (x ∧ y) and (x ∧ y) ⇔ (x ∨ y)
and the distributive law to get the final CNF, which could be handled by a SAT
solver:

Cnf(f, U) = d ∧(d ∨ e) ∧ (d ∨ f) ∧ (d ∨ e ∨ f)
∧(e ∨ a ∨ b) ∧ (e ∨ a) ∧ (e ∨ b)
∧(f ∨ a) ∧ (f ∨ c) ∧ (f ∨ a ∨ c)

2.2 Preprocessing

Once a SAT instance is available in CNF it can be processed by a SAT solver
which will return whether the formula represented by the CNF is satisfiable or
not. The method according to which a SAT solver works is in most cases based
upon the DPLL algorithm [2] and its extensions [5, 6, 10]. This method will not
be discussed in this work as it has no relevance for the understanding of the
preprocessing concepts.

As stated in the introduction of this work, it could be shown that the perfor-
mance of SAT solvers (i.e. runtime until a result is returned) can be improved
when the CNF undergoes certain preprocessing procedures before the actual SAT
algorithm starts [1,3,4,8]. These procedures mostly aim at reducing the number
of clauses, literals and variables in the CNF, which (in most cases) leads to a
faster processing through the SAT solver. Sometimes it is even possible to deter-
mine whether an instance is not satisfiable by simply running the preprocessing
steps.

In order for the preprocessing to be worthwhile it is necessary that its runtime
does not exceed the runtime saved during the subsequent SAT solver execution.
Hence, it is of great interest to have fast preprocessing routines which at the
same time reduce the CNF as much as possible. During the developement of the
MiraXT2008 SAT solver some preprocessing steps emerged to be very gainful
but also time-consuming. A selection of these will be explained in the following
subsections before we describe (in Section 3) how we parallised these routines
with the goal of reducing their runtimes.

Subsumption Consider two different clauses c1 and c2 of a CNF and let c1

include (among others) all literals which are included in c2:

c1 = c2 ∨R1

4 L. L. Feiten

with R1 being the rest of c1 (i.e. a clause execlusively comprising all literals
included in c1 but not in c2). If this is the case we say “c2 (syntactically) subsumes
c1” or “c1 is (syntactically) subsumed by c2”.

As mentioned above, in order for the whole CNF to be satisfiable each clause
has to be satisfiable by the same variable assignment. Therefore, if the CNF
including c1 and c2 is satisfiable, both c1 and c2 have to be satisfied by the same
assignment. It is obvious, however, that if c2 is satisfied, c1 = c2 ∨R1 is satisfied
as well. Hence, we do not alter the satisfiability of the CNF when we simply
remove a subsumed clause from the conjunction of clauses and thereby reduce
the CNF by one clause.

An algorithm could traverse the CNF and check for each clause if it is sub-
sumed by any other clause of the CNF. If a subsuming clause is found, the
subsumed clause could be removed and the algorithm could continue with the
next clause of the CNF. Alternatively, one could also check for each clause if
it subsumes (as opposed to “is subsumed by”) any other clause and remove all
subsumed clauses found in this “backwards” manner before continuing with the
next clause of the CNF.

The MiraXT2008 SAT solver implements the “backwards” version of sub-
sumption where the algorithm checks for each clause if it subsumes any other
clause. When searching for subsumed clauses, one does not need to check all
other clauses of the CNF (in the following also referred to as the clause database).
As all literals from the subsuming clause have to be included in the subsumed
clause, it is sufficient to check the shortest occurs list of all literals included in
the currently examined (potentially subsuming) clause. An occurs list occurs(l)
of a literal l is a list of all clauses from the clause database in which the literal l
occurs. Thus, MiraXT2008’s subsumption routine checks for each clause c which
literal in c has the shortest occurs list and afterwards checks if c subsumes any
clause referred to in that particular occurs list.

Searching for subsumed clauses can be made more efficient by the following
implementation technique: each clause gets a 32-bit signature depending on the
variables it contains (it makes no difference whether a variable appears in its
positive or its negative phase). A hash function returns for each variable a 32-bit
word only consisting of 0’s except for one bit among the 16 most significant bits
(MSB) and one bit among the 16 least significant bits (LSB), which are set to 1
depending on the variable. The signature of a clause is the bitwise OR of all its
variables’ hash function values.

Hence, if a clause c1 is subsumed by another clause c2 (i.e. c1 includes at
least every literal included in c2), the signature bit word of c1 must at least have
a 1 at every positon at which the signature bit word of c2 has a 1. The result
of a bitwise AND between c2’s signature and the bitwise complement of c1’s
signature has to be 032 if this is the case. As the hash function is not injective
and not sensitive to the variables’ phases, the signature check can only be used
to verify whether a clause does not subsume another one. Before even executing
the signature check one can also check the lengths of the clauses: a clause can
never be subsumed by another clause with a greater number of literals.

Parallelisation in SAT Preprocessing 5

After the lengths and the signature checks return positive one has to com-
pare the two clauses literal by literal which is the most time consuming part
of subsumption. For further details regarding the clause signature the reader is
referred to [3].

Self-subsuming resolution In order to understand the CNF preprocessing
method called self-subsuming resolution one first has to be familiar with the
concept of resolution in general: Consider two different clauses c1 and c2 and
let c1 include a variable v as a literal in positive phase and c2 include the same
variable v as a literal in negative phase:

c1 = v ∨R1, c2 = v ∨R2

with R1 and R2 being the remaining literals except v and v of c1 and c2, re-
spectively. Now it can be shown that the new clause (R1 ∨ R2) is satisfiable iff
(c1 ∧ c2) is satisfiable:

“⇒”: Notice that v does neither occur in R1 nor in R2 and can thus be
assigned arbitraily without altering whether (R1 ∨ R2) is satisfied or not. If
(R1∨R2) is satisfied, either R1 or R2 is satisfied. If R1 is satisfied, c1 is instantly
satisfied and v can be assigend to false such that c2 is satisfied as well. In the
same way, if R2 is satisfied, c2 is instantly satisfied and v can be assigend to true
such that c1 is satisfied as well. Thus, (c1 ∧ c2) can be satisfied. �

“⇐”: If (c1 ∧ c2) is satisfied, both c1 and c2 have to be satisfied. Exactly one
of the two clauses is satisfied due to the assignment of the variable v; either c1

if v has been assigned to true or c2 if v has been assigened to false. The other
clause can hence only by satisfied due to its rest Ri being satisfied. Thus, by
either R1 or R2 being satisfied (R1 ∨R2) is satisfied. �

(R1 ∨ R2) is called the resolvent of c1 and c2. Since the conjunction of two
clauses is satisfiable iff their resolvent is satisfiable, two clauses of a CNF can be
replaced by their resolvent without changing the CNF’s satisfiabilty.

Self-subsuming resolution incorporates this concept of resolution. Eén and
Biere found out that in SAT instances there are often clauses which almost
subsume another clause [3]. By “almost” they mean that a clause c1 would
subsume another clause c2 if there was not one literal occuring in c1 in the
opposite phase of its occurence in c2. Consider the following concrete example:

c1 = a ∨ b ∨ c, c2 = a ∨ b ∨ c ∨ d ∨ e

c1 would subsume c2 if c2 included a instead of a or if c1 included a instead of
a. Thus, subsumption is out of the question for simplifying the CNF. But there
is another possibility for simplification by removing a from c2 without changing
the satisfiability of the whole CNF. This is possible because through resolution
one can get the clause (b∨ c∨ d∨ e) as the resolvent of c1 and c2. Removing the
respective literal from the almost subsumed clause c2 is called strengthening c2

using c1.

6 L. L. Feiten

Finding clauses which can be strengthened as just described would involve a
literal-by-literal clause checking procedure very similar to the one needed to find
subsumed clause. This is why it suggests itself to integrate into the algorithm
finding subsumed clauses an algorithm finding almost subsumed clauses as well.

3 Parallel algorithm and implementation

In the following description of the algorithm we will not go into all details of
the implementation which are much easier to comprehended on review of the
MiraXT2008 source code [7]. We will restrain ourselves to merley describing
the data structures and programming techniques down to a level on which their
characteristic properties become apparent.

3.1 The Clause database

In MiraXT2008 every literal is associated with an integer number. Clauses are
maintained as vector objects of integers each of which is representing a literal
occuring in the respective clause. The clause vectors are all stored in another
vector called the clause database, from which every clause can be obtained by
its clause number (i.e. its position in the clause database vector). Stored for
quick access at a designated position within each clause is the clause’s length.
The signatures (see chapter 2.2) of the clauses are saved in a separate signature
vector of the same size as the clause database vector.

3.2 Subsumption algorithm without parallelisation

When the concept of subsumption was introduced in chapter 2.2 it has been said
that the subsumption algorithm is applied to the whole CNF before the actual
SAT algorithm starts. This being the case, there are also several points during
preprocessing at which it is worthwhile to invoke subsumption again on another
subset of clauses. Hence, when our subsumption function starts it is always
provided an integer vector called ClauseSet containing the clause numbers of all
clauses it is meant to check. Remember that MiraXT2008 uses the “backwards”
subsumption method (see chapter 2.2). Thus, our subsumption algorithm checks
for all clauses referred to in ClauseSet if there are clauses subsumed by them in
their shortest occurs lists and, if there are, deletes those clauses. This is done in
the following manner (refer to chapter 2.2 for an explaination of occurs lists and
clause signatures):

Parallelisation in SAT Preprocessing 7

1. Get new clause: If ClauseSet is empty, we are done. Otherwise obtain the
clause referred to by the last entry of ClauseSet from the clause database. In
the following, this clause will be called clause. Afterwards continue with step
2. (The reason why we are traversing ClauseSet from right to left instead of
left to right is merely due to a simpler parallelisation implementation. See
chapter 3.3. For the sequential version it does not make a difference.)

2. Get shortest occurs list : Identify the literal of clause with the shortest occurs
list. Continue with step 3.

3. Get first otherClause: Obtain from the clause database the clause referred
to by the first entry of clause’s shortest occurs list. In the following, this
clause will be called otherClause.

4. Lengths check: Begin checking whether otherClause could be subsumed by
clause or strengthened using clause. This is done by checking the two clauses’
lengths. If clause is longer than otherClause, no subsumption or strength-
ening of otherClause is possible. If this is the case, continue with step 9.
Otherwise continue with step 5.

5. Signature check: Check by comparison of clause’s and otherClause’s sig-
natures whether a subsumption or strengthening of otherClause could be
possible. If not, continue with step 9. Otherwise continue with step 6.

6. Literal-by-literal check: When both the lengths check (step 4) and the sig-
nature check (step 5) have returned positive, it is necessary to conduct a
literal-by-literal check between clause and otherClause. This is done by try-
ing to find every literal of clause within otherClause. If this search is success-
ful for every literal of clause, otherClause is subsumed by clause: continue
with step 7.
The algorithm is, however, not only sensitive for the identical occurence of
literals from clause within otherClause but also for their inverted phases.
If the inverted phase of a literal from clause is found in otherClause, sub-
sumption is no longer possible. Should, however, all other literals from clause
be occuring identically in otherClause, otherClause can be strengthened us-
ing clause. I.e. the one literal in otherClause, which occurs in clause in its
inverted phase, can be removed from otherClause. Thus, if the first such
inverted literal is found in otherClause the search continues and tries to val-
idate the congruence of clause’s remaining literals with otherClause. Should
this succeed, continue with step 8.
If a literal from clause could not be found in otherClause neither in its orig-
inal nor in its inverted phase or if more than one literal from clause has
been found in otherClause in its inverted phase, neither subsumption nor
strengthening of otherClause is possible: continue with step 9.

7. Subsumption: If the literal-by-literal check resulted in otherClause being
subsumed by clause, otherClause can be removed from the clause database
because (as shown in chapter 2.2) otherClause would be instantly satisfied
by any assignment which satisfies clause. Afterwards continue with step 9.

8. Self-subsuming resolution: If the literal-by-literal check returned that other-
Clause can be strengthened using clause, the respective literal can be re-
moved from otherClause. Afterwards continue with step 9.

8 L. L. Feiten

9. Get new otherClause: If there are still unchecked clauses in clause’s shortest
occurs list make otherClause the next one of these and continue with step
4. If all clauses referred to by this particular occurs list have already been
checked, remove clause from ClauseSet and continue with step 1.

3.3 Subsumption algorithm with parallelisation

The most time-consuming part of the algorithm described in the preceding sec-
tion clearly consists of the literal-by-literal checks. It therefore appears most
promising to distribute this effort among several threads running in parallel on
different processor cores. In our approach we have each subsumption thread
functioning very similar to the sequential manner with the distinction that each
clause of ClauseSet is only checked by exactly one thread. If there are, for ex-
ample, two threads and ClauseSet has the size of n, one thread would check the
clauses at positions n− 1, n− 3, n− 5, ... while the other one would check those
at positions n− 2, n− 4, n− 6, (Notice that there is no position n as the first
position of an array is 0.)

Our subsumption threads get initiated in the very beginning of the program
and are merely put into a suspend mode when they are not needed. This keeps
the thread maintenance runtime overhead at a minimum. Once (re-)activated the
subsumption threads start to examine their designated clauses from ClauseSet
as described above. This goes on until one of them would need to update the
clause database either by removing one or more subsumed clauses or by removing
a literal from a strengthened clause. In this case all subsumption threads have to
be stopped before the change to the clause database can be made, because it is
not possible to ensure that the clauses or literals which are about to be removed
are not currently read by another subsumption thread.

The way this issue is handled is as follows: Each subsumption thread owns
a private integer variable clauseSetPtr which stores the position in ClauseSet of
the clause the thread is currently examining. A subsumption thread which iden-
tifies the necessity of updating the clause database sets a global integer variable
stopSubsumptionPtr, which is otherwise −1, to the value of its own clauseSetPtr.
(Now, it becomes clear why we are having the threads traverse ClauseSet from
right to left, such that the ClauseSet positions of the clauses are getting smaller
as the threads proceed.) Each subsumption thread checks whether stopSubsump-
tionPtr is still smaller than its own clauseSetPtr before beginning to examine
the clause currently referred to by its own clauseSetPtr. If stopSubsumptionPtr is
greater than the thread’s own clauseSetPtr, the thread enters its suspend mode.
Furthermore, a thread will only set stopSubsumptionPtr to its own clauseSetPtr
if clauseSetPtr is greater than the current stopSubsumptionPtr.

This routine ensures that once the subsumption threads have entered their
suspend mode stopSubsumptionPtr is storing the rightmost (i.e. greatest) posi-
tion in ClauseSet at which there is the number of a clause responsible for an
update of the clause database. If stopSubsumptionPtr is -1, all clauses of Clause-
Set have been checked and we are done. Otherwise, the algorithm can now do

Parallelisation in SAT Preprocessing 9

the changes to the clause database according to the clause referred to by stop-
SubsumptionPtr without having to worry about possibly interfering with the
subsumption threads, as these are suspended. Afterwards, all entries of Clause-
Set at the positions geater than or equal to stopSubsumptionPtr are removed
from ClauseSet, as there are surely no clauses referred to by those entries which
still need to be checked. Then stopSubsumptionPtr is reset to -1 and the sub-
sumption threads are reactivated. This procedure continues until the threads
eventually enter their suspend mode leaving stopSubsumptionPtr still set to -1.
1

An important characterisic of this parallelised routine is that it is determinis-
tic. I.e. it will always process the clauses of ClauseSet in the exact same order as
its sequential equivalent would; no matter how many parallel threads are being
used.

A hypothesis of ours has been that parallelisation is only worthwhile when
ClauseSet surpasses a certain size, because even though we were able to keep the
thread maintenance low by merely putting them into the suspend mode when
not needed, stopping and reactivating them still requires some overhead. Hence,
our program is capable of executing both the parallel algorithm described in
this subchapter and the sequential one described in the preceeding subchapter.
Which one is applied depends on whether the size of ClauseSet surpasses a
threshold which can be set as a compile parameter.

3.4 Sorting of ClauseSet

Another hypothesis we had was that the gain through parallelisation would be
bigger if the separate subsumption threads were able to complete bigger parts of
ClauseSet without being interrupted. We assumed that this could be achieved
by sorting the entries of ClauseSet in ascending order according to the lengths
of the referred clauses. Starting with the rightmost clauses of ClauseSet the
algorithm would first check the longest clauses for which it is less likely to find
subsumed clauses than for short ones. Our hope was that the longer clauses could
be checked continuously with very little interruptions of the threads before the
shorter clauses are checked.

1 In an earlier version we circumvented the problem of having to stop the subsumption
threads at every detection of a subsuming clause by not removing the subsumed
clauses right after they had been found but by storing their numbers in a list we
maintained until all clauses in ClauseSet had been checked. The thusly stored clauses
could then be removed from the clause database all at one time after the subsumption
threads had been able to run through their designated clauses without interruption.
Using this method, the speed-up of a parallel version compared to its sequential
equivalent was as good as a speed-up through parallelisation can get: The runtime
of the parallel version was the runtime of the sequential one devided by the number
of subsumption threads. It turned out, however, that removing the subsumed clauses
right after their detection is more beneficial for the overall subsumption process (with
respect to the number of clauses/literals being removed).

10 L. L. Feiten

Analyses of the benchmarks we used2 showed that for SAT instances with less
than 4,000,000 clauses the average length of clauses appearing in ClauseSet was
approximately 4.5 with an average deviation of approximately 1.4. Less than
1% of the clauses were longer than 20. So we decided to use a very efficient
sort algorithm which would only sort the clauses within ClauseSet which have a
length below a certain threshold (called sortLimit). The very few clauses with a
length longer than sortLimit are merely appended to the right end of ClauseSet
without being sorted. The sort algorithm’s complexity is linear in the size of
ClauseSet. Its functionality is explained in Figure 1.

4 Results

4.1 Parameters

Our main goal was to examine whether the parallel subsumption algorithm really
outperforms the sequential one. Furthermore, we were interested in whether the
sorting of ClauseSet (see section 3.4) could improve the parallel algorithm’s
performance even further. There were two adjustable integer parameters in our
experiment setting whose impacts on the algorithm’s behaviour we wanted to
examine. The first one was the parameter called sortLimit (see section 3.4). The
second one was the threshold of ClauseSet’s size, beyond which the program
would use the parallel algorithm instead of the sequential one (see section 3.3).
In the following, we will refer to this threshold as csSizeLimit.

sortLimit Choosing a small value for sortLimit results in a greater number of
unsorted clauses in the rightmost end of ClauseSet after completion of the sort
algorithm described in section 3.4. These are all clauses which have a length
greater than or equal to sortLimit.

An excessively high sortLimit value would therefore undo the whole intention
behind the sort algorithm leaving most clauses unsorted. An excessively low
value, however, could be expected to be disadvantageous as well, as it could
increase the SortLists vector to a size where the addressing effort would outweigh
all other runtime savings.

As the analyses of our test benchmarks showed that the average size of all
clauses appearing in ClauseSet was approximately 4.5 with an average deviation
of approximately 1.4, we decided to try four different values for sortLimit in our
tests: 5, 10, 20, and 30.

csSizeLimit As described in section 3.3, when the subsumption procedure
needs to be executed, our program chooses whether to use the parallel or the
sequential algorithm depending on the size of ClauseSet, because if ClauseSet
2 SAT-Race 2006: http://fmv.jku.at/sat-race-2006

SAT 2007 competition: http://www.satcompetition.org (industrial)
SAT-Race 2008: http://www-sr.informatik.uni-tuebingen.de/sat-race-2008

Parallelisation in SAT Preprocessing 11

vec<int> SortLists[sortLimit];

// Copy all clause references from ClauseSet into the sort vectors.
for all elements i of ClauseSet do

if the clauseLength of ClauseSet [i] is smaller than sortLimit
SortLists[clauseLength].push(ClauseSet [i]);

else
SortLists[sortLimit−1].push(ClauseSet [i]);

end if
end for

// Clear ClauseSet.
ClauseSet.clear();

// Copy all clauses from the sort vectors into empty ClauseSet.
for j = 0 to sortLimit do

for all elements i of SortLists[j] do
ClauseSet.push(SortLists[j][i]);

end for
end for

Fig. 1. The ClauseSet sort algorithm works with an array of sortLimit vec-
tor objects called SortLists. The algorithm runs once through all elements of
ClauseSet and copies each element into the vector of SortLists corresponding to
the length of the clause referred to by this element. After this is done, the vec-
tor at SortLists[0], for example, contains all clause references from ClauseSet to
clauses of length 1, just as SortLists[1] contains those to clauses of length 2, and
so forth. The last vector SortLists[sortLimit-1] contains all entries of ClauseSet
refering to clauses whose lengths are greater than or equal to sortLimit. (The
entries of SortLists[sortLimit-1] are unsorted but as mentioned in section 3.4
less than 1% of all clauses have a length greater than 20.) Now, ClauseSet can
be cleared and the entries are copied back from the sort vectors beginning with
the smallest ones.

12 L. L. Feiten

is below a certain size, activating and maintaining the threads could require
more effort than checking ClauseSet in the sequential manner. csSizeLimit is
the parameter determining this threshold.

When we began our experiments we were primarily interested in results for
SAT instances with less than 1,000,000 clauses (typical) and instances with
1,000,000 - 4,000,000 clauses (large). Analyses for these instances in our bench-
mark sets showed that each time, when subsumption is started, the size of clause-
Set is on average 1781 for the typical instances and 95 for the large instances.
This indicates that it must quite often (apparently more often for the large in-
stances) be the case that the algorithm has to check rather small ClauseSets.
Remember that subsumption is not only executed once for the whole CNF at the
beginning of preprocessing but repeatedly for smaller sets of clauses in course of
the overall preprocessing routine (see section 3.2). For our experiments we chose
values for csSizeLimit ranging from 5,000 to 3,000,000.

4.2 Effects on reduction quality

As the parallel algorithm is deterministic (see section 3.3), changing csSizeLimt
cannot have any effect on how much of the original CNF is reduced during
preprocessing. The clauses in ClauseSet are always checked in the same order.
Changing sortLimit, however, can have this effect because it determines how
many clauses in ClauseSet will be sorted and thereby changes the order in which
the clauses will be processed by the self-subsuming resulution procedure. (The
order does not make a difference for subsumption.)

It could, however, be shown that the sorting of ClauseSet has no significant
impact on the algorithm’s capability of reducing the number of clauses or literals
of the SAT instances. With or without sorting, the percentages by which both the
number of clauses and the number of literals are reduced through preprocessing
do not differ signifficantly (see Tables 1 and 2).

4.3 Effects on runtime

Knowing that the sorting of ClauseSet does not impair the reduction qualities
of our preprocessing program, the next issue of interest was to examine whether
the parallel algorithm would yield shorter runtimes than the sequential one and
whether the sorting of ClauseSet would shorten the runtimes even further.

For the 329 typical SAT instances (less than 1,000,000 clauses) from our
benchmark sets, we could show that using the parallel algorithm with a certain
csSizeLimit value does improve the runtime. Sorting ClauseSet, however, only
resulted in longer runtimes (see Figure 2).

For the 71 large instances (between 1,000,000 and 4,000,000 clauses) using
the parallel algorithm could only yield a slight advantage over a predominantly
sequential variant. Sorting ClauseSet did not appear to be as disadvantageous
as for the typical instances but neither did it exhibit a noteworthy advantage
over the “no sorting” variant (see Figure 3).

Parallelisation in SAT Preprocessing 13

Table 1. The precentage values indicate how much the numbers of clauses have been
reduced through preprocessing. -47.4794%, for example, means that for the 329 SAT
instances with initially less than 1,000,000 clauses their numbers of clauses could in av-
erage be reduced by 47.4794 percent of their original sizes when no sorting of ClauseSet
was applied. As one can see, the reduction of clauses does only increase very slightly
when sortLimit is increased. On the basis of our results for the instances with less than
4,000,000 clauses we decided against running tests with different sortLimit values for
the very large SAT instances comprising more than 4,000,000 clauses.

Table 2. Similar to our findings presented in Table 1, the reduction of literals does
also only increase very slightly when sortLimit is increased.

14 L. L. Feiten

Fig. 2. For SAT instances with less than 1,000,000 clauses, the algorithm which does
not sort the clauses of clauseSet is clearly faster than its sorting counter parts. The
minimum average runtime for all the instances is achieved when csSizeLimit is set to
some value between 150,000 and 200,000. If csSizeLimit is increased further than that,
the runtime increases again. This indicates, as a higher value of csSizeLimit means less
parallelisation, that the parallel algorithm performs better than a purely sequential
one.

Parallelisation in SAT Preprocessing 15

Fig. 3. For SAT instances with 1,000,000 - 4,000,000 clauses, the minimum average run-
time is achieved at 4.84 s with the algorithm using the sort procedure with a sortLimit
value of 5 and a csSizeLimit value of 900,000. The “no sorting” variant, however, per-
formed almost as well (4.85 s) with a csSizeLimit of 1,500,000. Both these values of
csSizeLimit are rather high considering that the average size of ClauseSet is 95 for
these instances. The results imply that the overall program works best if the parallel
algorithm is only applied very rarely. But still, the runtime increases again when cs-
SizeLimit is set to a greater value than 1,500,000, which speaks at least for a small
gain through parallelisation. (The sortLimit=20 and sortLimit=30 variants were only
tested with csSizeLimit values up to 450,000.)

16 L. L. Feiten

In the final phase of this research project we decided to expand our exper-
iment by also running some tests on SAT instances from our benchmark sets
with more than 4,000,000 clauses (huge). Having seen that there has been lit-
tle difference between the algorithms using different sortLimit settings we only
compared one variant using a sortLimit value of 10 to the “no sorting” variant.
We also restrained ourselves to only four different csSizeLimit values ranging
from 200,000 to 1,000,000.

The results show that the sorting of ClauseSet for these huge instances indeed
has a beneficial effect on the runtime. Using parallelisation could also be shown
to be catering for shorter runtimes as the average runtime decreases with the
decrease of csSizeLimit (see Figure 4).

Fig. 4. In this rather non-exhaustive run of tests we found that the algorithm encorpo-
rating the sorting of ClauseSet achieved better runtimes than the one without sorting.
Unfortunately, our values for csSizeLimit do not reveil the turning points of the curves,
which might be located at values even smaller than 200,000.

Parallelisation in SAT Preprocessing 17

5 Discussion

The results show that parallelisation is indeed capable of reducing the runtime
of a subsumption/self-subsuming resolution algorithm as used in our program.
Achieving those results, however, has been a very painstaking endeavour. If it
had not been for the elaborate means by which we suspend and reactivate the
threads, the overhead for maintaining the threads would have outweighed all
runtime savings gained through paralellisation.

Moreover, as shown in section 4.3, it was vital to find an adequate ratio
between the application of the parallel and the sequential algorithm in order to
make parallelisation worthwhile. Using the parallel variant apperears to be only
viable for rather large sets of clauses. However, it also seems to depend on the
initial size of the SAT instances, what “large” means in this context. Remember,
that we got different optimal csSizeLimit values for SAT instance of different
initial sizes.

In future studies, one might try to further investigate to what extend the
properties of SAT instances can be used to define in advance what degree of
parallelisation is best suited for their preprocessing. The studies presented in
this work have undoubtedly shown that parallelisiation has a potential for pre-
processing.

Another promising prospect is that there are more preprocessing methods
which are very similar to those of the subsumption algorithm. I.e. sets of clauses
have to be traversed and checked for certain conditions. One of these other
preprocessing methods for example is the one called clause distribution [8]. The
same paralellisation principle we applied to the subsumption algorithm could be
applied to those preprocessing methods, as well. Whether this will also lead to
better runtime results is again something which has to be investigated by future
studies.

References

1. F. Bacchus and J. Winter, Effective preprocessing with hyper-resolution and
equality reduction, in SAT, 2003, pp. 341–355.

2. M. Davis, G. Logemann, and D. Loveland, A machine program for theorem-
proving, Commun. ACM, 5 (1962), pp. 394–397.

3. N. Eén and A. Biere, Effective preprocessing in SAT through variable and clause
elimination, in SAT, 2005, pp. 61–75.

4. I. Lynce and J. Marques-Silva, Probing-based preprocessing techniques for
propositional satisfiability, in Proceedings of the 15th IEEE International Con-
ference on Tools with Artificial Intelligence (ICTAI ’03), Washington, DC, USA,
2003, IEEE Computer Society, p. 105.

5. J. P. Marques-Silva and K. A. Sakallah, GRASP - A New Search Algo-
rithm for Satisfiability, in Proceedings of IEEE/ACM International Conference on
Computer-Aided Design, 1996, pp. 220–227.

6. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, Chaff:
Engineering an Efficient SAT Solver, in Proceedings of the 38th Design Automa-
tion Conference (DAC ’01), 2001.

18 L. L. Feiten

7. T. Schubert, MiraXT. http://ira.informatik.uni-freiburg.de/~schubert/

html/miraxt.html, 2008.
8. S. Subbarayan and D. K. Pradhan, NiVER: Non increasing variable elimina-

tion resolution for preprocessing SAT instances, in Proceedings of the 7th Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT),
Springer, 2004, pp. 276–291.

9. G. S. Tseitin, On the complexity of derivations in the propositional calculus, Stud-
ies in Mathematics and Mathematical Logic, 2 (1968), pp. 115–125.

10. H. Zhang, SATO: an efficient propositional prover, in Proceedings of the Inter-
national Conference on Automated Deduction (CADE ’97), volume 1249 of LNAI,
1997, pp. 272–275.

