
ALBERT-LUDWIGS-UNIVERSITÄT
FREIBURG

INSTITUT FÜR INFORMATIK
Lehrstuhl für Rechnerarchitektur

Prof. Dr. Bernd Becker

DIPLOMARBEIT

Simulation of Dynamic Effects of
Resistive Open Defects

Alejandro Czutro
(Student-ID 1133719)

Supervision: Dr. Ilia Polian

17th April 2007

Erklärung

Hiermit erkläre ich, Alejandro Czutro, dass ich diese Ab-
schlussarbeit selbständig verfasst habe, keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe, und dass
ich alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten
Schriften entnommen wurden, als solche kenntlich gemacht habe.
Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht,
auch nicht auszugsweise, bereits für eine andere Prüfung ange-
fertigt wurde.

Ort, Datum Unterschrift

3

4

Acknowledgements

I am grateful to Sandeep Gupta and Shahdad Irajpour of
University of Southern California Los Angeles for providing deep
insight into the implementation of their gate delay fault simula-
tor [19].

Many thanks to Dr. Ilia Polian for the supervision of my work
during the last six months; and to him and to Mr. Piet Engelke
for meticulous proofreading of the present manuscript.

Finally, I would like to thank my wife, Mrs. Kinga Czutro,
for supporting me during the last four years of study, and for
working especially hard during the last six months, in order to
permit me concentrate on this work and finish it on time.

Alejandro Czutro, Freiburg, 17th April 2007

5

6

Contents

1 Introduction 13

2 Preliminaries 19
2.1 Circuits . 19
2.2 Basic principles of digital testing 26

2.2.1 Defects, faults and errors 26
2.2.2 Test application . 28
2.2.3 Fault coverage . 30
2.2.4 Simulation . 30

2.2.4.1 Logic simulation 30
2.2.4.2 Fault simulation 31

2.2.5 (Automatic) test pattern generation 33
2.3 Delay fault modelling . 35

2.3.1 Test application . 36
2.3.2 Application of two-pattern testing to sequential circuits 38

2.4 Fault coverage under resistive fault models 41

3 Simulating Dynamic Effects of Resistive Opens 45
3.1 Overall structure of the RO-simulator 47
3.2 Application of RO-simulation to sequential circuits 50

4 More Preliminaries 51
4.1 Definitions and conventions 51

4.1.1 Time issues and test application 51
4.1.2 Input and output intervals 55
4.1.3 Delay model . 57

4.2 Waveforms . 59
4.2.1 Initial definitions . 60
4.2.2 Intersection of waveforms 61

7

8 CONTENTS

4.2.3 Translation of waveforms 63
4.2.4 Inversion of waveforms 65

4.3 Signal descriptors . 66
4.3.1 Initial definitions . 66
4.3.2 cv-intervals and ncv-intervals 68

4.3.2.1 cv-intervals 68
4.3.2.2 Intersection of description intervals 68
4.3.2.3 ncv-intervals 72
4.3.2.4 An example on cv- and ncv-intervals 74

5 Delay Fault Simulation 75
5.1 Illustrative example . 75

5.1.1 Fault-free simulation 75
5.1.2 Faulty-circuit simulation 77
5.1.3 Computing the detection set of delay size intervals . . . 79

5.2 The delay fault simulation algorithm 80
5.2.1 Fault-free simulation 80
5.2.2 Faulty-circuit simulation 82
5.2.3 Computing the detection set of delay size intervals . . . 87

6 Fault Coverage 93
6.1 Introduction . 93
6.2 Fault coverage metrics for resistive opens 94
6.3 An example . 95
6.4 Overall fault coverage . 97

7 Experimental Results 99

8 Conclusions 109

A Contents of the Attached CD-ROM 111

List of Figures

1.1 The RO-simulator . 16

2.1 Example combinational circuit 20
2.2 Example sequential circuit . 20
2.3 Example sequential circuit, simplified representation 20
2.4 Example circuit . 23
2.5 Defects, faults and errors . 27
2.6 Single and multiple stuck-at fault models 28
2.7 Test application . 29
2.8 Example on fault simulation 31
2.9 Algorithm: simple fault simulation 32
2.10 Algorithm: deterministic TPG, overall procedure 34
2.11 Detection of an LDF . 37
2.12 Scan design . 39

3.1 Detection interval of an LDF 46
3.2 Algorithm: overall proceeding of the RO-simulator 48

4.1 Computing PLST: an example 53
4.2 Algorithm: computation of PLST 54
4.3 Example on input intervals of a single-input gate 54
4.4 Example on input intervals of a multiple-input gate 56
4.5 Example on the application of the delay model 58
4.6 Example on the application of the delay model 59
4.7 Example: 0-intersection of waveforms 61
4.8 Example: 1-intersection of waveforms 62
4.9 Example: translation of waveforms 64
4.10 Intersection of description intervals with the same logic value . 70
4.11 Intersection of description intervals with the same logic value . 71
4.12 Algorithm: computing the set of ncv-intervals 73

9

10 LIST OF FIGURES

5.1 Simulation example: fault-free simulation 76
5.2 Simulation example: faulty-circuit simulation 79
5.3 Computing the output waveform of a NAND gate 81
5.4 Computing the fault site’s signal descriptors 82
5.5 Computing the detection intervals of delay sizes 88
5.6 Computing the detection intervals of delay sizes 88
5.7 Computing the detection intervals of delay sizes 88
5.8 Computing the detection intervals of delay sizes 88
5.9 Computing the detection intervals of delay sizes 90
5.10 Computing the detection intervals of delay sizes 90
5.11 Computing the detection intervals of delay sizes 90
5.12 Computing the detection intervals of delay sizes 91
5.13 Computing the detection intervals of delay sizes 91
5.14 Computing the detection intervals of delay sizes 91

6.1 Example: computing fault coverage 96

7.1 Use of resources depending on number of faults 104
7.2 Use of resources depending on depth of circuit 104
7.3 Fault coverage depending on number of faults 105
7.4 Fault coverage depending on depth of circuit 105
7.5 FC depending on number of test pairs, circuit c5315 106
7.6 FC depending on number of test pairs, circuit s35932 106

List of Tables

2.1 Types of gates and their parameters 24

4.1 Delay model . 58

5.1 Rules for the creation of output description intervals 85

7.1 Rising and falling delay times of each gate type 100
7.2 Experimental results: tabular overview 102
7.3 Experimental results: tabular overview 103

11

12 LIST OF TABLES

1

Introduction

Nowadays, electronics belong to modern life more than ever before. The
automotive industry is only one example of an area which cannot do with-
out integrated circuit (IC) technology any more. At the same time, as the
areas in which IC technology is necessary, expand steadily, the complex-
ity of digital systems rises constantly. This, together with increased device
operation speed and component miniaturisation as a response to the attempt
of achieving higher performances, has as consequence that it is practically
impossible to guarantee that a digital IC is defect-free.

Since a defective IC placed onto a printed circuit board usually makes
the whole board and all other (possibly fault-free) components on it useless,
the costs of shipping a defective IC may exceed the profit margin by far [34].
Due to this fact, the correct function of all delivered ICs must be verified
by testing after they have been manufactured. Testing represents the single
largest manufacturing expense in the semiconductor industry, costing over
$40 billion a year (by 2003, [21]).

The general strategy consists in applying a set of input vectors to the cir-
cuit under test (CUT) and verifying if its outputs are as expected. However,
digital testing comprises many more tasks, which are steadily being improved
in order to: 1) meet the requirement of testing constantly more and more
complex becoming ICs; 2) reduce the costs of testing. The two most impor-
tant tasks are test pattern generation (TPG) and fault simulation.

TPG is the task of generating a set of input vectors (called test patterns)
to be applied to the CUT. A set of test patterns is called test set. A test
pattern p is said to detect a fault f , if the response of the fault-free circuit
differs from the response of the circuit with the fault f , when p is applied to
the circuit’s inputs. A test set is said to detect a fault if at least one of the
test patterns in the test set detects the fault. The effectiveness of TPG is

13

14 1. INTRODUCTION

measured by the percentage of faults that are detected (covered) by applying
the generated test set. This measure of the quality of the test set is called
fault coverage.

Fault simulation is the process of determining the set of faults which are
detected by applying a test set to a circuit. Fault simulation is necessary to
measure fault coverage without having to apply the generated test set to an
actual circuit. Fault simulation is also a very important part of the overall
TPG process, which usually consists of several phases. The goal of each
phase depends on the fault coverage achieved by the result of the preceding
phase. Fault simulation of a test pattern p for a fault f consists of fault-free
simulation followed by faulty-circuit simulation. Fault-free simulation is the
process of determining the steady state of the fault-free CUT after applying
p to its inputs. Faulty-circuit simulation determines the steady state of the
CUT when it is affected by f after applying p to its inputs. The results
of fault-free and faulty-circuit simulation are compared. If these differ, f is
detected by p.

Among the typical defects encountered in today VLSI chips are missing
or broken contacts, opens (broken lines), shorts and bridges (unintended
contacts), contacts with too low conductance, surface impurities, etc. Some
affect the functional behaviour of the circuit (i.e. cause the circuit to produce
a wrong output or to produce an output which cannot be interpreted as a
valid logical value), some affect its timing behaviour (i.e the circuit produces
the right outputs, but these arrive too late), some do both, and others have
further effects which do not need to be mentioned here. As it is not possible
to list all defects that may occur in a circuit, so-called fault models are used
to describe the faulty behaviour of a circuit having one or several defects.

The most popular fault model used in practice is the single stuck-at fault
model [10], [14], [34, p. 16], [21]. Under this fault model, a single line in the
circuit is assumed to be affected. That line has always a fixed logic value,
regardless of what inputs are supplied to the circuit. Despite the assumption
that only one single line can be affected, working under the stuck-at fault
model detects a large amount of complex defects which are usually modelled
by other fault models.

Due to the increased interconnection density of today’s circuits, defects
that affect the interconnect are becoming very frequent. Among these are
opens and bridges, where opens constitute the major part of those defects
which remain undetected during the test phase [32].

Traditionally, open defects were defined as unconnected nodes in the
manufactured circuit that were connected in the original design. However,

15

open defects can also still connect the nodes, but only weakly, by introduc-
ing between the linked points a resistance that is higher than expected but
finite [17], [32]. In [43], opens are classified into strong and weak ones.
Strong opens are those with a very high resistance (more than 10 MΩ)
and are thus treated as fully broken connections. These defects result in a
memory behaviour at the fault site [45]. They can be modelled as stuck-
open, stuck-on, or even stuck-at faults. In the past, strong opens have been
studied extensively [37], [17], [7], [22].

Weak or resistive opens (i.e. opens with a low or moderate resistance less
than 10 MΩ) manifest themselves as lines with an elevated resistance or as
resistive vias and contacts. They still let the circuit work, but increase the
delay of paths (sequences of lines connected by gates) going through the fault
site [25], [29]. Not all these defects can be modelled effectively by the stuck-at
fault model [2], [9], [8]. Thus, they are modelled by delay fault models which
assume that one single gate or path is slow to propagate 0 → 1 or 1 → 0
transitions, delaying them by an additional unknown amount of time. Hence,
resistive opens require a delay testing strategy. Delay testing strategies are
characterised by the application of two successive test patterns (a test pair).
The first test pattern brings the circuit into a known and stable state. The
second pattern changes the state of the circuit. If the circuit’s stabilisation
after the state change takes place after a certain threshold time, the delay
fault is detected. [43] shows that in modern deep sub-micron technology, the
percentage of weak opens is high enough to require delay fault testing.

The amount of time by which the transitions are delayed is called the
size of the delay fault. It depends on the open’s resistance, which is an
unpredictable random parameter [41]. A resistive open may be detected by
a pair of test patterns if it has a certain resistance, while the same pair might
not detect an open at the same location if the open has a different resistance.
Since the resistance of an open in an actual manufactured circuit cannot be
known a priori, it is necessary to generate more than one pair of test patterns
to detect the open. Enlarging the range of resistances for which the open is
detected is equivalent to increasing the probability that the open is detected
if it is present.

The aim of this work was to design and implement a simulator which is
able to compute, for each delay fault in a given fault list, a set of resistance
ranges, for which the resistive open modelled by the fault is detected by a
given test set. That set of resistance ranges is called the C-ADI (“Covered-
Analogous Detection Interval”, [40]) of the fault. Furthermore, the simulator
should be able to compute the fault coverage the given test set achieves. The

16 1. INTRODUCTION

Delay−to−
resistance
mapping

Computation
of fault

coverage

Delay

fault

simulation

RO−SIMULATOR

C−ADI

FC

Circuit

Fault list

Test set

CDSI

Figure 1.1: The RO-simulator

proposed simulator is called RO-simulator (stands for “resistive-opens-
simulator”) throughout this thesis.

Figure 1.1 illustrates the overall structure of the RO-simulator. The input
data of the simulator are a combinational circuit (a circuit without memory
elements, which computes a Boolean function) or a sequential circuit (a cir-
cuit with memory elements, which implements a Mealy finite state machine),
a list of delay faults and a set of test pattern pairs. The RO-simulator works
in three phases. In Phase 1, delay fault simulation is performed. The result
of this phase is a set of delay size intervals (one set for each fault) with the
property that a fault is detected by the test set if its size is in one of its
corresponding delay size intervals. The collection of sets of intervals is de-
noted by CDSI in Figure 1.1. In Phase 2, the set of intervals of delay fault
sizes of each fault is transformed into the fault’s C-ADI. This is one of the
outputs of the RO-simulator. These data are also input of the third phase,
in which the RO-simulator computes the achieved fault coverage. The fault
coverage is computed based on C-ADI and expresses the probability that
each resistive open is detected by the test set. Fault coverage turns into a
probability because it depends on the opens’ resistances. As was said before,
the resistance of an open is an unpredictable value.

17

The implementation of Phase 1 of the RO-simulator is based on the delay
fault simulation method RTM (“Ranges-type testing methodology”) by Pra-
manick and Reddy [36]. That simulation method is called PR-simulator
(“Pramanick-Reddy-simulator”) in this thesis. The PR-simulator is an ex-
tension of a method introduced in [20], and is extended itself by Irajpour,
Gupta and Breuer in [19]. In the RO-simulator’s Phase 1, the PR-simulator’s
techniques for the description of dynamic behaviour of signals and for the
propagation of fault effects through the circuit have been improved by cal-
culating the cumulative fault effect of all inputs of a logic gate rather than
considering all inputs explicitly. A further improvement of the PR-simulator,
which was designed for combinational circuits, permits the RO-simulator to
be also used on sequential circuits.

In Phase 2, the RO-simulator converts the set of delay size intervals of
each fault into its C-ADI. The base for this conversion is a delay-to-resistance
mapping δ 7→ r with the meaning that a resistive open with resistance r
produces a delay fault of size δ. In this first implementation of the simulator,
a trivial delay-to-resistance mapping is used. This mapping assumes that the
additional line delay caused by an open is linearly proportional to the open’s
resistance. Physically accurate mappings, such as one introduced in [24], can
be easily integrated into the RO-simulator.

In Phase 3, the RO-simulator computes the fault coverage the given test
set achieves. In order to do this, existing fault coverage metrics for resistive
bridging faults [40], [38], [39], [23], [11], [12], [13] were adapted to the case of
resistive opens.

This first implementation of the RO-simulator was tested on ISCAS 85
and ISCAS 89 circuits. Results are reported and analysed in this thesis.

The thesis is organised as follows. The next chapter introduces some
conventions for this work and the basics on testing digital ICs. In Chapter 3
the requirements the RO-simulator must meet are formulated in a formal way,
and the RO-simulator’s overall structure is presented. Chapter 4 introduces
some definitions which are necessary to understand Chapter 5, in which the
algorithms of Phase 1 are presented in detail and illustrated by means of
examples. In Chapter 6 fault coverage metrics are discussed. Experimental
results are reported in Chapter 7. Chapter 8 concludes the work.

18 1. INTRODUCTION

2

Preliminaries

While there is a wide variety of text books providing a good introduction
into the area of testing digital ICs ([1], [21] and [4] are only a few examples),
this chapter has been composed in order to introduce the basic concepts on
testing which are needed to understand the present thesis. Additionally, the
terminology used in all the other chapters is introduced.

Since digital testing is a discipline with a strong connection to the
practice, new research topics typically emerge after new problems occur de-
pending on the technology development. Much of the conducted research
does not constitute a fundamental breakthrough. Instead, existing
methods are gradually improved [34, Chapter 2]. That is also the
characteristic of the work presented in this thesis. The RO-simulator com-
bines several already existing techniques, while the original work consists in
modifying those techniques to improve performance and to allow them to
work together. The second purpose of this chapter is to help to distinguish
between original work and those results obtained by other authors in the
past. No result which can be found in this chapter has been obtained by
ourselves. In all other chapters, non-original results are still referenced.

2.1 Circuits

A digital circuit is a device that processes input data and produces out-
put data. A combinational circuit C with n inputs and m outputs
implements or computes the Boolean function gC : Bn → Bm. For the
example circuit in Figure 2.1, n = 3, m = 2 and gC is (a, b, c) 7→ (a∧ b, b∨ c).

19

20 2. PRELIMINARIES

b

c

a

Figure 2.1: Example combinational circuit

D−FF

b

a

c

c’

d

clock

Figure 2.2: Example sequential circuit

a

b

c

c’

d

Figure 2.3: Example sequential circuit, simplified representa-
tion

2.1 CIRCUITS 21

Circuits which contain memory elements are called sequential . Figure
2.2 pictures an example sequential circuit. The box with the inscription
“D-FF” is a D-flip-flop, a very common type of memory element.

Memory elements in sequential circuits are clocked, that means they are
connected to a device which generates a clock signal . The clock signal
oscillates between logic 1 and logic 0, normally with a 50% duty cycle (i.e. it
produces a square waveform), and is used to synchronise the actions of all
memory elements. These are designed such that they can store a new value
only while the clock is high (or only when the clock is low, depending on
the implementation). A clock cycle is composed of one falling (a 1 → 0
transition) and one rising edge (a 0 → 1 transition) of the clock and its
length is called clock period or clock sampling time . This length
is denoted by TC. In normal operation mode, new input vectors are applied
to the sequential circuit once every clock cycle. A clock cycle is also called a
time frame .

A sequential circuit C with n inputs, m outputs and k flip-flops can be
regarded as implementation of a Mealy finite state machine with 2k or less
states. The states are encoded by the data stored in the flip-flops, while
the combinational logic of the circuit (inside the dashed box in the example)
computes the output function gC : Bn×Bk → Bm and the transition function
δC : Bn×Bk → Bk, which depend both on the inputs and on the present state.
The gC-values are sent to the outputs and the δC-values are stored back into
the flip-flops. In the current example, n = 2, m = 1 and k = 1. Further,
the machine has two states, 0 and 1, encoded by c. gC maps

(
(a, b), (c)

)
to

(a ∧ c) and δC maps
(
(a, b), (c)

)
to (c ∨ b).

For some testing tasks, it is often convenient to ignore the memory ele-
ments and to only consider the sequential circuit’s combinational core. The
outputs of memory elements (e.g. c in Figures 2.2 and 2.3) are treated as
additional inputs to the combinational core. These are called secondary
inputs . The inputs of memory elements (e.g. c′) are treated as additional
outputs of the combinational core. These are called secondary outputs .
Regular inputs and outputs (a, b and d) are then called primary inputs
and primary outputs , respectively. Instead of handling the output func-
tion gC and the transition function δC separately, only one global function
gS : Bn+k → Bm+k, which is computed by the combinational core, needs to
be considered. In the current example, gS maps (a, b, c) to (a ∧ c, c ∨ b).

Each secondary input corresponds to exactly one secondary output,
namely to the secondary output which feeds its source memory element.
In a time frame i, the values of the secondary inputs are the values of their
corresponding secondary outputs in time frame i− 1.

22 2. PRELIMINARIES

When simulating sequential circuits, the first time frame needs special
treatment, as only the primary inputs and outputs are accessible from the
outside of the circuit. There are techniques that make secondary inputs
partially or fully accessible during test application, but these techniques have
some drawbacks (see Section 2.3.2).

When secondary inputs and outputs are not accessible from the out-
side of the circuit, it is necessary to bring the circuit to a known state
(i.e. to cause known values to be stored into the memory elements) before
performing simulation. If the hardware implements a reset function, resetting
the hardware will bring it to a known state. If no hardware reset is possible,
one can try to find a so-called synchronising or homing sequence. In
the example, the input (1, 1) can be applied to the primary inputs of the cir-
cuit while the secondary input c has a defined but unknown value. Then, the
value of the secondary output c′ is 1, as OR gates always produce the output
1 if at least one of their inputs has the logic value 1. In the next time frame,
a logic 1 is stored in the flip-flop. Altogether, applying the sequence (in this
example, of length 1) of input vectors (1, 1) brings the machine to a known
state. Thus, (1, 1) is a synchronising sequence. However, this technique is
not infallible as it is not always possible to find such a sequence. Reading
from a secondary output is possible using a similar technique. Suppose that
the secondary output c′ has the value 1 in time frame i. If the input (1, 0) is
applied to the primary inputs in time frame i + 1, the value of the primary
output d is 1 in time frame i + 1. Analogously, if the value of c′ is 0 in time
frame i, the value of d is 0 in time frame i + 1. Thus, in order to read the
secondary output c′, it suffices to apply the input (1, 0) to the primary inputs
and to observe the primary output d in the following time frame.

Applying synchronising sequences requires simulating one or several time
frames until all flip-flops have a known logic value. During those time frames,
at least one flip-flop will have a defined but unknown logic value, which must
be propagated through the combinational core. In order to make simulation
possible, a three-valued algebra can be used. That algebra consists of logic
1, logic 0 and the logic value X . X stands for a defined but unknown
logic value. 0 and 1 are then called determinate values.

This section is finalised with a list of conventions which are observed
throughout this work. Figure 2.4 shows how circuits are represented graphi-
cally in this thesis and the following list introduces terminology used in the
description of algorithms.

2.1 CIRCUITS 23

5 / 7

3

7 / 5

2

3 / 2

5

2 / 3

4

4 / 6

6 / 4

7

6

P_IN AND BUF OR P_OUT

S_IN NAND INV NOR S_OUT cell 4

0

1

8

9

FD(3) = 7 RD(7)=6

Figure 2.4: Example circuit

• The implemented simulator uses a three-valued algebra consisting of
the values 0, 1 and X. X stands for a defined but unknown value.
Let v be a logic value. Then, v denotes the logic inversion of v. 0 = 1,
1 = 0 and X = X.

• Logic gates and primary and secondary input and output pins are called
cells . Each cell in the circuit is identified uniquely by an integer
between 0 and k − 1, where k is the number of cells in the circuit.
Cells are ordered topologically, i.e. secondary and primary inputs are
assigned the identification numbers 0 through n − 1, where n is the
number of primary and secondary inputs in the circuit. Every other
cell is assigned an identification number which is greater than those
of its predecessors. That means, whenever it is necessary to perform
an algorithm on all cells in the circuit, the algorithm starts with cell 0
and ends with cell k − 1. When processing any cell i, its inputs have
already been processed.

• Input pins are also simply called inputs, output pins outputs.

• Each cell not being an input or an output is called a gate and is of

24 2. PRELIMINARIES

type INV, BUF, AND, OR, NAND, or NOR. A gate of type INV is an
inverter, a gate with one input which computes the Boolean negation.
A gate of type BUF is a buffer, a gate with one input which computes
the identity function. Gates of type AND, NAND, OR or NOR have
all at least two inputs. AND gates compute the Boolean conjunction,
NAND gates the negation of the Boolean conjunction, OR gates the
Boolean disjunction, and NOR gates the negation of the Boolean dis-
junction. All gates have exactly one output.

All algorithms in this work only distinguish between single-input
and multiple-input gates. The behaviour of all single-input gates
can be described depending on only one parameter called inversion .
If a single-input gate is inverting, it produces the output v if its input is
v. If the gate is not inverting it produces the output v if its input is v.
Analogously, the behaviour of all multiple-input gates depends on three
parameters called inversion , controlling value (abbreviated
CV(c) for a gate c) and non-controlling value (abbreviated
NCV(c)). If at least one input of a multiple-input gate c has the
logic value CV (c), then c produces the output value CV (c) (NCV (c)
if c is inverting), no matter what logic values the other inputs have.
In contrast, c can only produce the output NCV (c) (CV (c) if c is
inverting) if all its inputs have the logic value NCV (c) at the same
time.

gate type inverting cv ncv

single-input gates
BUF no - -

INV yes - -

multiple-input gates

AND no 0 1

NAND yes 0 1

OR no 1 0

NOR yes 1 0

Table 2.1: Types of gates and their parameters

Gates of type XOR are not treated in this work, as the rules explained
above do not apply to them. Note that an XOR gate can be replaced

2.1 CIRCUITS 25

by several gates of the above types, as a XOR b =
(
(a ∧ b) ∨ (a ∧ b)

)
for all logic values a and b.

• In all graphical representations of circuits, gates are shown together
with two numbers separated by a slash. For instance, those two num-
bers are 5 and 7 for gate 3 in the example. The first is the number of
time units the gate needs to switch from 0 to 1 (produce a rising
transition); this number is called rising delay time of c for
a gate c and abbreviated by RD(c). The second is the number of time
units the gate needs to switch from 1 to 0 (produce a falling
transition); this number is called falling delay time of c for
a gate c and abbreviated by FD(c).

• Instead of distinguishing between lines and their corresponding logic
signals, lines are also simply called signals . Like cells, signals are
identified uniquely by an integer between 0 and l − 1, where l is the
number of signals in the circuit. For all i = 0, . . . , l−1, the identification
number of the output signal of cell i is also i. This identification system
for signals is well-defined as each signal has exactly one source cell and
all gates and all input pins have exactly one output signal.

• Fanout stems are not discerned from fanout branches. A stem and all
its branches are represented by only one common signal. (Example:
signals 0, 1, 4 and 5 in Figure 2.4.)

• A signal which is the output of a primary input pin is also called a
primary input, a signal which is the output of a secondary input pin
also a secondary input, a signal which is the input of a primary output
pin also a primary output and a signal which is the input of a secondary
output pin also a secondary output.

• Let s be a signal and let c be its source cell. Then, the input signals
of c are called predecessor signals of s. For example, signals 4
and 5 are predecessors of signal 7 in Figure 2.4.

• Let s be a signal and let c1, c2, . . . , cr be its drain cells. Then, the
set containing the output signal of c1, the output signal of c2, . . . and
the output signal of cr is called set of successor signals of s. For
example, signals 2 and 3 are successors of signal 0 in Figure 2.4.

• Let s1 and s2 be signals. A path from s1 to s2 is the sequence of
signals starting with s1 and ending with s2, where each signal in the

26 2. PRELIMINARIES

sequence is a successor signal of the previous signal in the sequence.
For example, the path from signal 0 to signal 7 in Figure 2.4 is the
sequence of signals 0, 2, 4 and 7.

• Let s be a signal. The output cone of s is the set containing all
signals of every path between s and any primary or secondary output.
s is not in its own output cone. For example, the output cone of signal
2 in Figure 2.4 is composed of signals 4, 6 and 7.

2.2 Basic principles of digital testing

2.2.1 Defects, faults and errors

In engineering, models bridge the gap between physical reality and mathe-
matical abstraction. They are essential in the areas of design and test as
they allow the development and application of analytical tools.

When testing digital ICs, it is necessary to understand the difference
between defects , faults and errors . A defect is the unintended dif-
ference between the implemented hardware and its intended design. Note
that not design mistakes are meant, but defects which come into existence
during the manufacturing process. Some typical defects in VLSI chips are
missing or broken contacts, shorts, contacts with too low conductance, sur-
face impurities, etc. A fault is a formal representation of the defect. The
wrong response of a defective system is an error. For example, Figure 2.5
pictures an AND gate whose input b is shorted to ground. This is the defect
of the system. It can be represented by the fault b stuck-at-0, which means
that signal b always has the logic value 0, independently of what value is
produced by b’s source cell. An error occurs if the input (1, 1) is applied to
the gate. Then, the gate produces the erroneous output value 0 instead of
the expected 1.

How a manufacturing defect is represented by a fault is dictated by a so-
called fault model . A fault model comprises a set of rules which specify
how many faults can occur in the circuit and how these faults are defined
regarding their occurrence site and the fault effect they induce. There is
a wide variety of fault models created to describe the various effects that
a circuit C can have. Among the list of possible effects of manufacturing
defects are the following [29], [16], [34]:

2.2 BASIC PRINCIPLES OF DIGITAL TESTING 27

Fault:
Defect: short to ground

1
b

b stuck−at−0

a
1 c

0

Error: the output has a wrong value
 when the input is (1, 1).

Figure 2.5: Defects, faults and errors

• The Boolean function gC computed by C can be altered.

• The function computed by the circuit may become non-Boolean, i.e. at
some output the circuit produces a voltage which cannot be clearly
interpreted as logic 0 or logic 1.

• Some lines in the circuit can show a memory behaviour thus making a
combinational circuit sequential.

• The timing of the information processing by the circuit can be affected.

The most important property of fault models is that they reduce the
complexity of the problem to handle. While there are infinitely many possible
defects (e.g. particle-induced defects cannot be listed completely as there are
infinitely many possible particle shapes and the exact location on-chip of the
particle is a continuous parameter), there are only finitely many faults in
most fault models used in practice.

Currently, the most popular fault model is the (single) stuck-at
fault model [10], [14], [34, p. 16], [21]. For each line s in the circuit,
two stuck-at faults are defined: the s stuck-at-0 fault, meaning that line s
always has the value 0; and the s stuck-at-1 fault, meaning that line s always
has the value 1, independently of what value is produced by its source cell.
Under this model, a fault evidently only affects the Boolean function the
circuit computes. Since this fault model assumes that only one line in the
circuit can be affected at the same time, the number of possible faults is
linear in the number of lines of the circuit. Nevertheless, test process using
the stuck-at fault model detects a large amount of defects which are usually
modelled by more complex fault models (also fault models which allow more
than one fault to occur simultaneously). Consider, for example, the circuit of

28 2. PRELIMINARIES

using the

multiple stuck−at

fault model:

using the

single stuck−at

fault model:

1 0 0

0 1 0

1 0 0

1 1 1

a

b

a

c

 stuck−at−1

 stuck−at−1a

b

b

0 1 0

1 1 1

c

 stuck−at−1c

Figure 2.6: Single and multiple stuck-at fault models

Figure 2.6. The multiple stuck-at fault model allows several stuck-at faults to
occur at the same time. The upper part of the figure shows the circuit under
the influence of two stuck-at faults (f1 : a stuck-at-1 and f2 : b stuck-at-1).
These cause the following errors: when applying one of the input vectors
(1, 0), (0, 1) or (0, 0), the circuit produces a logic 1 instead of a logic 0. The
lower part of the figure shows the circuit under the influence of only one
stuck-at fault (f3 : c stuck-at-1). f3 causes alone exactly the same errors as
f1 and f2 do together. Thus, the combination of f1 and f2 can be detected
using the same strategy as used to detect f3 under the single stuck-at fault
model.

2.2.2 Test application

Let C be a combinational circuit with n inputs and m outputs. The main
concept of test application is best explained when considering a fault model
which affects only the Boolean function gC : Bn → Bm the circuit C computes
(like the stuck-at fault model).

A set of input vectors or input patterns P := {p1, p2, . . . , prP
} ⊆ Bn is

called a test set ; rP is its size .

A set of faults F := {f1, f2, . . . , frF
} is called a fault list ; rF is its

size . The list of all faults which need to be detected during the test process
is called list of target faults .

2.2 BASIC PRINCIPLES OF DIGITAL TESTING 29

n

CUT

ATE

m

Test Patterns

Outputs

Memory

Figure 2.7: Test application

Let us consider a fault fi ∈ F and an input vector pj ∈ P . If fi is present,
the Boolean function that C computes is altered. That means, C no longer
computes gC but a new Boolean function gfi

C . If gC

(
pj

)
6= gfi

C

(
pj

)
, pj is said

to detect fi. Then, pj is called a test for fi. That means, by observing
the circuit’s response to the application of the input pj, it is possible to
determine whether fault fi is present or not. For example, in Figure 2.6, the
input vectors (1, 0), (0, 1) and (0, 0) are all tests for the fault c stuck-at 1
as they all produce the value 0 in the fault-free case and the value 1 in the
faulty-circuit case. The test set P is said to detect fi if at least one p ∈ P
detects fi.

Once an appropriate test set has been generated (see Section 2.2.5), the
testing process is simple to perform (cf. Figure 2.7). The automatic test
equipment (ATE) has a memory module in which the test set and the re-
sponses of the fault-free circuit (obtained by simulation, see Section 2.2.4)
are stored prior to test start. Then, each test set is applied to each actual
manufactured circuit (circuit under test , CUT) which sends the gen-
erated output back to the ATE. The ATE compares the generated output
with the expected fault-free output. If these two outputs differ, the circuit
fails the test.

30 2. PRELIMINARIES

2.2.3 Fault coverage

The fault coverage is a measure to grade the quality of a test. In its
most general form, it is defined as

fault coverage of a test set P =
number of faults P detects

size of target fault list
· 100%.

There are many other possibilities to compute fault coverage. Depending
on the used fault model, it may be necessary to consider several other factors
when defining the detection metric, e.g. the probability for a fault to occur
or the probability for a fault to be detected.

2.2.4 Simulation

2.2.4.1 Logic simulation

Logic simulation is the process of determining the steady-state logic values
implied at each circuit line by the application of an input vector to the circuit.

In its simplest form, the zero-delay logic simulation of a vector
p := (v1, v2, . . . , vn) ∈ Bn on a combinational logic block (combinational cir-
cuit or core of a sequential circuit) assigns each component vi of the vector to
the corresponding primary input and computes the new logic value implied
at each line, where the lines are processed in topological order. These three
steps are repeated for each vector p ∈ P .

There are several techniques to accelerate logic simulation. One such
technique is the event-driven simulation. For example, when having
to simulate two test vectors p1 := (0, 0, 0, 0, 0) and p2 := (1, 0, 0, 0, 0), the
first vector must be simulated as usual. But when simulating p2 it is not
necessary to recompute the logic value of every line in the circuit. It is
enough to recompute the values of those lines which are in the output cone
of the first primary input, as that is the only input whose logic value is
modified. Event-driven simulation is performed by assigning each primary
input its new value as dictated by p2. If its new value differs from its old
value, its successor signals are inserted into a priority queue which orders
the inserted signals topologically. Then, it is enough to recompute the logic
values of those signals which are in the queue. Again, if the value of a signal
s taken from the queue changes, s’s successors have to be inserted into the
queue. These steps are repeated until the queue is empty.

2.2 BASIC PRINCIPLES OF DIGITAL TESTING 31

2.2.4.2 Fault simulation

Fault simulation is the process of determining the set of faults which are
detected by applying a test set to a circuit. Fault simulation is performed to
compute the fault coverage a test set achieves and as part of the test pattern
generation process.

The basic fault simulation algorithm is depicted in Figure 2.9. In that
pseudo-code, Cf stands for the faulty version of the circuit which is affected
by fault f . v(s) stands for the logic value a signal s has after performing
the fault-free simulation. vf (s) stands for the logic value a signal s has
after performing the faulty-circuit simulation on Cf . Obviously, this simple
algorithm can also be applied when fault models other than the stuck-at fault
model are used. Only the implementation of the fault-free simulation (line
9) and of the faulty-circuit simulation (line 11) algorithms depends directly
on the used fault model.

Fault-free simulation of a test pattern p is the process of determining the
steady state of a fault-free circuit after applying p to its inputs. In the case of
the stuck-at model, fault-free simulation is equivalent with logic simulation.
For other fault-models, a fault-free simulation may be very complex. Fault-
free simulation is performed to compute the fault-free responses that have to
be stored in the ATE memory.

Faulty-circuit simulation of a test pattern p is the process of determining
the steady state of a circuit affected by a certain fault f after applying
p to its inputs. Usually, faulty-circuit simulation is performed like fault-
free simulation. Only processing the fault site is slightly different. Its logic
value is not computed as that of all other lines; it is derived from the fault
description. Consider, for example, the circuit in Figure 2.8. The fault-free
simulation of (0, 1) is as follows. First, 0 is assigned to the primary input a

a

b

c

 stuck−at−1c

0

1

0/1

fault−free faulty−circuit
simulation simulation

Figure 2.8: Example on fault simulation

32 2. PRELIMINARIES

and 1 is assigned to the primary input b. Then, the value of c is computed as
value-of-a AND value-of-b = 1 AND 0 = 0. In the faulty-circuit simulation,
instead of reading the values of a and b, the logic 1 is directly assigned to
signal c, as the fault c stuck-at-1 is present.

1 SIMPLE FAULT SIMULATION

2 Input : a circuit C
3 a list of target faults F
4 a test set P

5 Output : a list of detected faults F ′

6 BEGIN

7 let F ′ be an empty list of faults

8 for each test pattern p ∈ P ; do

9 perform fault-free simulation of p
and record the fault-free output
v(s) for each signal s

10 for each fault f ∈ F ; do

11 perform faulty-circuit simulation
of p on Cf

12 if v(z) 6= vf (z) for any primary output z ; then

13 move f from F to F ′

14 fi

15 done

16 done

17 return F ′

18 END

Figure 2.9: Algorithm: simple fault simulation

2.2 BASIC PRINCIPLES OF DIGITAL TESTING 33

2.2.5 (Automatic) test pattern generation

Although test pattern generation is not the topic of this work, this section
has been included in order to provide a more complete overview of the area
of digital testing. The second aim of this section is making clear that fault
simulation plays an important role during the TPG process.

Applying all possible 2n input vectors to a circuit of n inputs would detect
all existing defects which affect its static behaviour, without the necessity of
using a fault model. However, this brute-force method is not feasible, as
modern circuits have thousands of inputs. Even without taking the applica-
tion feasibility into account, less test patterns mean a lower test application
cost (time and tester memory costs). Hence, the process of finding a test set
P with as less test patterns as possible that detects all faults in a target fault
list F , or which at least achieves a high fault coverage, is essential. The term
(automatic) test pattern generation , abbreviated (A)TPG, de-
notes this process.

Typically, the overall structure of a test pattern generation procedure
consists of several phases [3, Chapter 3, p. 3.3/2]:

1) Low-cost, fault-independent test generation.

2) Identification of undetectable faults.

3) High-cost, deterministic, fault-oriented test generation.

4) Static test compaction.

In Phase 1, random test patterns are generated and simulated until the
achievable fault coverage cannot be improved any more by adding more ran-
dom patterns to the test set. In Phase 2, so-called redundant or undetectable
faults are removed from the fault list. Redundant faults are those which do
not affect the functionality of the circuit and remain thus undetected by
every input vector. This topic is not relevant to this thesis and will not be
explained any further. A standard text book like [21] or [1] can be consulted
for more information on redundant faults, especially on how to handle their
presence. In Phase 3, test patterns are generated, which detect the faults
that remain undetected after the application of the test patterns generated
in Phase 1. In Phase 4, some test patterns are removed from the test list
in order to lower test application costs. However, test patterns may be only
removed such that the achieved fault coverage does not fall.

34 2. PRELIMINARIES

1 DETERMINISTIC TPGOVERALLPROCEDURE

2 Input : a circuit C
3 a list of target faults F

4 Output : a test set P
5 a list of undetectable faults F ′

6 BEGIN

7 let P be an empty test set

8 repeat

9 choose any fault f ∈ F

10 try to generate a test pattern p that detects f

11 if p can be generated ; then

12 add p to P

13 perform fault-free simulation of p on C

14 for each fault f ′ ∈ F ; do

15 perform faulty-circuit simulation
of p on Cf ′

16 if p detects f ′ ; then

17 remove f ′ from F

18 fi

19 done

20 else

21 move f from F to F ′

22 fi

23 until F is empty

24 return P and F ′

25 END

Figure 2.10: Algorithm: deterministic TPG, overall procedure

2.3 DELAY FAULT MODELLING 35

Phase 3 is performed using the algorithm in Figure 2.10. One chooses a
target fault f and generates a test pattern p that detects it (line 10). The
exact algorithm for the deterministic test generation procedure of line 10
depends on the used fault model. Since Phase 2 may fail to recognise some
undetectable faults1, it is possible that there is no test for the chosen fault
f . If the deterministic test generation procedure (line 10) cannot find a test
for f , f is marked as undetectable (line 21). If a test p is found, all faults
which p detects are removed from the list, not only f (lines 14-19). This is
done such that the test set’s size remains low.

2.3 Delay fault modelling

In Section 2.2.1, some effects of manufacturing defects were listed. The
last point in the list stated that some defects affected the timing of the
information processing by the circuit. Defects that do not affect the logical
behaviour of the circuit, but its timing, cannot be modelled using the stuck-at
fault model. Instead, so-called delay fault models are used [21].

The most important delay fault models are the gate delay fault model
[6], [35], the path delay fault model [44] and the segment delay fault
model [18].

Gate delay faults: A circuit is said to have a (single) gate delay fault
(GDF) in some gate, if the input or output of the gate is slow to
propagate 0 → 1 (rising) or 1 → 0 (falling) transitions.

Path delay faults: A circuit is said to have a path delay fault (PDF), if
the circuit has a path from a primary input si to a primary output so

which is slow to propagate rising or falling transitions from si to so.

Segment delay faults: A circuit is said to have a segment delay fault
(SDF), if the circuit has a path of a given length L (or shorter) from
a signal s1 to a signal s2 which is slow to propagate rising or falling
transitions from s1 to s2.

While the GDF model is very simple and works with the unrealistic as-
sumption that only one site is fully affected while others are not affected at

1The algorithms used in Phase 2 are meant to be fast and low-cost, but are usually not
complete. The problem of identifying redundant faults is co-NP-complete.

36 2. PRELIMINARIES

all, the PDF model is the more general of both, as it models the cumulative
effect of the delay variations of the gates and lines along the path. However,
since the number of paths in the circuit can be very large, this model may
require much more time for test generation and application than the GDF
model. The compromise between both extremes is the SDF model, which
works with “short” paths. The parameter L can be chosen based on the avail-
able statistics about the types of manufacturing defects. The SDF model is
more flexible than the GDF model but there are not as many faults as under
the PDF model. A comparative study on delay fault models is published in
[28].

Relevant for this thesis is the line delay fault model [27], which can
be seen as a simplified version of the GDF model. A circuit is said to have
a (single) line delay fault (LDF) if there is a line in the circuit
which is slow to propagate rising or falling transitions, delaying them by
an additional unknown, but fixed amount of time. That amount of time is
always denoted by δ in this thesis and is called the size of the fault .
A fault is described by the fault site (the affected line) and by whether
rising or falling transitions are affected. Faults affecting rising transitions
are called slow-to-rise LDFs, those affecting falling transitions are called
slow-to-fall LDFs. A slow-to-rise fault affecting the line or signal with
identification number i is denoted in this thesis by iR. A slow-to-fall fault
affecting signal i is denoted by iF.

2.3.1 Test application

Testing for delay faults requires the application of two successive test pat-
terns (a test pair) to the CUT. The first pattern (initialisation
vector) brings the CUT into a known and stable state. The second test
pattern (propagation vector) excites the fault and propagates the fault
effect to an output by inducing a rising or falling transition at one or more
inputs of the CUT. If the circuit is correct, its state changes meeting the same
timing constraints as the fault-free circuit. This testing method is known as
two-pattern testing . Detailed information on two-pattern testing can
be found in [4] and literature cited there.

For a slow-to-rise LDF f , exciting f means inducing at the fault site a
rising transition that can be delayed if f is present. A slow-to-fall LDF is
excited if a falling transition is induced at the fault site.

2.3 DELAY FAULT MODELLING 37

7
4

6
5

1

1

0
3

2

1

0

registering

time

4R

Figure 2.11: Detection of an LDF

Given a test pattern pair p, the initialisation vector is denoted by p1 and
the propagation vector by p2.

A test pair p that detects an LDF iR (iF) must have the following
properties:

• p1 must induce the logic value 0 (1) at signal i.

• p2 must induce the logic value 1 (0) at signal i thus launching a rising
(falling) transition at the fault site.

• Both p1 and p2 must sensitise a path from the fault site to a primary
output of the circuit, thus allowing the fault effect to become visible at
an output.

A path is said to be sensitised if all its lines are sensible to the fault,
i.e. if the behaviour of all its signals is different in the fault-free and the
faulty-circuit case. Consider, for example, the circuit in Figure 2.11. The
test pair 0110/1110 makes the path composed of bold lines sensible to fault
4R. When 0110/1110 is applied, signal 2 remains stable at logic 1 during
the application of both vectors. As 1 is the non-controlling value of gate
5, the behaviour of gate 5’s output depends exclusively on the behaviour of
the fault site, signal 4. Analogously, signal 3 remains stable at logic 0, the
non-controlling value of gate 6. Thus, the behaviour of the circuit’s primary
output depends exclusively on the behaviour of signal 5. Altogether, if the
fault 4R is present, the induced rising transition at signal 4 is delayed. This
delays signal 5’s falling transition, which delays signal 6’s falling transition.
If the delay is large enough, the expected logic 0 will arrive at the output
after the registering time, at which the wrong value 1 is read, thus proving
the circuit to be faulty.

38 2. PRELIMINARIES

The “classical method” to apply a test pair p is the following: First, p1

is applied to the CUT. All internal signals are allowed to stabilise (which is
achieved in practice by holding the inputs constant for several cycles). Then,
p2 is applied to the inputs. In the next clock cycle the outputs are evaluated.
If the value at any output does not correspond to the expected value, then
the propagation must have been too slow and the CUT is proven faulty.

Delay fault tests must obviously be applied at a device’s nominal speed
(at-speed testing). In contrast to the classical test method, it is pos-
sible to apply all test pairs just one after another, without waiting for the
circuit’s signals to stabilise. An interesting empirical result is reported in [31].
By performing experiments with a sample of manufactured ICs, the authors
found that omitting the waiting actually reduces the number of defective
chips passing the test.

2.3.2 Application of two-pattern testing to

sequential circuits

Most testing concepts remain largely unchanged when considering sequential
instead of combinational circuits. Alas, that is not the case of two-pattern
testing. When working with sequential circuits, two-pattern testing becomes
considerably more difficult than when applying it to combinational circuits.

In the most general case, the secondary inputs and secondary outputs
of a sequential circuit are not accessible from outside of the circuit. This
circumstance may forbid the application of necessary values (values which are
required to sensitise the path or to induce the proper transition at the fault
site) to the secondary inputs; and, if the fault effect can only be propagated
to a secondary output, the fault effect becomes unobservable.

It may be possible to write a necessary value into a memory element by
applying the synchronising sequences technique (page 22). However, this
technique does not always work. If the combinational core’s structure is too
complex, such a sequence may not exist at all. For circuits with a large
number of secondary inputs, this writing approach becomes useless.

A better approach is to use a standard method for reducing testing
problems for sequential circuits to ones for combinational circuits, namely
scan design . See, for example, [34, Section 2.1.4] for a concise introduc-
tion; or [1], [21] for detailed information on this topic.

Figure 2.12 illustrates the main idea of scan design. The combinational
core of a sequential circuit with 3 flip-flops is shown. There are two addi-

2.3 DELAY FAULT MODELLING 39

D−FF

D−FF

D−FF

n

Inputs
Secondary

scan_enable

Primary
Inputs

scan_out

Outputs
Secondary

Primary
Outputs m

scan_in

CORE

COMBINATIONAL

Figure 2.12: Scan design

40 2. PRELIMINARIES

tional inputs, scan in and scan enable; and one additional output, scan out.
scan enable controls additional multiplexers between the flip-flops. When
scan enable is inactive, the multiplexers are switched to let through the
values from the core’s secondary outputs, and the circuit is in its normal
operation mode. When scan enable is activated, the flip-flops are connected
to form a chain called the scan chain . By applying values to the scan in
input, arbitrary values can be shifted into the flip-flops, while their content
can be shifted out over the scan out output.

When all flip-flops are part of the scan chain (full scan), applying
arbitrary initialisation vectors is possible. However, scan does not solve the
second problem that arises when applying two-pattern testing to sequential
circuits. Since the two vectors of a test pair have to be applied in consecutive
clock cycles, it is not possible to apply arbitrary propagation vectors, as the
shifting of all values for the secondary inputs requires as much clock cycles
as there are flip-flops.

Applying the test pair according to the “classical” test application method
introduced in Section 2.3.1, which allows the effects of the application of the
initialisation vector to stabilise over several clock cycles, does also not solve
this problem. All the input values specified by the propagation vector must
be applied simultaneously to all primary and secondary inputs of the CUT.

Hence, two-pattern testing can only be applied to a full-scan-circuit if the
propagation vector is such that the values that it specifies for the
secondary inputs are obtained through the functional path as response to
the application of the initialisation vector.

Furthermore, each test pair can only be applied independently of all
others in the test set, due to the additional clock cycles needed to scan
in the initialisation vector and the additional clock cycles needed to scan out
the secondary output values after the application of the propagation vector.

There are enhanced scan techniques that allow storing arbitrary values
into several flip-flops simultaneously. However, this benefit is accompanied
of a high hardware overhead.

2.4 FAULT COVERAGE UNDER RESISTIVE FAULT MODELS 41

2.4 Fault coverage under resistive
fault models

In almost any semiconductor manufacturing technology, conducting wires
connected in an unintended way are a prominent class of defects. Bridging
fault models have been created to model this type of defects. In its more
general form, this model assumes that two lines are bridged, e.g. due to a
conducting contamination touching both lines, thus creating an unintended
connection between them. If both lines conduct the same logic value (i.e. the
same voltage level) there is no malfunction. However, if opposite logic values
are present at the bridged lines, faulty behaviour may arise. Then, one or
both bridged lines are affected. Depending on the assumptions made, the
faulty behaviour can be described using a variety of different bridging fault
models. Among these are the resistive bridging fault models,
under which the bridge has a resistance. More detailed information on this
topic can be found in [11], [12], [13] and [34, Section 2.3.4]. In this section,
some definitions taken from that literature are introduced. These definitions
will be needed in Chapter 6.

Working with resistive fault models requires taking into account the re-
sistance, which is an unknown and unpredictable parameter [41]. A bridging
fault may be detected by a test vector for one resistance, while the bridge
between the same affected nodes may not be detected by the same vector if
the bridge has a different resistance. For example, the resistance may be so
high, that the fault cannot be excited. If the bridge conductance is too low,
the bridged signals cannot affect each other.

This ambiguity changes the concept of fault coverage in fundamental
manner. It is not longer possible to speak of a detected or an undetected
fault. It is necessary to find a way of measuring the probability for the
fault’s detection, depending on the probability that the bridge has a certain
resistance.

Renovell et al. [40], [38], [39] introduced the concept of an Analogue
Detectability Interval (ADI). The simulation yields for each fault
and each output a resistance range [r1; r2], the ADI, such that the short
modelled by the fault is detected by the test set if and only if its resis-
tance r meets the condition r1 ≤ r ≤ r2. Typically, r1 is 0 Ω, but this
does not need to be the case. For circuits having reconvergencies and se-
quential circuits, the ADI may be the union of multiple disjoint intervals
[r1,1; r1,2] ∪ [r2,1; r2,2] ∪ · · · ∪ [rN,1; rN,2] [40].

42 2. PRELIMINARIES

Let the CUT have m outputs, and let f be a fault. For i = 1, 2, . . . ,m and
a test pattern p, ADIi(p) denotes the ADI propagated to the i-th output
by simulating p. Given a test set P , the C-ADI of f is defined as

C-ADI (f) :=
⋃
p∈P

m⋃
i=1

ADIi(p).

The C in C-ADI stands for “covered by the test set”. The C-ADI of a fault
is the union of all ranges of resistances for which the fault is detected by P .

There are several fault coverage definitions basing on C-ADI. In the orig-
inal literature they are just called fault coverage. Here, the same notation
and terminology as in [34, Section 2.3.4] is used.

Let ρ(r) be the probability density function of the short resistance r. In
[39] the Normal distribution is suggested to describe ρ(r). The
pessimistic fault coverage (P-FC) introduced in [39] is defined for
one fault f as

P-FC (f) :=

∫
C-ADI(f)

ρ(r)dr

+∞∫
0

ρ(r)dr

· 100%.

This definition relates the “fraction” of the ranges in which the fault is de-
tected to the complete range from 0 to +∞, weighted by ρ. For a fault list
F , the average fault coverage is defined as

P-FC (F) :=

∑
f∈F

P-FC (f)

|F |

In [40], a second definition is proposed. G-ADI is defined as C-ADI of an
exhaustive test set. G stands for “global”. The corresponding fault-coverage
definition is

G-FC (f) :=

∫
C-ADI(f)

ρ(r)dr∫
G-ADI(f)

ρ(r)dr
· 100%.

This definition can be considered to be exact, but an exhaustive test set
consists of 2n vectors for circuits with n inputs. Thus, G-ADI can only be
measured for circuits with relatively few inputs.

2.4 FAULT COVERAGE UNDER RESISTIVE FAULT MODELS 43

The third fault coverage definition was introduced by Walker in [23].
E-FC (E means “excitation”) is defined as

E-FC (f) :=

∫
C-ADI(f)

ρ(r)dr

Rmax∫
0

ρ(r)dr

· 100%,

where Rmax is the maximum size the resistance may have as to excite the
fault.

A fourth fault coverage definition was introduced in [12]. O-FC (O stands
for “optimistic”) is defined as

O-FC (f) :=

{
0% if C-ADI (f) = ∅
100% else

.

Under O-FC, it is enough that a fault is detected for any resistance in order
to regard the fault as detected.

The following relationship is shown in [12]:

P-FC (f) ≤ E-FC (f) ≤ G-FC (f) ≤ O-FC (f) .

For a fault list F , the average fault coverages G-FC (F), E-FC (F) and
O-FC (F) are defined analogously to P-FC (F).

44 2. PRELIMINARIES

3

Simulating Dynamic Effects
of Resistive Opens

The aim of the work presented in this thesis is designing and implementing a
simulator for resistive opens. These opens are also called weak and have
a resistance of less than 10 MΩ [43]. Resistive opens are defects which
manifest themselves as lines with an elevated resistance or as resistive vias
and contacts. They still let the circuit work, but increase the delay of paths
going through the fault site [25], [29]. In this work, resistive opens are
modelled using the single line delay fault model. In [36] they are modelled
as gate delay faults. Modelling them as line delay faults instead, does not
constitute a large modification. This just allows the fault to occur at the
circuit’s inputs, which are not fed by gates.

When modelling a resistive open with a resistance r by an LDF, the
fault’s size δ depends on r. r is an unpredictable random parameter [41].
A simulator is to be designed and implemented that accepts the following
arguments:

• a combinational or sequential circuit C (gate-level net-list and rising
and falling delay times of each gate type) with n primary inputs and
m primary outputs;

• a list F of LDFs, from now on called the fault list ;

• and a set P of test pairs, from now on called the test set ;

The simulator shall accomplish the following tasks:

• perform fault simulation and compute C-ADI (f) for each fault f in F ;

45

46 3. SIMULATING DYNAMIC EFFECTS OF RESISTIVE OPENS

• compute the fault coverage achieved by the application of P to C.

Let f ∈ F be an LDF modelling an open with resistance r. Analogously
to the definition in Section 2.4, C-ADI (f) is a set of possibly disjoint ranges
of resistances. It has the form

C-ADI (f) :=
{
[r1,1; r1,2], [r2,1; r2,2], . . . , [rN,1; rN,2]

}
,

where ri,1 ∈ N and ri,2 ∈ {ri,1, ri,1 + 1, . . . } ∪ {+∞} for all i = 1, 2, . . . , N ;
and the property that P detects f if and only if r ∈ [ri,1; ri,2] for some
i = 1, 2, . . . , N . The ranges in C-ADI (f) are called detection
resistance ranges of f .

n

 2+ 5+ TC=8δ δ f

Figure 3.1: Detection interval of an LDF

What is the purpose of computing C-ADI (f) of a fault f? Let us consider
the application of a test pair p on the example circuit shown in Figure 3.1.
In the fault-free case, the circuit’s output signal is stable at logic 0 until time
2. The application of p2 induces a 1-pulse between time 2 and time 5. After
time 5, the output remains stable at logic 0. The clock sampling time TC is
8. Let a fault f of size δ cause the 1-pulse at the circuit’s output to begin
at time 2 + δ and to end at time 5 + δ. p detects f only if the presence of f
causes the circuit’s output to have the logic value 1 (the wrong output value)
at time TC, which is the time the circuit’s output values are registered at.1

That means, p detects f if and only if 2 + δ ≤ TC < 5 + δ, i.e. if 3 < δ ≤ 6.
δ will meet this constraint only if the modelled open’s resistance r is in a

1Usually, a combinational circuit does not stand alone. Several combinational blocks
are part of a system and synchronised using a universal clock. For the purpose of commu-
nication among the combinational blocks, their outputs may be stored into register banks
which are writable at times TC, 2 · TC, 3 · TC, etc.

3.1 OVERALL STRUCTURE OF THE RO-SIMULATOR 47

certain range [r1; r2]. As was already said, r is an unpredictable parameter,
so it is not guarantee-able that r is in [r1; r2] for every actual manufactured
circuit that has the open. The open will remain undetected by p if not. In
order to improve fault coverage, it may be necessary to find additional test
pairs which detect the open if its resistance is in ranges other than [r1; r2].

Thus, simulating the test set and computing the C-ADI of faults is es-
sential during TPG as an indicator of whether more test pairs have to be
generated to achieve an acceptable fault coverage.

Throughout this thesis, our simulator is called RO-simulator (stands
for “resistive-opens-simulator”).

3.1 Overall structure of the
RO-simulator

The RO-simulator works in three phases:

1) Delay fault simulation is performed and for each fault f in F a so-called
detection set of delay size intervals , abbreviated
DSdel (f), is computed. It has the form

DSdel (f) :=
{
[a1,1; a1,2], [a2,1; a2,2], . . . , [aM,1; aM,2]

}
,

where ai,1 ∈ N and ai,2 ∈ {ai,1, ai,1 + 1, . . . } ∪ {+∞} for all
i = 1, 2, . . . ,M ; and the property that P detects f if and only if f ’s
size δ is in [ai,1; ai,2] for some i = 1, 2, . . . ,M . The intervals in DSdel (f)
are called detection delay size intervals of f .

2) For each fault f in F , C-ADI (f) is computed based on DSdel (f).

3) The overall fault coverage that P achieves is computed based on
C-ADI (f) of all faults f ∈ F .

Figure 3.2 shows how the simulator works. In that pseudo-code, Cf

stands for the faulty version of the circuit which is affected by fault f .
Lines 10 through 18 correspond to Phase 1 of the RO-simulator. Phase 1’s

structure is exactly that of a “classical” fault simulation algorithm (cf. Figure
2.9 on page 32). Here, instead of just marking the faults as detected, their
detection delay size intervals are computed (line 15) since, according to the

48 3. SIMULATING DYNAMIC EFFECTS OF RESISTIVE OPENS

1 SIMULATION OF DYNAMICEFFECTSOF RESISTIVE OPENS

2 Input: a combinational circuit C
3 a fault list F
4 a test set P

5 Output: an array RES holding C-ADI (f) for each f ∈ F
6 the achieved fault coverage FC

7 BEGIN

8 let RES be the array that will
hold C-ADI (f) for each f ∈ F .

9 let DEL be the array that will
hold DS del (f) for each f ∈ F .

10 for each test pair p ∈ P ; do

11 perform fault-free simulation of p

12 for each fault f ∈ F ; do

13 if f is excited by p ; then

14 perform faulty-circuit simulation
of p on Cf

15 determine detection delay size intervals
of f under p and add them to f ’s
detection set of delay size
intervals DEL[f]

16 fi

17 done

18 done

19 for each fault f ∈ F ; do

20 convert DEL[f] into RES[f]

21 done

22 compute FC out of RES

23 return RES and FC

24 END

Figure 3.2: Algorithm: overall proceeding of the RO-
simulator

3.1 OVERALL STRUCTURE OF THE RO-SIMULATOR 49

fault model, a fault is detected only with a certain probability depending on
its size.

An example on how the fault-free simulation (line 11) works is in Section
5.1.1, a detailed description in Section 5.2.1. An example on how the faulty-
circuit simulation (line 14) works for a test pattern p and a fault f , is in
Section 5.1.2, a detailed description in Section 5.2.2. An example on how the
computation of a set of detection intervals (line 15) works for a test pattern p
and a fault f , is in Section 5.1.3, a detailed description in Section 5.2.3. The
obtained detection intervals tell what size f must have such that p detects
it. The final set of detection intervals for f is the union of the sets obtained
for each test pair.

A short remark must be made on line 13 in Figure 3.2, although this has
been mentioned in the preceding chapter. A fault iF is excited by a test
pair p := (p1, p2) if the application of p1 causes signal i to stabilise at logic 1
while the application of p2 causes signal i to stabilise at logic 0. A fault iR
is excited if the application of p1 causes signal i to stabilise at logic 0 while
the application of p2 causes signal i to stabilise at logic 1.

Finally, it is necessary to say that the RO-simulator’s Phase 1 is based
on the delay fault simulation method (PR-simulator) in [36]. However,
techniques and algorithms of the PR-simulator were modified or extended.
These modifications will be explained later. If those modifications have been
introduced by other authors in the past, we are not aware of that. Chapters 4
and 5 deal in detail with the implementation of Phase 1 of the RO-simulator.

In Phase 2 (lines 19 through 21 in Figure 3.2), C-ADI (f) is computed out
of DSdel (f). This is done for each fault f independently of all other faults.

Given a fault f and its detection set of delay size intervals,
DSdel (f) :=

{
[a1,1; a1,2], [a2,1; a2,2], . . . , [aM,1; aM,2]

}
, it is enough to find a

map κ from the set of delay fault sizes to the set of resistances, such that
κ(δ) = r if an open with resistance r causes a delay of δ. Then,
C-ADI (f) =

{
[κ(a1,1); κ(a1,2)], [κ(a2,1); κ(a2,2)], . . . , [κ(aM,1); κ(aM,2)]

}
.

Deriving the exact, physically accurate map is out of the scope of this
work. Proposals for the mapping κ exist [24], but in this first implementation
of the RO-simulator, a linear mapping is used. In future it will be replaced by
more accurate models as soon as these become available. The RO-simulator
was implemented such that new mapping models can be easily integrated
into it.

50 3. SIMULATING DYNAMIC EFFECTS OF RESISTIVE OPENS

In Phase 3 (line 22 in Figure 3.2), the achieved fault coverage is computed
depending on the detection sets of resistance ranges. This topic is discussed
in Chapter 6. Due to the linear mapping mentioned above, the fault coverage
figures presented in Chapter 7 directly depend on the detection sets of delay
fault intervals.

3.2 Application of RO-simulation to
sequential circuits

Obviously, only Phase 1’s implementation depends on whether the given
circuit is combinational or sequential. The delay-to-resistance mapping per-
formed in Phase 2 is done by local analysis and does not depend on the
CUT being combinational or sequential. The fault coverage computation
performed in Phase 3 is also independent of this question.

Phase 1 implements delay fault simulation which requires two-pattern
testing (cf. Section 2.3). As was explained in Section 2.3.2, two-pattern
testing cannot be applied to all sequential circuits, but it can be applied to
full-scan-capable circuits. However, there is the restriction that each test
pair must be applied independently of all others in the test set, and that the
propagation vector of each test pair is such that, the values it specifies for
the secondary inputs are obtained through the functional path as response
to the application of the initialisation vector.

The RO-simulator can work with both combinational and sequential cir-
cuits. The delay fault algorithms which form Phase 1 were all enhanced as
to accept and process secondary inputs and secondary outputs.

However, the RO-simulator can only be used on full-scan-capable sequen-
tial circuits, as the secondary inputs are treated as fully accessible during
the application of each initialisation vector and the secondary outputs are
treated as fully observable during the application of each propagation vector.
Enhanced-scan-capability is not a prerequisite.

4

More Preliminaries

In Chapter 5 Phase 1’s design and implementation is discussed. In order to
keep the chapters of this thesis rather short and thus, more easy to read, this
chapter has been included. This chapter introduces some definitions which
are necessary to understand the following chapter; as well as the basics on
waveforms and so-called signal descriptors. These are the data structures
used to specify the simulation algorithms of the next chapter.

4.1 Definitions and conventions

When building a simulator for delay faults, it is necessary to establish a set of
rules that dictate how to represent and handle time and other concepts that
depend on time. This set of rules is presented in this section. None of the
concepts presented here constitutes original work. These concepts are used
in several works that deal with the timing behaviour of circuits. However,
other authors may use a different terminology.

4.1.1 Time issues and test application

In this work, points in time, time interval lengths and LDF sizes are repre-
sented by integers greater or equal 0. Additionally, there is a point in time
denoted by −∞. This point in time plays a special role which will be ex-
plained below. The base time unit of the RO-simulator are picoseconds. For
simplicity, time units are mainly left out in this thesis.

51

52 4. MORE PRELIMINARIES

For simplicity in the case of combinational circuits, and in order to be
able to handle sequential circuits, the consecutive application of several test
pairs is not considered in this work. Each test pair is assumed to be applied
independently of all others in the test set.

A signal s is said to be stable after the application of a test vector
when s’s logic value does not change any more.

When simulating a test pair p, the classical method presented on page 37
is used. After the application of p1, all signals are allowed to stabilise before
applying p2. The point in time, at which all signals in the circuit become
stable after having applied p1, is denoted by −∞. p2 is applied at time 0.

It would also be possible to apply p1 at any time t and p2 at time t+TC.
But there is no difference in proceeding the first or the second way. Since
this work deals with delay faults which can only be excited by inducing a
transition at the fault site, only the effects set in motion by applying p2 are
of interest.

In this context, four parameters are defined for each signal s in the circuit.
These parameters are also defined in [20] and [36].

IV (s): Initial value of s. This is the stable logic value of s after the
application of p1 (in other words, s’s logic value at time −∞).

FV (s): Final value of s. This is the stable logic value of s after the
application of p2 in the fault-free simulation.

EAT (s): Earliest arrival time of s. This is the first point in time
at which the value of s changes from IV (s) to a different value as a
reaction to the application of p2 in the fault-free simulation.

LST (s): Latest stabilisation time of s. This is the last point in
time at which the value of s changes to FV (s) as a reaction to the
application of p2 in the fault-free simulation.

Consider the example in Figure 3.1 (page 46). Let s be the depicted
circuit’s only primary output signal. Then, IV (s) and FV (s) are both
0, EAT (s) equals 2 (in the fault-free simulation, δ equals 0) and LST (s)
equals 5.

Note that EAT (s) and LST (s) have a very important meaning. For any
signal s, its logic value is guaranteed to be stable between time −∞ and
time EAT (s) and for ever after time LST (s). Thus, if a signal s’s logic
value never changes in reaction to the application of p2 in the fault-free
simulation, EAT (s) have to be defined as +∞ and LST (s) as −∞.

4.1 DEFINITIONS AND CONVENTIONS 53

0

1

2

87
6

4

3/3

5

2/1

3

2/2

1/3
3/5

0

0

0

2=0+2

3=0+3

4=2+2

8=3+5
11=8+3

Figure 4.1: Computing PLST: an example

A path is said to be stable after the application of an input vector
when all signals in the path are stable. The guaranteed time after which a
path has stabilised is called latest stabilisation time (LST) of the
path.

PLST (stands for “latest stabilisation time of any path”) is defined as the
guaranteed time after which all paths in the fault-free circuit have stabilised
after applying any input vector. I.e. PLST is the largest path LST among
all paths in the circuit. Consider, for example, the circuit in Figure 4.1.
Suppose that all signals are stable. Then, let an unknown input vector be
applied at time 0. Signals 0, 1 and 2 become stable at time 0 as they are
primary inputs. Signal 3 becomes stable at time 2 as all its predecessors
become stable at time 0 and gate 3 needs 2 time units to produce both rising
and falling transitions. Analogously, signal 4 becomes stable at time 3. In
the worst case, signal 5 becomes stable at time 4 = 2 + 2, as the latest point
in time at which both its predecessor signals are guaranteed to be stable is
time 2; and because 2 time units is the largest time gate 5 needs to produce
a transition. Analogously, the worst case stabilisation time of signal 6 is
8 = 3 + 5, and the worst case stabilisation time of signal 7 is 11 = 8 + 3.
Thus, PLST equals 11. Figure 4.2 depicts the algorithm used to compute
PLST. The primary inputs are assigned the latest stabilisation time 0 (line
8). For each other signal, its latest stabilisation time is computed as the sum
of the latest time at which all its predecessors are stable and the largest time
its source gate needs to produce a transition (line 10). Finally, PLST is the
largest latest stabilisation time among all outputs of the circuit (line 13).

The clock period length TC is usually chosen as PLST·(100+SF)%, where
SF is a safety margin . In this work, SF is set to 20, i.e. TC := 1.2·PLST.
In the example of Figure 4.1, TC is set to 13.

54 4. MORE PRELIMINARIES

1 PLST computation

2 Input: a circuit C containing NS-many signals

3 Output: an amount of time representing PLST

4 BEGIN

5 initialise an array LST of length NS

6 for i = 1 to NS ; do

7 if signal i is a primary or secondary input ; then

8 set LST [i] := 0

9 else

10 set LST [i] := max

{
LST [j]

∣∣∣∣∣
signal j is a
predecessor signal
of signal i

}
+ max{RD(i) , FD(i)}

11 fi

12 done

13 return max

{
LST [j]

∣∣∣∣∣
signal j is a
primary or secondary
output

}
14 END

Figure 4.2: Algorithm: computation of PLST

73 11

1c

Figure 4.3: Example on input intervals of a single-input gate

4.1 DEFINITIONS AND CONVENTIONS 55

4.1.2 Input and output intervals

In order to make notions and algorithms introduced in following sections
more easy to describe, the concept of input and output intervals is defined
in this section. If other authors have defined this concept in this form in the
past, we are not aware of that.

Consider the single-input gate c1 in Figure 4.3. The behaviour of c1’s
input signal can be described using 4 intervals: an interval beginning at time
−∞ and ending at time 3, during which the signal has the logic value 0,
denoted by 0@]−∞; 3[; a second interval 1@[3; 7[; a third interval 0@[7; 11[;
and a fourth interval 1@[11; +∞[.

It is obvious that the behaviour over time of any signal in the circuit can
be described by a set of disjoint intervals analogous to that in this example.

Let c be a single-input gate. The set of output intervals of c is
the set of disjoint intervals describing the behaviour of c’s output signal. The
set of input intervals of c is the set of disjoint intervals describing
the behaviour of c’s input signal.

Once the input intervals of c are known, it is easy to compute c’s output
intervals. Each input interval induces exactly one output interval according
to the delay rules introduced in the following section.

Now consider the case that c is a multiple-input gate. Like before, the
set of output intervals of c is the set of disjoint intervals describing
the behaviour of c’s output signal.

If c has n input signals, c’s overall input could be described by n sets
of disjoint input intervals. However, there is a method to reduce the n sets
of input intervals of a multiple-input gate to only one set of input intervals.
This allows to compute that gate’s set of output intervals using the same
simple algorithm as in the single-input case.

Let c be a multiple-input gate. The set of input intervals of c
is the set of disjoint intervals obtained according to the following rules:

• c has an input interval CV (c) @[x; y[if, at all times t with x ≤ t < y,
at least one input signal of c has the value CV (c).

• c has an input interval X@[x; y[if, at all times t with x ≤ t < y, no
input signal of c has the value CV (c) and at least one input signal of
c has the value X.

• c has an input interval NCV (c) @[x; y[if all input signals of c have the
value NCV (c) at all times t with x ≤ t < y.

56 4. MORE PRELIMINARIES

1

s3

2c
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

 7
input waveform of

13

10 13

 5

 7 11

2c
s2

s

 5

Figure 4.4: Example on input intervals of a multiple-input gate

Consider, for example, the multiple-input gate c2 in Figure 4.4. Signal s2

has the unknown value X until time 5. At the same time, signals s1 and s3

have the value 1. As 1 is NCV (c2), c2’s input between time −∞ and time 5
depends only on signal s2. Thus, the first input interval of c2 is X@]−∞; 5[.
Between time 5 and time 7 all three signals have the value 1. Thus, the
second input interval of c2 is 1@[5; 7[. Between time 7 and time 11 signal s1

has the logic value 0, CV (c2). Between time 10 and time 13 signal s3 has
the logic value 0. Altogether, between time 7 and time 13 there is always an
input signal of c2 which has the logic value 0. Thus, the third input interval
of c2 is 0@[7; 13[. After time 13 all three input signals are stable at logic 1.
Thus, the fourth input interval of c2 is 1@[13; +∞[.

Altogether, the set of input intervals of c2 comprises the intervals
X@] − ∞; 5[, 1@[5; 7[, 0@[7; 13[and 1@[13; +∞[. These intervals are
represented by the waveform in the lowest part of Figure 4.4. These four
intervals are enough to determine c2’s output intervals. Each interval in-
duces exactly one output interval according to the delay rules that follow in
the next section.

4.1 DEFINITIONS AND CONVENTIONS 57

4.1.3 Delay model

The term delay model shall not be confounded with the term delay fault
model. A delay model is a set of rules specifying how and when a gate
responds to the change of one or more of its inputs.

[20] introduces the distributed delay model , which tries to reflect
the fact that delays in actual fabricated circuits vary between upper and lower
bounds, especially due to manufacturing process variations. The model has
the following characteristics:

1) The delay through a gate may vary depending on whether the gate
produces a rising or a falling transition.

2) Different gates of the same type may have different delays.

3) A gate has some inertia in responding to changes in its input values.
That means that certain input pulses are filtered out in the gate
response if they are too short.

Here, a simplified version of the distributed delay model is used:

1) The delay through a gate c is defined by its rising delay time RD (c)
and by its falling delay time FD (c).
Let s be c’s output signal. Given the set of input intervals of c, the set
of output intervals is computed in the following way:

(i) Each input interval with value 1 or value 0 induces one output
interval according to the rules listed in Table 4.1.

(ii) s is defined to have the unknown value X at all times t which are
not in any interval computed in the first step.

The table is read in the following way: consider, for example, the ta-
ble’s first row. An input interval 0@[x; y[induces the output interval
0@[x+FD (c) ; y+RD (c) [if the gate c is not inverting (if c is inverting,
the table’s second row determines the output interval). However, the
output interval is only induced if the additional condition x+FD (c) ≤ y
is met. If this additional condition is not met, no output interval is in-
duced at all. The intuition behind this additional condition is best
explained by means of an example. Let I be a 1-interval and let c
be non-inverting. I begins with a rising transition τ1 and ends with a
falling transition τ2. τ1 induces a rising transition τ3 at c’s output; but

58 4. MORE PRELIMINARIES

input int. c inv. add. condition output interval

0@[x; y[no x + FD (c) ≤ y 0@[x + FD (c) ; y + RD (c) [

0@[x; y[yes x + RD (c) ≤ y 1@[x + RD (c) ; y + FD (c) [

1@[x; y[no x + RD (c) ≤ y 1@[x + RD (c) ; y + FD (c) [

1@[x; y[yes x + FD (c) ≤ y 0@[x + FD (c) ; y + RD (c) [

Table 4.1: Delay model

if τ2 arrives before τ3 has been produced, it is not possible to guarantee
that c is still able to produce τ3.
In the table, x is allowed to be −∞ and y is allowed to be +∞. Addi-
tionally, we define ±∞+ k = ±∞ where k is RD (c) or FD (c).

2) The second property of the distributed delay model can be modelled
as an increase or decrease from the nominal delay by a maximum of σ
[20, p. 79]. For simplicity, this extension is not used in this work. Here,
RD (c) and FD (c) are single fixed integers.

3) The gate’s inertia (Property 3 of the distributed delay model) is ac-
counted for to some extent by this simplified model’s first property.
Let us illustrate this with an example (see Figure 4.5). Let c be an
AND gate, let RD (c) be 7, FD (c) be 3. The input interval 1@[t; t + a[
induces the output interval 1@[t+7; t+a+3[, but only if t+7 ≤ t+a.
That means that the output interval is induced only if a ≥ 7. I.e. 1-
pulses shorter than 7 time units are filtered out.

s1

s2
s3

7/3t+a t+ t+a+

t

c
 7 3

Figure 4.5: Example on the application of the delay model

4.2 WAVEFORMS 59

������
������
������
������

c

 0 2 3 7 11 3 6 9 14

3/2

Figure 4.6: Example on the application of the delay model

This section is finalised with a further example of the application of the
delay model. Let c be the single-input gate in Figure 4.6. RD (c) is 3 and
FD (c) is 2. The task is to compute the set of output intervals of c. The
set of input intervals of c is composed of the intervals 0@]−∞; 0[, 1@[0; 2[,
0@[2; 3[, 1@[3; 7[, 0@[7; 11[and 1@[11; +∞[.

Since c is not inverting, only the first and the third delay rules (i.e. the first
and third rows of Table 4.1, resp.) are needed. 0@]−∞; 0[induces the output
interval 0@] −∞ + FD (c) ; 0 + RD (c) [, i.e. 0@] −∞; 3[. 1@[0; 2[is filtered
out since the additional condition 0 + RD (c) ≤ 2 is not met. 0@[2; 3[is also
filtered out since the additional condition 2+FD (c) ≤ 3 is not met. 1@[3; 7[
induces the output interval 1@[3+RD (c) ; 7+FD (c) [, i.e. 1@[6; 9[. 0@[7; 11[
induces the output interval 0@[7 + FD (c) ; 11 + RD (c) [, i.e. 0@[9; 14[. Fi-
nally, 1@[11; +∞[induces the output interval 1@[11+RD (c) ; +∞+FD (c) [,
i.e. 1@[14; +∞[.

Until now, the output intervals 0@] − ∞; 3[, 1@[6; 9[, 0@[9; 14[and
1@[14; +∞[have been determined. The union of these intervals does not
include the time between time 3 and time 6. Thus, the interval X@[3; 6[has
to be added to c’s set of output intervals.

4.2 Waveforms

Waveforms are a very common way of describing the behaviour of signals,
not only because waveforms are very intuitive, but also because they can be
implemented easily. In previous sections of this chapter waveforms were al-
ready used to represent graphically the sets of intervals introduced in section
4.1.2. Basically, a waveform is not more than a more compact representation
of a set of intervals. In this section some formal definitions on waveforms are
presented. Waveforms will be needed to describe the fault-free simulation
algorithm in Chapter 5. None of the following concepts is new, but other
authors may use a different terminology or different operations on waveforms.

60 4. MORE PRELIMINARIES

4.2.1 Initial definitions

Let s be a signal and let t be a point in time. Then, s(t) denotes the logic
value signal s has at time t. t is allowed to be −∞. Then, s(−∞) is the
value signal s stabilises at after the application of the initialisation vector of
the currently treated test pair.

The waveform of a signal s is defined as the tuple or sequence of
pairs

Ws :=
(
(t, s(t))

∣∣t = −∞ or the logic value of s changes at time t
)
,

where the pairs (also called transitions) are ordered by time. For exam-
ple, the waveform

������
������
������
������

 2 5 7 ,

which represents graphically the set of intervals{
1@]−∞; 2[, X@[2; 5[, 1@[5; 7[, 0@[7; +∞[

}
,

is formalised as the tuple W := Ws =
(
(−∞, 1), (2, X), (5, 1), (7, 0)

)
.

|W | denotes the number of transitions of W , i.e. the number of
pairs W is composed of. In the current example, |Ws| = 4.

Let i be in
{
1, 2, . . . , |W |

}
. Then, tW (i) denotes the first component of

the i-th pair in W , i.e. the i-th point in time at which the waveform undergoes
a transition. In the current example, tW (1) = −∞, tW (2) = 2, tW (3) = 5
and tW (4) = 7.

Let t be a point in time. Then, vW (t) denotes the logic value the wave-
form has at time t. We define further vW (+∞) := vW

(
tW (|W |)

)
, i.e. vW (+∞)

denotes the last logic value the waveform changes to. In the current example,
vW (−∞) = 1, vW (5) = 1, vW (6) = 1 and vW (+∞) = 0.

Note that the parameters defined in Section 4.1.1 can be extracted directly
from the waveform:

• IV (s) = vWs(−∞)

• FV (s) = vWs(+∞)

• EAT (s) =

{
tWs(2) if |Ws| ≥ 2
+∞ else

• LST (s) = tWs(|Ws|)

In the current example, IV (s) = 1, FV (s) = 0, EAT (s) = 2 and LST (s) = 7.

4.2 WAVEFORMS 61

4.2.2 Intersection of waveforms

In Section 4.1.2 it was demonstrated that it is possible to describe the overall
input of a multiple-input gate c with n inputs using only one set of input
intervals instead of n sets corresponding to its n input signals. Since a
waveform is none but a compact representation of a set of intervals, it is also
possible to describe the overall input of c using only one waveform which is
called the input waveform of c.

In order to be able to define the input waveform of a multiple-input gate,
it is necessary to first introduce the intersection of waveforms.

Let c be a 2-input gate, and let s1 and s2 be its input signals. Let W1

and W2 be their waveforms.
The 0-intersection of W1 and W2 is defined as

W1 ∩0 W2 :=

(
t, max0(vW1(t), vW2(t)

) ∣∣∣∣∣∣
There is a v with
(t, v) ∈ W1 or
(t, v) ∈ W2.

 ,

where max0 is defined by the following table:

max0 0 X 1
0 0 0 0
X 0 X X
1 0 X 1

For example, let W1 :=
(
(−∞, 1), (2, X), (5, 1), (7, 0)

)
and

W2 :=
{
(−∞, 0), (1, 1), (3, 0), (5, X), (8, 0), (10, 1)

}
. The 0-intersection

of the two waveforms is
W3 := W1 ∩0 W2 =

(
(−∞, 0), (1, 1), (2, X), (3, 0), (5, X), (7, 0)

)
.

W1:
������
������
������
������

 2 5 7

W2:
������
������
������
������

 1 3 5 8 10

W1 ∩0 W2:
��
��
��
��

����
����
����
����

3 5 71 2

Figure 4.7: Example: 0-intersection of waveforms

62 4. MORE PRELIMINARIES

These waveforms are represented graphically as shown in Figure 4.7. As the
graphic shows, the intersection waveform has the value 0 at all times at which
W1 or W2 or both have the value 0. W3 has the value X at all times at which
neither W1 nor W2 have the value 0 while W1 or W2 or both have the value
X. Finally, W3 has the value 1 only at those times at which both W1 and W2

have the value 1. Thus, W3 represents exactly the set of input intervals that
one gets by applying the rules of page 55 on the sets of intervals of s1 and s2

if CV (c) = 0.

Analogously, the 1-intersection of W1 and W2 is defined as

W1 ∩1 W2 :=

(
t, max1(vW1(t), vW2(t)

) ∣∣∣∣∣∣
There is a v with
(t, v) ∈ W1 or
(t, v) ∈ W2.

 ,

where max1 is defined by the following table:

max1 1 X 0
1 1 1 1
X 1 X X
0 1 X 0

For example, the 1-intersection of W1 and W2 is W4 := W1 ∩0 W2 =(
(−∞, 1), (3, X), (5, 1), (7, X), (8, 0), (10, 1)

)
. These waveforms are repre-

sented graphically as shown in Figure 4.8. As the graphic shows, W4 repre-
sents exactly the set of input intervals that one gets by applying the rules of
page 55 on the sets of intervals of s1 and s2 if CV (c) = 1.

W1:
������
������
������
������

 2 5 7

W2:
������
������
������
������

 1 3 5 8 10

W1 ∩1 W2:
����
����
����
����

��
��
��
��

 3 5 7 8 10

Figure 4.8: Example: 1-intersection of waveforms

4.2 WAVEFORMS 63

For val ∈ {0, 1}, n ≥ 2 and n waveforms W1, W2, . . . , Wn, we define

W1 ∩val W2 ∩val · · · ∩val Wn := ((W1 ∩val W2) ∩val . . .) ∩val Wn.

Finally, it is obvious that the input waveform W of a multiple-input gate
c with n inputs represented by waveforms W1, W2, . . . , Wn, is computed in
the following way:

• If CV (c) = 0, W is set to W1 ∩0 W2 ∩0 · · · ∩0 Wn.

• If CV (c) = 1, W is set to W1 ∩1 W2 ∩1 · · · ∩1 Wn.

For completeness it has to be mentioned that the input waveform of a
single-input gate equals the waveform of its only input signal.

4.2.3 Translation of waveforms

In this section the translation of waveforms is defined. This operation is
necessary to compute the output waveform of a gate c out of its input wave-
form.

Let W be a waveform, and let rd and fd be delays (amounts of time).
Then, Trd,fd(W) denotes the waveform which results from delaying all rising
edges of W by rd and all falling edges by fd, where pulses of W which are
too short according to the used delay model (see Table 4.1 on page 58) are
filtered out. Note that, if W is the input waveform of a gate c of type BUF,
then TRD(c),FD(c)(W) describes c’s output waveform.

For example, let W1 :=
(
(−∞, 0), (0, 1), (2, 0), (3, 1), (7, 0), (11, 1)

)
.

Then, W2 := T3,2(W1) =
(
(−∞, 0), (3, X), (6, 1), (9, 0), (14, 1)

)
is the

waveform that results from delaying W1’s rising edges by 3 time units and
W1’s falling edges by 2 time units. 1-pulses shorter than 3 time units and
0-pulses shorter than 2 time units are filtered out according to the delay
model. These waveforms are represented graphically as shown in Figure 4.9.

Observing the graph, it is easy to see how W2 is computed. Each pair in
W1 induces one pair in W2:

• The first pair of W1 is (−∞, 0). This is also the first pair of W2 as
−∞+ 2 = −∞.

• The second pair of W1 is (0, 1) and represents a rising edge which must
be delayed by 3 time units. Thus, the second pair of W2 must have

64 4. MORE PRELIMINARIES

the form (3, val). As the next transition of W1, (2, 0), arrives before
time 3, it cannot be guaranteed that W2 really gets the logic value 1
at time 3; hence, val 6= 1. However, it is also not possible to guarantee
that W2 will remain stable at logic 0. Thus, val has to be set to X, the
unknown logic value. The second pair of W2 is (3, X).

• The third pair of W1 is (2, 0) and represents a falling edge which must
be delayed by 2 time units. Thus, the third pair of W2 must have the
form (4, val′). As the next transition of W1, (3, 1), arrives before time
4, it cannot be guaranteed that W2 really gets the logic value 0 at time
4; hence, val′ 6= 0. Since the value of W2 before time 4 is unknown, val′

is also unknown. The third pair of W2 is (4, X). However, as this pair
and the preceding one, (3, X), specify the same logic value, X, this pair
can be removed. W2 remains with only two pairs: (−∞, 0) and (3, X).

• The fourth pair of W1 is (3, 1) and represents a rising edge which must
be delayed by 3 time units. Thus, the next pair of W2 is (3 + 3, 1),
i.e. (6, 1). Now, W2 is composed of three pairs: (−∞, 0), (3, X) and
(6, 1).

• The fifth pair of W1 is (7, 0) and represents a falling edge which must
be delayed by 2 time units. Thus, the next pair of W2 is (7 + 2, 0),
i.e. (9, 0). Now, W2 is composed of four pairs: (−∞, 0), (3, X), (6, 1)
and (9, 0).

• The sixth pair of W1 is (11, 1) and represents a rising edge which must
be delayed by 3 time units. Thus, the next pair of W2 is (11 + 3, 1),
i.e. (14, 1). Finally, W2 is composed of five pairs: (−∞, 0), (3, X), (6, 1),
(9, 0) and (14, 1).

W1: 0 2 3 7 11

W2 = T3,2(W1):
������
������
������
������

 3 6 9 14

Figure 4.9: Example: translation of waveforms

4.2 WAVEFORMS 65

Comparing this example with that in Figure 4.6, it can be seen that the
translation of the input waveform of a non-inverting gate c yields the same
result as computing the set of output intervals of c as introduced in Section
4.1.3.

4.2.4 Inversion of waveforms

W denotes the inverse waveform of W . It is defined as

W :=
{
(t, v)

∣∣(t, v) ∈ W
}
.

For example, let W be the waveform
(
(−∞, 1), (2, X), (5, 1), (7, 0)

)
, which

is represented graphically in the following way:

������
������
������
������

 2 5 7 .

Its inverse waveform

������
������
������
������

 2 5 7

has at all times t the logic inverse of the value W has at that time t. In this
example, the inverse waveform is formalised as

W =
{
(−∞, 0), (2, X), (5, 0), (7, 1)

}
.

The examples in this section (4.2) were chosen such as to illustrate all im-
portant aspects of the algorithms on waveforms (0-intersection, 1-intersection,
translation and inversion). We renounce to describe them in detail using
pseudo-code. Due to the simple and compact representation of waveforms as
sequences of pairs, the algorithms are easy to implement.

66 4. MORE PRELIMINARIES

4.3 Signal descriptors

In Section 4.1.2 we saw that the behaviour over time of a signal can be
described by a set of intervals of the form val@[x; y[. In Section 4.2 we saw
that waveforms can be used to represent sets of intervals in a more compact
way. In this section, a method to represent the behaviour of signals in a
faulty circuit is presented. In a circuit having an LDF of size δ, some signals
have one or more of their transitions delayed by δ (with respect to the fault-
free case). Such signals are called fault-affected . It would be possible
to describe the behaviour of those signals using waveforms composed of two
types of pairs, pairs of the form (x, val) and pairs of the form (x + δ, val).
However, Chapter 5 will show that waveforms include information which is
not needed during faulty-circuit simulation. For example, only determinate
portions of the waveform (portions with logic value 0 or 1) are relevant during
faulty-circuit simulation, since a fault can only be detected if it induces a
wrong but known value at an output of the circuit. Furthermore, the only
part of the waveform of a non-fault-affected signal (none of its edges
is delayed by δ) which is relevant during faulty-circuit simulation is its last
transition.

In this section the concept of signal descriptors is introduced. The
signal descriptor of a signal s, denoted by SDs, is a set of description
intervals describing the behaviour of s during faulty-circuit simulation of
one fixed test pair and one fixed LDF of size δ. The description intervals in
signal descriptors are an enhancement of the intervals defined in Section 4.1.2.
Signal descriptors were first defined in [20] (though without first defining the
simple intervals of Section 4.1.2), and used with modifications in [36] and
[19]. The signal descriptors used in this work are most similar to those in
[36]. However, there are some modifications which will be pointed at later.

4.3.1 Initial definitions

Let C be the CUT, f an LDF of size δ, Cf the faulty version of C which has
the fault f , and let p be a fixed test set (p1 denotes the initialisation vector,
p2 the propagation vector).

A signal descriptor is a set of description intervals, where each description
interval I has the form val@[left; right[δmin ≤ δ ≤ δmax. val is 0 or 1,
δmin ∈ N, δmax ∈ {δmin, δmin + 1, δmin + 2, . . . } ∪ {+∞}. left is of the form
x where x ∈ N ∪ {−∞}, or of the form x + δ where x ∈ N. right is of the
form y where y ∈ {x + 1, x + 2, . . . } ∪ {+∞}, or of the form y + δ where

4.3 SIGNAL DESCRIPTORS 67

y ∈ N. For improved readability, in this thesis we write:
val@[left; right[instead of val@[left; right[0 ≤ δ < +∞,
val@[left; right[δ ≥ δmin instead of val@[left; right[δmin ≤ δ < +∞,
val@[left; right[δ ≤ δmax instead of val@[left; right[0 ≤ δ ≤ δmax.

Let I : val@[left; right[δmin ≤ δ ≤ δmax be a description interval in
SDs for a signal s. The meaning of I is the following: when applying
the test pair p to Cf , signal s has the logic value val at all times t with
left ≤ t < right, but only if δmin ≤ δ ≤ δmax. For example, if the description
interval 1@[4 + δ; 7 + δ[δ ≤ 47 is contained in SDs, this means, that s has
the logic value 1 between time 4 and time 7 if C is fault-free; or between
time 4 + δ and time 7 + δ if C has the fault f and f has size δ ≤ 47.

The description interval val@[left; right[δmin ≤ δ ≤ δmax is called
fault-affected if left is of the form x + δ or if right is of the form
y + δ. Otherwise, the description interval is called non-fault-affected .
A signal descriptor is called fault-affected if it contains at least one
fault-affected description interval. Noting that actual fault effect propaga-
tion takes place under p2, if s is non-fault-affected, the only part of its wave-
form which is necessary to consider in the computation of SDs is the stable
final-valued one stretching from LST (s) to +∞ (cf. example in Section 5.1.2
and [36, page 83]). Thus, the signal descriptor of a non-fault-affected signal s
always contains exactly one description interval of the form FV (s) @[x; +∞[
for an x ≥ LST (s).

The example in Section 5.1.2 will illustrate the fact that some description
intervals can only come into existence if δ is within a certain range [δmin; δmax].
This range is called the constraint on the description interval. The
constraint on a description interval I is denoted by KI (a notation including
a C would be more intuitive, but C’s are already used to denote circuits).
In [36] constraints are only of the form δ ≥ δmin, while [19] introduces two
constraints per interval, an optimistic and a pessimistic one. We stick to
the idea in [36] and use only one constraint per interval, however this only
constraint is extended to have the already mentioned form δmin ≤ δ ≤ δmax.
δmin and δmax depend on the form of the description interval. How they are
computed is presented in Section 5.2.2.

Let c be a gate, let s be its output signal and let s1, s2, . . . , sn be its
input signals. Let SDs, SD1, SD2, . . . , SDn be their corresponding signal
descriptors. SDs is called the output signal descriptor of c and all
description intervals in SDs are called output description
intervals of c. SD1, SD2, . . . , SDn are called the input signal
descriptors of c and all their description intervals are called input
description intervals of c.

68 4. MORE PRELIMINARIES

4.3.2 cv-intervals and ncv-intervals

Throughout this section, let c be a multiple-input gate, let s be its output
signal and let s1, s2, . . . , sn be its input signals. Let SDs, SD1, SD2, . . . ,
SDn be their corresponding signal descriptors.

In Section 4.2, we saw that it is possible to describe the overall input of
c using only one waveform, namely the intersection of Ws1 , Ws2 , . . . , Wsn .
Since the structure of description intervals is far more complex than that
of simple intervals defined in Section 4.1.2, it is very difficult to formulate
a meaningful definition of the intersection of signal descriptors. However,
this is not necessary. In order to be able to compute the output description
intervals of c, it is enough to define two more simple concepts, cv-intervals
and ncv-intervals. cv- and ncv-intervals are used in [36], however without
giving them a name and without specifying how to compute them. The
following definitions constitute original work.

For each i = 1, 2, . . . , n, let SD
CV(c)
i be the set of all description intervals

in SDi, which have the form CV (c) @[leftI , rightI [KI . Analogously, let

SD
NCV(c)
i be the set of all description intervals in SDi, which have the form

NCV (c) @[leftI , rightI [KI .

4.3.2.1 cv-intervals

The set of cv-intervals of c is the set
⋃n

i=1 SD
CV(c)
i , i.e. the set of all

input intervals of c which have the value CV (c). Remember that if an input
signal of c has the logic value CV (c), this always induces the output value
CV (c) (NCV (c) if c is inverting), independently of the logic values of all other
signals. Thus, cv-intervals have the following property: an output description
interval of c, which is induced by a cv-interval I : CV (c) @[leftI ; rightI [KI

in SDi for an i = 1, 2, . . . , n, is independent of how all other input signals
of c (s1, s2, . . . , si−1, si+1, . . . , sn) behave between time leftI and rightI .
Hence, each cv-interval of c describes a portion of the overall input of c.

4.3.2.2 Intersection of description intervals

The definition of ncv-intervals shall be formulated such that each ncv-interval
describes a portion of the overall input of c. Remember that c can produce
the output NCV (c) (CV (c) if c is inverting) only if all its input signals have
the logic value NCV (c) simultaneously. In order to be able to express this
simultaneousness, the intersection of description intervals must be defined.

4.3 SIGNAL DESCRIPTORS 69

Let signals sa and sb be the inputs of a two-input gate g and let SDa

and SDb be their signal descriptors. Let val be a determinate logic value (0
or 1). Let I : val@[leftI ; rightI [δI

min ≤ δ ≤ δI
max be a description interval

in SDa and let J : val@[leftJ ; rightJ [δJ
min ≤ δ ≤ δJ

max be a description
interval in SDb. Then, I ∩ J denotes the intersection of I and J and
is regarded as input description interval of g. Let K := I ∩ J be of the form
val@[leftK ; rightK [δK

min ≤ δ ≤ δK
max. The meaning of K is that both inputs

of g have the logic value val at all times t with leftK ≤ t < rightK , but only
if δK

min ≤ δ ≤ δK
max. This concept is easily extended to the case that g has

more than two inputs, as I1 ∩ I2 ∩ · · · ∩ In := ((I1 ∩ I2) ∩ . . .) ∩ In.

Note that the intersection of I and J is only well-defined if both intervals
have the same logic value. Thus, for the computation of K, the logic value of
I and J is ignored. Computing K consists in determining all points in time
which belong to both I and J ; and determining all δ values which fulfil both
constraints δI

min ≤ δ ≤ δI
max and δJ

min ≤ δ ≤ δJ
max, and which meet natural

constraints imposed by the form of leftK and rightK .

As leftI , leftJ , rightI and rightJ are of various forms, several cases need
to be handled.

Computation of leftK and δK
min There are four cases:

Case 1: leftI = xI and leftJ = xJ .
leftK is set to max{xI , xJ} and δK

min to max{δI
min, δ

J
min}.

Case 2: leftI = xI + δ and leftJ = xJ + δ.
leftK is set to max{xI , xJ}+ δ and δK

min to max{δI
min, δ

J
min}.

Case 3: leftI = xI and leftJ = xJ + δ.
If xI ≤ xJ , leftK is set to xJ + δ and δK

min to max{δI
min, δ

J
min}. Else,

leftK is set to xJ + δ and δK
min to max{δI

min, δ
J
min, xI − xJ}.

Case 4: leftI = xI + δ and leftJ = xJ .
If xJ ≤ xI , leftK is set to xI + δ and δK

min to max{δI
min, δ

J
min}. Else,

leftK is set to xI + δ and δK
min to max{δI

min, δ
J
min, xJ − xI}.

70 4. MORE PRELIMINARIES

Computation of rightK and δK
max There are four cases:

Case 1: rightI = yI and rightJ = yJ .
rightK is set to min{yI , yJ} and δK

max to min{δI
max, δ

J
max}.

Case 2: rightI = yI + δ and rightJ = yJ + δ.
rightK is set to min{yI , yJ}+ δ and δK

max to min{δI
max, δ

J
max}.

Case 3: rightI = yI and rightJ = yJ + δ.
If yI ≤ yJ , rightK is set to yI and δK

max to min{δI
max, δ

J
max}. Else, rightK

is set to yJ + δ and δK
max to min{δI

max, δ
J
max, yI − yJ}.

Case 4: rightI = yI + δ and rightJ = yJ .
If yJ ≤ yI , rightK is set to yJ and δK

max to min{δI
max, δ

J
max}. Else, rightK

is set to yI + δ and δK
max to min{δI

max, δ
J
max, yJ − yI}.

For example, let I be val@[17; 27 + δ[2 ≤ δ ≤ 10. In Figure 4.10, I
is represented as a bold line beginning at time 17. rightI is 27 + δ, where
2 ≤ δ ≤ 10. That means that the right limit of I may be between time
27 + 2 = 29 and time 27 + 10 = 37 depending on the fault’s size δ. This
is represented by the grey region in the figure. The bold line representing I
ends at time 37 which is the latest time for I’s right limit.

Let J be val@[10 + δ; 36[3 ≤ δ ≤ 11. leftJ is 10 + δ, where 3 ≤ δ ≤ 11.
That means that the left limit of J may be between time 10 + 3 = 13 and
time 10 + 11 = 21 depending on the fault’s size δ. This is represented by the
grey region in the figure. J is represented as a bold line beginning at time
13, which is the earliest time for J ’s left limit, and ending at time 36.

27 29=27+ 37=27+

10

17

13=10+ 21=10+

27

3610

36=27+

:

:

:
17=10+ 34=27+

δmin δ

19=10+

δmin δmax

max

min δmax δδ δmax

I

J

min

I

JJ

K

I

K K
K=I J

U

K

Figure 4.10: Intersection of description intervals with the
same logic value

4.3 SIGNAL DESCRIPTORS 71

First, leftK and δK
min are computed. leftI = 17 and leftJ = 10 + δ.

Here Case 3 is applied. Since 17 6≤ 10, leftK is set to 10 + δ and δK
min to

max{δI
min, δ

J
min, xI − xJ} = max{2, 3, 17− 10} = 7. The intuition behind this

is the following: Due to δK
min = 7, it is guaranteed that K’s left limit is not

before time 10 + 7 = 17 = leftI . That means, for all valid δ values, K will
not contain any points which are not contained in I.

Then, rightK and δK
max are computed. rightI = 27 + δ and rightJ = 36.

Here Case 4 is applied. Since 36 6≤ 27, leftK is set to 27 + δ and δK
max to

min{δI
max, δ

J
max, yJ − yI} = min{10, 11, 36 − 27} = 9. The intuition behind

this is the following: Due to δK
max = 9, it is guaranteed that K’s right limit

is not after time 27 + 9 = 36 = rightJ . That means, for all valid δ values, K
will not contain any points which are not contained in J .

Finally, K is val@[10 + δ; 27 + δ[7 ≤ δ ≤ 9.

A second example will show that it is not always possible to intersect two
intervals. Let I be val@[22; 27 + δ[2 ≤ δ ≤ 10 and let J be
val@[35 + δ; 52[3 ≤ δ ≤ 11. Already their graphical representation in
Figure 4.11 shows that I and J cannot be intersected, since both bold lines
do not have any point in common. However, let us compute K as was done
before.

First, leftK and δK
min are computed. leftI = 22 and leftJ = 35 + δ.

Here Case 3 is applied. Since 22 ≤ 35, leftK is set to 35 + δ and δK
min to

max{δI
min, δ

J
min} = max{2, 3} = 3.

Then, rightK and δK
max are computed. rightI = 27 + δ and rightJ = 52.

Here Case 4 is applied. Since 52 6≤ 27, leftK is set to 27 + δ and δK
max to

min{δI
max, δ

J
max, yJ − yI} = min{10, 11, 52− 27} = 10.

Finally, K is val@[35 + δ; 27 + δ[3 ≤ δ ≤ 10.

:

I :
27 29=27+

J

δmin 37=27+ max
I δ22

δ

I

J δmin
J35 max46=35+ 5238=35+

Figure 4.11: Intersection of description intervals with the
same logic value

72 4. MORE PRELIMINARIES

It is easy to see that val@[35 + δ; 27 + δ[3 ≤ δ ≤ 10 is not a valid
description interval, because 35 + δ 6< 27 + δ for all δ with 3 ≤ δ ≤ 10.
A time interval whose left limit is not earlier than its right limit cannot be
valid.

Two description intervals I and J are said to be intersect-able if
their intersection K := I ∪ J is a valid description interval.

The best way of determining if I and J are intersect-able is by computing
K := I ∪ J using the rules introduced on page 69 and checking if K has the
following properties:

Property 1: δK
min ≤ δK

max must be true.

Property 2: Depending on its form, K must meet one of the following
three conditions:

Case 1: K is of the form val@[xK ; yK [KK or val@[xK + δ; yK + δ[KK .
xK < yK must be true.

Case 2: K is of the form val@[xK + δ; yK [δK
min ≤ δ ≤ δK

max.
xK + δK

max < yK must be true. If δK
max = +∞, yK must be +∞.

Case 3: K is of the form val@[xK ; yK + δ[δK
min ≤ δ ≤ δK

max.
xK < yK + δK

min must be true.

4.3.2.3 ncv-intervals

The set of ncv-intervals of c is defined as:{
I

∣∣∣∣ There is an I1 ∈ SD
NCV(c)
1 , an I2 ∈ SD

NCV(c)
2 , . . . and an

In ∈ SD
NCV(c)
n , such that I = I1 ∩ I2 ∩ · · · ∩ In.

}
.

Each ncv-interval of c represents an interval of time during which all inputs of
c have the logic value NCV (c) simultaneously. Thus, ncv-intervals of c induce
output description intervals with value NCV (c) (CV (c) if c is inverting).

The computation is performed using the algorithm of Figure 4.12. It
intersects each description interval in SD

NCV(c)
1 with each description interval

in SD
NCV(c)
2 . Those intersections which are valid description intervals are

intersected with all description intervals in SD
NCV(c)
3 . This step is repeated

until the description intervals in SD
NCV(c)
n have been processed.

4.3 SIGNAL DESCRIPTORS 73

1 COMPUTENCVINTERVALS

2 Input: a multiple-input gate c with n inputs
3 c’s input signal

descriptors SD1, SD2, ..., SDn

4 Output: a set NCV INT of ncv-intervals of c.

5 BEGIN

6 let TMPSET be an empty set of intervals

7 set NCV INT := SD
NCV(c)
1

8 for i = 2 to n ; do

9 set TMPSET := ∅
10 for each interval I ∈ SD

NCV(c)
i ; do

11 for each interval J ∈ NCV INT ; do

12 if I and J are intersect-able ; then

13 set TMPSET := TMPSET ∪ {(I ∩ J)}
14 fi

15 done

16 done

17 set NCV INT := TMPSET

18 done

19 return NCV INT

20 END

Figure 4.12: Algorithm: computing the set of ncv-intervals

74 4. MORE PRELIMINARIES

4.3.2.4 An example on cv- and ncv-intervals

Let c be an AND gate with two input signals described by signal descriptors
SD1 and SD2. Let:

• SD1 :=
{
0@]−∞; 50 + δ[, 1@]50 + δ; +∞[

}
• SD2 :=

{
1@]30; +∞[

}
Then, the set of cv-intervals of c is

{
0@]−∞; 50 + δ[}, namely the set of

all input description intervals of c which have the logic value 0 (= CV (c)).
The set of ncv-intervals of c is

{
1@]50 + δ; +∞[

}
. 1@]50 + δ; +∞[is the

intersection of 1@]50 + δ; +∞[, and 1@]30; +∞[. Once more, the meaning of
the ncv-interval 1@]50 + δ; +∞[is that all input signals of c have the logic
value 1 (= NCV (c)) between time 50 + δ and time +∞.

5

Delay Fault Simulation

In this chapter the simulation algorithm corresponding to Phase 1 on page
47 (lines 10 through 18 in Figure 3.2) is discussed. As was mentioned before,
this algorithm constitutes a simulation method for delay faults which was
already presented in [20] and extended in [36] and [19]. Our implementation
bases on the work in [36]. However, we made some modifications. Some of
these were already mentioned in the previous chapter. We will explain the
other modifications later.

5.1 Illustrative example

Let us illustrate how the simulation works by applying the algorithm to the
example circuit of Figure 5.1. Thus, especially some principles of the non-
trivial faulty-circuit simulation (line 14 in Figure 3.2) will become clear before
introducing the whole algorithm in a formal way.

The circuit under test is denoted by C. Cf denotes the circuit under
the effect of an LDF f . Let the test set consist of only one test pair:
p1 := 010/p2 := 111; and let the fault list contain only one fault: 2R
(i.e. the fault delays signal 2’s rising transitions by δ) . Finally, let TC
be 13 (≈ 1.2 · PLST, cf. Figure 4.1).

5.1.1 Fault-free simulation

Fault-free simulation (line 11 in Figure 3.2) of p is performed first. The
fault-free simulation works with waveforms as this permits the simulation

75

76 5. DELAY FAULT SIMULATION

0

0

2

3

0

1

2

8

�����
�����
�����

�����
�����
�����

 3 6 11

������
������
������

������
������
������

 5 8

7
6

4

3/3

5

2/1

3

2/2

2 3

constant 1

3/5
1/3

Figure 5.1: Simulation example: fault-free simulation

of two test patterns with only one circuit pass. Additionally, operations on
waveforms are easy to implement. The waveforms shown in Figure 5.1 are
the result of the fault-free simulation in the example. They are processed in
topological order.

For i = 0, 1, . . . , 7, let Wi denote the waveform of signal i.

Signal 0: Since signal 0 is a primary input, its waveform is derived directly
from the test pair. Following the conventions introduced in Section
4.1.1, W0 starts at time −∞ with logic value 0 (p1 specifies a 0 for
signal 0) and changes its logic value to 1 at time 0 (p2 specifies a 1).

Signal 1: This is also a primary input. Both p1 and p2 specify a 1 for signal
1. Thus, its waveform starts at time −∞ with logic value 1 and does
not change any more.

Signal 2: Same as signal 0.

Signal 3: This signal is the output of the NAND gate with input signals 0
and 1. W3 starts at time −∞ with the value IV (0) NAND IV (1) =
0 NAND 1 = 1. Signal 0’s rising edge at time 0 induces an output
falling edge at time 0 + FD (3) = 2.

Signal 4: Gate 4 is a buffer. Its input waveform’s only edge is a rising one,
so the output waveform results from shifting the input waveform by
RD (4) = 3 time units to the right.

5.1 ILLUSTRATIVE EXAMPLE 77

Signal 5: This signal is the output of the AND gate with input signals 2
and 3. The gate’s input waveform is the 0-intersection of W2 and W3,
i.e.

(
(−∞, 0), (0, 1), (2, 0)

)
. W5 starts at time −∞ with the value 0

since the gate is non-inverting. Then, the input waveform’s interval
1@[0; 2[induces the output interval 1@[0 + RD (5) ; 2 + FD (5) [, i.e. a
1-interval between time 2 and time 3.

Signal 6: This signal is the output of the NOR gate with input signals 3
and 4. The gate’s input waveform is the 1-intersection of W3 and W4,
i.e.

(
(−∞, 1), (2, 0), (3, 1)

)
. W6 starts at time −∞ with the value 0

since the gate is inverting. The input waveform’s falling edge at time 2
should induce an output rising edge at time 2 + RD (6) = 5. However,
as an input rising edge arrives at time 3, i.e. before time 5 (see Table
4.1), it is not possible to guarantee that the output rising edge can be
produced at time 5. Since it is also not possible to guarantee that the
signal remains stable at logic 0, an output X-interval begins at time 5.
The input rising edge at time 3 induces an output falling edge at time
3 + FD (5) = 8. After time 8, W6 does not change any more.

Signal 7: This signal is the output of the OR gate with input signals 5
and 6. The gate’s input waveform is the 1-intersection of W5 and W6,
i.e.

(
(−∞, 0), (2, 1), (3, 0), (5, X), (8, 0)

)
. W7 starts at time −∞ with

the value 0 as the gate is non-inverting. The input rising edge at time
2 induces an output rising edge at time 2 + RD (7) = 3. The input
falling edge at time 3 should induce an output falling edge at time
3 + FD (7) = 6. However, time 6 is later than the arrival time of the
input interval X@[5; 8[. Thus, instead of a rising edge, there is the
beginning of an output X-interval at time 6. The input X-interval ends
with a falling edge at time 8. This induces an output falling edge at
time 8 + FD (7) = 11.

5.1.2 Faulty-circuit simulation

Now faulty-circuit simulation of p has to be performed on C2R (line 14
in Figure 3.2). In the faulty-circuit simulation the behaviour of signals is
described using signal descriptors. Figure 5.2 shows the signal descriptors
which result from the faulty-circuit simulation. The fault-affected signals are
marked with a circle. Like waveforms, signal descriptors are processed in
topological order.

78 5. DELAY FAULT SIMULATION

For i = 0, 1, . . . , 7, let SDi denote the signal descriptor of signal i.

Signals 0 and 1: These signals are not fault-affected since they are not
in the fault site’s output cone. Hence, the signal descriptor can be
derived from the fault-free waveform. The signal descriptor of such
a non-fault-affected signal s contains only one interval of the form
FV (s) @[LST (s) ; +∞[. All other waveform intervals (which end all
before LST (s)) are insignificant to fault propagation.

Signal 2: Signal 2 is an input. In the fault-free case, signal 2 has the logic
value 0 between time −∞ and time 0, at which the change to value 1
takes place. In the faulty circuit, the change is delayed by δ. Thus,
the first interval in the signal descriptor is 0@] −∞; 0 + δ[. With an
analogous reasoning, the second interval is 1@[0 + δ; +∞[.

Signal 3: Same as signal 1.

Signal 4: Signal 4 is also fault-affected. As signal 2 is signal 4’s only prede-
cessor signal, SD4 is derived from SD2 by translating SD2’s intervals
by RD (4). Signal 2’s description interval 0@]−∞; 0+δ[turns into sig-
nal 4’s description interval 0@]−∞; 0+RD (4)+δ[, i.e. 0@]−∞; 3+δ[.
Signal 2’s description interval 1@[0 + δ; +∞[turns into signal 4’s de-
scription interval 1@[0 + RD (4) + δ; +∞[, i.e. 1@[3 + δ; +∞[.

Signal 5: Since 0 is the controlling value of cell 5, the input description
interval 0@[2; +∞[induces the output description interval 0@[3; +∞[,
independently of what SD2 looks like. This output description interval
is independent of δ and guarantees that signal 5 has the “right” value
(FV (5)) at the “right” time (LST (5)) and that the value does not
change any more, no matter to what extent the faulty input signal is
affected by 2R. Altogether, a signal s with source cell c having a non-
fault-affected predecessor signal whose final value is CV (c), is always
non-fault-affected; even if s is in the fault site’s output cone.

Signal 6: Since 1 is the controlling value of cell 6, signal 4’s description
interval 1@[3 + δ; +∞[is a cv-interval of cell 6 and induces the output
description interval 0@[8+δ; +∞[. The ncv-interval 0@[2; 3+δ[, which
is the intersection of signal 3’s 0@[2; +∞[and signal 4’s 0@]−∞; 3+δ[
induces the output description interval 1@[2 + RD (6) ; 3 + FD (6) + δ[,
i.e. 1@[5; 8 + δ[. Now, note that this last interval can only be induced
if 2 + RD (6) ≤ 3 + δ, i.e. if δ ≥ 2. The output interval only exists if

5.1 ILLUSTRATIVE EXAMPLE 79

the LDF 2R has a size of at least 2 time units. This example shows
that it is not always possible to derive fault descriptors from fault-free
waveforms.

Signal 7: The computation of SD7 is analogous to that of SD6. Just note
that signal 7’s interval 1@[6; 11 + δ[, which has no natural constraint
on δ (as 5 + RD (7) ≤ 8 + δ for all δ ≥ 0), carries the constraint δ ≥ 2.
That is because this interval is exclusively induced by signal 6’s interval
1@[5; 8 + δ[which can only exist (and thus induce other intervals) if
the constraint δ ≥ 2 is fulfilled. That means, interval constraints are
inherited, unless the heir carries an own stronger constraint.

1@[0+ ; + [1@[3+ ; + [

1@[0; + [

8

8 8

1@]− ; + [

8 δ0@]− ; 0+ [

δ 8 δ 8

8 δ0@]− ; 3+ [

8

0@[2; + [8

0@[3; + [

δ δ≥1@[5; 8+ [2

δ 8

0@[8+ ; + [

8

0

1

2
7

6
4

3/3

5

2/1

3

2/2

1/3
3/5

δ δ≥1@[6; 11+ [2

δ 8

0@[11+ ; + [

Figure 5.2: Simulation example: faulty-circuit simulation

5.1.3 Computing the detection set of delay

size intervals

Only fault-affected circuit outputs are considered to compute the detection
intervals. In the example, there is only one (fault-affected) output in the
circuit: signal 7.

In the fault-free case, the final value of signal 7 is 0. In the faulty-circuit
case, there is only one fault-affected interval with the a wrong and known
value, namely 1@[6; 11 + δ[, which is only valid if δ ≥ 2. If this interval ends
after time TC, the value of signal 7 will be wrong at time TC and the fault

80 5. DELAY FAULT SIMULATION

will be detected. Only 11 + δ > TC is needed for detection, i.e. that δ > 2.
Thus, 2R is detected by the simulated test pair if its size δ is in the detection
interval [3; +∞[.

Finally, the set of detection intervals of delay sizes of 2R is
{
[3; +∞[

}
.

Note that if there were more test pairs in the test set, the faulty-circuit
simulation of each test pair p would yield a different set Sp of detection
intervals for 2R. At the end, the final set of detection intervals is the union
of all Sp.

5.2 The delay fault simulation
algorithm

As was already mentioned before, the delay fault simulation algorithm pre-
sented in this section bases on that presented in [36]. However, in this work,
operations of waveforms (cf. Section 4.2) are different from those in [36]; and
the signal descriptors used here (cf. Section 4.3) are an extension of those in
[36]. Hence, the details of fault-free and faulty-circuit simulation presented
in this section constitute original work.

5.2.1 Fault-free simulation

The fault-free simulation (line 11 in Figure 3.2) consists in computing a
waveform for every signal (cf. 5.1.1). This is done in topological order.

Let p be the simulated test pair. The waveform Ws of a signal s is
computed depending on the type of s’s source cell c.

Case 1: c is a primary or secondary input.
In this case, the waveform is defined by the test pair p. If p1 specifies
value v1 and p2 specifies value v2 for signal s, Ws is set to(
(−∞, v1), (0, v2)

)
.

Case 2: c is a single-input gate.
If c is a single-input gate, its input waveform equals the waveform W of
its only input signal. Then, if c is not inverting, Ws = TRD(c),FD(c)(W)
(cf. end of second paragraph of Section 4.2.3). If c is inverting, c’s input
waveform W must be inverted before translating it,
i.e. Ws = TRD(c),FD(c)

(
W

)
.

5.2 THE DELAY FAULT SIMULATION ALGORITHM 81

����
����
����

����
����
����

���
���
���

���
���
���

W

��
��
��

��
��
��

��
��
��

��
��
��

U

0

U

01 2W = W W W3

W

1 5 92

5 91 2

1

5 9

2

6 82
4 8 11

1

2

3

W

W

W

3/2

s 3,2W = T ():

c

Figure 5.3: Computing the output waveform of a NAND gate

Case 3: c is a multiple-input gate.
If c is a multiple-input gate, let W1, W2, . . . , Wn be the waveforms of c’s
n input signals. Then, according to Section 4.2.2, c’s input waveform
is given by

W :=

{
W1 ∩1 W2 ∩1 · · · ∩1 Wn if CV (c) = 1

W1 ∩0 W2 ∩0 · · · ∩0 Wn if CV (c) = 0
.

As in Case 2, Ws = TRD(c),FD(c)(W) if c is not inverting,
and Ws = TRD(c),FD(c)

(
W

)
if c is inverting.1

1Remember that this was the aim of defining input waveforms in Section 4.2.2. Once
the input waveform of c is known, Case 2 and Case 3 become identical.

82 5. DELAY FAULT SIMULATION

Figure 5.3 pictures an example. In the example, gate c is a NAND gate
with three inputs s1, s2 and s3, described by waveforms W1, W2 and W3.
The waveform shown beneath c is its input waveform. It has the value 0
whenever at least one of c’s input signals have the value 0; and the value 1
whenever all input signals of c have the value 1. Until time 1, s1 and s3 have
the logic value 1 and are thus neutral. W depends until time 1 on s2. Since
the value of s2 is unknown until time 2, W is at X until time 1.

Since c is inverting, its input waveform W must be inverted. The inverse
waveform W is shown underneath W . Finally, W ’s rising edges are delayed
by RD (c) = 3 time units and W ’s falling edges are delayed by FD (c) = 2
time units to get c’s output waveform Ws. Pulses that are too short, like
1@[1; 2[are filtered out in the output.

5.2.2 Faulty-circuit simulation

Let f be an LDF of size δ. The faulty-circuit simulation of a test pair p on the
faulty version Cf of the circuit (line 14 in Figure 3.2) consists in computing
a signal descriptor for every signal (cf. 5.1.2). This is done in topological
order.

When computing the signal descriptor SDs of a signal s, it is necessary
to distinguish several cases. In all cases, let c be the source cell of s. Further-
more, we define that ±∞+k = ±∞, where k is RD (c), FD (c), δ, RD (c)+δ
or FD (c) + δ.

Case 1: s is not in the fault site’s output cone (e.g. signal 0 in Section
5.1.2).

In this case, s is non-fault-affected. Its signal descriptor contains only
one description interval. SDs is set to

{
FV (s) @[LST (s) ; +∞[} (cf. Section

4.3.1).

����
����
����

����
����
����

11742

 I I I I1 2 3 4

Figure 5.4: Computing the fault site’s signal descriptors

5.2 THE DELAY FAULT SIMULATION ALGORITHM 83

Case 2: s is the fault site (e.g. signal 2 in Section 5.1.2).

Let Ws :=
(
(t1, v1), (t2, v2), . . . , (tN , vN)

)
be the fault-free waveform of s

and let tN+1 := +∞.

Case 2.1: f is slow-to-rise.
In the faulty-circuit case, it is necessary to additionally delay all rising
edges by δ. More precisely, one begins with an empty signal descrip-
tor. Then, for each i = 1, . . . , N , if vi is 0, the description interval
0@[ti; ti+1 + δ[is inserted into SDs; if vi is 1, the description interval
1@[ti + δ; ti+1[is inserted into SDs; if vi is X, nothing is done.

Case 2.2: f is slow-to-fall.
In the faulty-circuit case, we just need to additionally delay all falling
edges by δ. More precisely, one begins with an empty signal descrip-
tor. Then, for each i = 1, . . . , N , if vi is 1, the description interval
1@[ti; ti+1 + δ[is inserted into SDs; if vi is 0, the description interval
0@[ti + δ; ti+1[is inserted into SDs; if vi is X, nothing is done.

For example, let Ws :=
(
(−∞, 1), (2, X), (4, 1), (7, 0), (11, 1)

)
(the wave-

form’s graphical representation is depicted in Figure 5.4), and let f be slow-to
rise. The corresponding signal descriptor is:

SDs =


1@]−∞; 2[(I1)
1@]4 + δ; 7[(I2)
0@]7; 11 + δ[(I3)
1@]11 + δ; +∞[(I4)

 .

In [36], only the first portion of the waveform between time −∞ and
EAT (s) and the last portion between LST (s) and time −∞ are turned into
description intervals. In this case, this methodology would yield the signal
descriptor {

1@]−∞; 2[(I1)
1@]11 + δ; +∞[(I4)

}
.

Turning all determinate waveform intervals into description intervals, as is
done here, is obviously more exact. In [19], this concept is also used; however,
both falling and rising edges are delayed by δ, as [19] works with GDFs which
are slow-to-rise and slow-to-fall at the same time.

84 5. DELAY FAULT SIMULATION

Case 3: s is in the fault site’s output cone.
Three sub-cases need to be handled. Note that, if s is in the fault site’s

output cone, c must be a gate.

Case 3.1: c is a single-input gate (e.g. signal 4 in Section 5.1.2).

If c is a single-input gate, s has exactly one predecessor signal s′. One
constructs the signal descriptor SDs starting with an empty one. For
each description interval I in SDs′ , a new description interval J is
inserted into SDs according to the rules listed in Table 5.1 (cf. also
Table 4.1).

In the table, v stands for a determinate logic value (0 or 1). v denotes
the logic inverse of v. D(v) denotes the delay that c needs to produce
the output v, i.e. D(0) = FD (c) and D(1) = RD (c).

The table is read in the following way. Take, for example, Rule 2. An
input description interval of the form I : 1@[x+δ; y+δ[KI induces the
output description interval J : 1@[x+RD (c)+δ; y+FD (c)+δ[KI if c
is not inverting; however, only if the additional condition x+RD (c) ≤ y
is met. This additional condition is imposed by the used delay model.
If the additional condition is not met, no output description interval is
induced at all. The constraint on the output description interval J is
denoted by KI . This means, that J inherits I’s constraint.

In Rules 3, 4, 5, 6, 9, 10, 11 and 12, there is no additional condition.
Instead, the output description interval’s constraint KJ must be ad-
justed such that the used delay model is respected:

Rule 3: The first constraint on J is K1 : x + δ < y as the left limit
of a time interval must be earlier than its right limit. The second
constraint K2 : x + D(v) + δ ≤ y derives from the delay model.
The third constraint on J is the inherited constraint KI . Finally,
KJ = K1 ∧ K2 ∧ KI , where the intersection Kα ∧ Kβ of two
constraints Kα : α1 ≤ δ ≤ α2 and Kβ : β1 ≤ δ ≤ β2 is defined as
max{α1, β1} ≤ δ ≤ min{α2, β2}.

Rule 5: The first constraint on J is K1 : x < y + δ as the left limit
of a time interval must be earlier than its right limit. The second
constraint K2 : x + D(v) ≤ y + δ derives from the delay model.
The third constraint on J is the inherited constraint KI . Finally,
KJ = K1 ∧K2 ∧KI .

5.2 THE DELAY FAULT SIMULATION ALGORITHM 85

R
u
le

I
c

a
d
d
it

io
n
a
l

J

in
v
e
rt

in
g

co
n
d
it

io
n

1
v
@

[x
;y

[
K

I
n
o

x
+

D
(v

)
≤

y
v
@

[x
+

D
(v

);
y

+
D

(v
)[

K
I

2
v
@

[x
+

δ;
y

+
δ[

K
I

n
o

x
+

D
(v

)
≤

y
v
@

[x
+

D
(v

)
+

δ;
y

+
D

(v
)
+

δ[
K

I

3
v
@

[x
+

δ;
y
[

K
I

n
o

-
v
@

[x
+

D
(v

)
+

δ;
y

+
D

(v
)[

K
J

4
v
@

[x
+

δ;
+
∞

[
K

I
n
o

-
v
@

[x
+

D
(v

)
+

δ;
+
∞

[
K

J

5
v
@

[x
;y

+
δ[

K
I

n
o

-
v
@

[x
+

D
(v

);
y

+
D

(v
)
+

δ[
K

J

6
v
@

]−
∞

;y
+

δ[
K

I
n
o

-
v
@

]−
∞

;y
+

D
(v

)
+

δ[
K

J

7
v
@

[x
;y

[
K

I
ye

s
x

+
D

(v
)
≤

y
v
@

[x
+

D
(v

);
y

+
D

(v
)[

K
I

8
v
@

[x
+

δ;
y

+
δ[

K
I

ye
s

x
+

D
(v

)
≤

y
v
@

[x
+

D
(v

)
+

δ;
y

+
D

(v
)
+

δ[
K

I

9
v
@

[x
+

δ;
y
[

K
I

ye
s

-
v
@

[x
+

D
(v

)
+

δ;
y

+
D

(v
)[

K
J

10
v
@

[x
+

δ;
+
∞

[
K

I
ye

s
-

v
@

[x
+

D
(v

)
+

δ;
+
∞

[
K

J

11
v
@

[x
;y

+
δ[

K
I

ye
s

-
v
@

[x
+

D
(v

);
y

+
D

(v
)
+

δ[
K

J

12
v
@

]−
∞

;y
+

δ[
K

I
ye

s
-

v
@

]−
∞

;y
+

D
(v

)
+

δ[
K

J

Table 5.1: Rules for the creation of output description inter-
vals

86 5. DELAY FAULT SIMULATION

Rule 9: The first constraint on J is K1 : x + δ < y as the left limit
of a time interval must be earlier than its right limit. The second
constraint K2 : x + D(v) + δ ≤ y derives from the delay model.
The third constraint on J is the inherited constraint KI . Finally,
KJ = K1 ∧K2 ∧KI .

Rule 11: The first constraint on J is K1 : x < y + δ as the left limit
of a time interval must be earlier than its right limit. The second
constraint K2 : x + D(v) ≤ y + δ derives from the delay model.
The third constraint on J is the inherited constraint KI . Finally,
KJ = K1 ∧K2 ∧KI .

Rules 4, 6, 10 and 12: Here J inherits I’s constraint. I.e. KJ = KI .

Case 3.2: c is a multiple-input cell and at least one of its input signals s′ is
non-fault-affected and FV (s′) = CV (c).

As was already explained in Section 5.1.2 (see signal 5), s is non-fault-
affected although it is in the fault site’s output cone. Thus, its signal de-
scriptor contains only one description interval.
SDs =

{
FV (s) @[LST + D(FV (s)); +∞[

}
, where LST is defined as

LST := min

{
LST (s′)

∣∣∣∣s′ is a non-fault-affected input signal
of c and FV (s′) = CV (c).

}
.

Case 3.3: c is a multiple-input cell and either none of its non-fault-affected
input signals has CV (c) as fault-free final value, or all its input signals
are fault-affected (e.g. signals 6 and 7 in Section 5.1.2).

We saw in Section 4.3.2 that the part of c’s overall input which is rele-
vant to faulty-circuit simulation, is described by the set of cv-intervals
of c and by the set of ncv-intervals of c. In this case, one begins with
an empty signal descriptor SDs. Then, for each cv-interval I an output
description interval J is inserted into SDs. The same is done with all
ncv-intervals. J is computed according to the rules listed in Table 5.1
(cf. also Table 4.1).

5.2 THE DELAY FAULT SIMULATION ALGORITHM 87

5.2.3 Computing the detection set of delay

size intervals

Once there is a signal descriptor for each output, it is possible to compute
the detection set of delay size intervals of f (line 15 in Figure 3.2).

One starts with an empty set D of detection intervals. Then, for each
primary or secondary output s with a fault-affected signal descriptor SDs

(those signals are all in the fault site’s output cone), we define the set SDbad
s

as the set of those description intervals during which signal s has the wrong
logic value (i.e. FV (s), not X). Finally, for each description interval I in⋃

s primary or secondary output SDbad
s , an interval DETI := [δmin; δmax] of delay

fault sizes is inserted into D. The meaning of DETI is that f is detected by
the current test pair p if f ’s size δ is in DETI . Once D has been constructed,
the last step consists in checking for non-empty intersections of intervals in
D and replacing all such intersecting intervals by their unions, in order to
produce a set containing only disjoint intervals.

Given a description interval I, the corresponding detection interval of
fault sizes DETI is computed according to the following rules:

Case 1: I has the form FV (s)@[leftI ; y[KI .

In this case, I definitely ends before time TC, so the detection interval
DETI is empty.

Case 2: I is of the form FV (s)@[x; y + δ[δI
min ≤ δ ≤ δI

max or of the form
FV (s)@]−∞; y + δ[δI

min ≤ δ ≤ δI
max.

This case is illustrated in Figures 5.5 through 5.8. I is represented by a
bold line starting at time x. I’s right limit lies between y+δI

min and y+δI
max,

depending on δ. The signal has a wrong (known) value during the interval I.
Thus, the fault is detected if x ≤ TC < y + δ, i.e. if the signal has a wrong
value at time TC.

If TC < y + δI
min (Figure 5.5), I ends after time TC for all valid δ values.

Thus, f is detected for all δ ∈ [δI
min; δ

I
max]. DETI is set to [δI

min; δ
I
max].

Else, if TC = y+δI
min (Figure 5.6), I ends right before time TC if δ equals

δI
min. δ must be greater than δI

min in order I to end after time TC. Since we
work with integer values, DETI is set to [δI

min + 1; δI
max].

Else, if TC < y + δI
max (Figure 5.7), DETI is set to [TC− y + 1; δI

max].

88 5. DELAY FAULT SIMULATION

min
I δmax

I

TC

y+

time

 x y+δ

I

Figure 5.5: Computing the detection intervals of delay sizes

min
I δmax

I

TC

y+

time

 x y+δ

I

Figure 5.6: Computing the detection intervals of delay sizes

min
I δmax

I

TC

y+

time

 x y+δ

I

Figure 5.7: Computing the detection intervals of delay sizes

min
I δmax

I

TC

y+

time

 x y+δ

I

Figure 5.8: Computing the detection intervals of delay sizes

5.2 THE DELAY FAULT SIMULATION ALGORITHM 89

Else, i.e. if y + δI
max ≤ TC (Figure 5.8), I ends before TC for all valid

values of δ. Hence, DETI is empty.

Case 3: I has the form FV (s)@[x + δ; y + δ[δI
min ≤ δ ≤ δI

max.
This case is illustrated in Figures 5.9 through 5.14. I is represented by a

bold line. I’s left limit lies between x + δI
min and x + δI

max, depending on δ.
I’s right limit lies between y + δI

min and y + δI
max, depending on δ. The signal

has the wrong output value during the interval I. Thus, the fault is detected
if x + δ ≤ TC < y + δ, i.e. if the signal has a wrong value at time TC.

As I has two variable limits, δmin and δmax are computed separately. δmax

is computed first:

If TC < x+δI
min (Figure 5.9), I begins after time TC for all valid δ values.

The fault remains undetected. Hence, DETI is empty.

Else, if TC < x + δI
max (Figure 5.10), δmax is set to TC− x. For δ’s larger

than TC− x, I begins after time TC and the fault remains undetected.

Else (Figure 5.11), I begins before time TC for all valid δ values. Hence,
δmax is set to δI

max.

Then, δmin is computed:

If TC < y+δI
min (Figure 5.11), I ends after time TC for all valid δ values.

Thus, f is detected for all δ ∈ [δI
min; δ

I
max]. δmin is set to δI

min.

Else, if TC = y + δI
min (Figure 5.12), I ends right before time TC if δ

equals δI
min. δ must be greater than δI

min in order I to end after time TC.
Since we work with integer values, δmin is set to δI

min + 1.

Else, if TC < y + δI
max (Figure 5.13), δmin is set to TC− y + 1.

Else, i.e. if y + δI
max ≤ TC (Figure 5.14), I ends before TC for all valid

values of δ. Hence, DETI is empty.

Finally, DETI is set to [δmin, δmax] if δmin ≤ δmax, else DETI := ∅.

90 5. DELAY FAULT SIMULATION

I δmax
I δmin

I δmax
I

TC

I

y+

time

x+ x+δmin y+

Figure 5.9: Computing the detection intervals of delay sizes

I δmax
I δmin

I δmax
I

TC

I

y+

time

x+ x+δmin y+

Figure 5.10: Computing the detection intervals of delay sizes

I δmax
I δmin

I δmax
I

TC

I

y+

time

x+ x+δmin y+

Figure 5.11: Computing the detection intervals of delay sizes

5.2 THE DELAY FAULT SIMULATION ALGORITHM 91

I δmax
I δmin

I δmax
I

TC

I

y+

time

x+ x+δmin y+

Figure 5.12: Computing the detection intervals of delay sizes

I δmax
I δmin

I δmax
I

TC

I

y+

time

x+ x+δmin y+

Figure 5.13: Computing the detection intervals of delay sizes

I δmax
I δmin

I δmax
I

TC

I

y+

time

x+ x+δmin y+

Figure 5.14: Computing the detection intervals of delay sizes

92 5. DELAY FAULT SIMULATION

6

Fault Coverage

Measuring the fault coverage that the simulated test set achieves corresponds
to the RO-simulator’s Phase 3 (see page 47). In this chapter the two metrics
which the RO-simulator uses to compute fault coverage are presented.

6.1 Introduction

In Section 2.4, the definition of four fault coverage metrics for the simulation
of resistive bridging faults was introduced. Those fault coverage definitions
reflected the fact that a resistive bridging fault g may be detected by a
given test set only if its resistance is in C-ADI (g), the union of one or more
disjoint ranges of resistances. The four fault coverage metric definitions were
the following:

• P-FC (g) :=

∫
C-ADI(g)

ρ(r)dr

+∞∫
0

ρ(r)dr

· 100%

• G-FC (g) :=

∫
C-ADI(g)

ρ(r)dr∫
G-ADI(g)

ρ(r)dr
· 100%

• E-FC (g) :=

∫
C-ADI(g)

ρ(r)dr

Rmax∫
0

ρ(r)dr

· 100%

93

94 6. FAULT COVERAGE

• O-FC (g) :=

{
0% if C-ADI (g) = ∅
100% else

where ρ(r) is the probability density function of the bridge resistance r.
Since the detection of resistive opens, as in the case of resistive bridging

faults, depends on the open’s resistance; and since in both cases the resistance
is a stochastic parameter, these fault coverage metrics are also applicable to
our work with resistive opens.

6.2 Fault coverage metrics for
resistive opens

Throughout the rest of this chapter, let F be the fault list and P be the set of
test pairs simulated in Phase 1 of the RO-simulator. Let f ∈ F be an LDF of
size δ modelling a resistive open with resistance r. Let C-ADI (f) denote the
detection set of resistance ranges computed in Phase 2 of the RO-simulator.

The drawback of P-FC is that it is too pessimistic as it assumes that, for
each resistance r′ ∈ [0, +∞[, a test pair p exists which detects f if r = r′.

G-FC is the most accurate metric as it takes into account the set
G-ADI (f) = {r′ |A test pair p exists which detects f if r = r′}. However,
computing this set is infeasible in most practical cases.

Thus, neither P-FC nor G-FC are used by the RO-simulator.
The first metric the RO-simulator uses is O-FC, exactly as it is defined

above.
The second metric the RO-simulator uses is simply called fault

coverage (FC). In order to define it, the same principle is used which
E-FC uses to avoid the pessimism of P-FC without being as computationally
complex as G-FC: the denominator’s integral goes over only one resistance
range with finite limits. Before formulating an equation for FC, some defini-
tions have to be introduced:

Dmin: This is the smallest size which δ may have such that f can be detected
by any test pair. In this work Dmin is set to TC− PLST.

Dmax: This is a number that is large enough as to assume that a fault
having that size will be detected in any case. In this work Dmax is set
to 5 · PLST.

6.3 AN EXAMPLE 95

Rmin: This is the size the open’s resistance must have in order to produce a
delay fault of size Dmin. Assuming that the delay-to-resistance mapping
is monotonically rising, Rmin is the smallest size the open’s resistance
must have such that it can be detected by any test pair.

Rmax: This is the size the open’s resistance must have in order to produce
a delay fault of size Dmax.

RC-ADI (f): RC-ADI stands for “restricted C-ADI” and is defined for a
fault f as1

RC-ADI (f) :=
{
Ir]Rmax, +∞[

∣∣ I ∈ C-ADI (f)
}
.

That means that RC-ADI of a fault is the same as its C-ADI, but all
resistances greater than Rmax are ignored.

Then, FC is defined as

FC (f) :=

∫
RC-ADI(f)

ρ(r)dr

Rmax∫
Rmin

ρ(r)dr

· 100%.

ρ is the probability density function of the open resistance. Ideally, ρ should
be obtained from the technology data. As these data are not available to us at
the moment, we rely on [43], where the authors report a uniform distribution
for resistances of up to 10 MΩ. Hence, ρ is defined as

ρ(r) := 1 for all r ∈ [0; 10 MΩ].

Note that, although ρ’s domain is not (as usual) R+, FC is well-defined, since
Rmax ≤ 10 MΩ in all cases (if an open’s resistance is greater than 10 MΩ,
the open is no longer considered a weak open [43]).

6.3 An example

The following example illustrates how to compute the fault coverage for a
fault f . For simplicity, let us assume that the delay-to-resistance mapping
maps n picoseconds to n milli-Ohm for all n ∈ N.

1Remember that C-ADI was defined in the context of the RO-simulator as a set of
ranges, and not like in [40] as a union of ranges.

96 6. FAULT COVERAGE

Let PLST be 150 ns, let TC be 180 ns (TC = 1.2 · PLST). Then,
Dmin = TC − PLST = 30 ns and Rmin is 30 Ω. Let Dmax be 750 ns
(Dmax = 5 · PLST). Then, Rmax is 750 Ω.

Let the C-ADI of a fault f be the set of resistance ranges{
[200 Ω; 310 Ω], [500 Ω; +∞[

}
. Then, RC-ADI of f is{

[200 Ω; 310 Ω], [500 Ω; 750 Ω]
}
. Finally,

FC (f) =

∫
RC-ADI(f)

ρ(r)dr

Rmax∫
Rmin

ρ(r)dr

· 100%

=

310∫
200

1 dr +
750∫
500

1 dr

750∫
30

1 dr

· 100%

=
(310− 200) + (750− 500)

750− 30
· 100%

= 50% .

Figure 6.1 illustrates the integral
∫

RC-ADI(f)
ρ(r)dr (the union of all dark

shaded regions) and the integral
∫ Rmax

Rmin
ρ(r)dr (the union of all dark and light

shaded regions). It can be seen, that FC (f) relates the fraction of those
ranges in which the open is detected to the observed “maximal” range from
Rmin to Rmax.

R Rmax

ρ

min

 500 400 300 600 100

1

10 M 200 700
Ω

Figure 6.1: Example: computing fault coverage

6.4 OVERALL FAULT COVERAGE 97

6.4 Overall fault coverage

The fault coverage for the fault list F is defined as the average over all faults
in the list (cf. Section 2.4):

• O-FC (F) :=

∑
f∈F

O-FC (f)

|F |

• FC (F) :=

∑
f∈F

FC (f)

|F |

If the probability that each fault occurs in the circuit (i.e. the probability
that the open which the fault models is present) is known, a more exact
fault coverage metric is obtained by weighting the average of the single fault
coverages by those probabilities. However, as these data are also not known,
the above definition is used by the RO-simulator.

98 6. FAULT COVERAGE

7

Experimental Results

The RO-simulation was applied to ISCAS 85 (combinational) and ISCAS 89
(sequential) benchmark circuits.

In all cases, one test set composed of 100 randomly generated test pairs
was simulated. In all cases the fault list included all LDFs, i.e. iR and iF for
each signal i in the circuit.

Table 7.1 lists the rising delay and the falling delay times (in picoseconds)
of each gate type. These fixed values were used for the simulation of all
benchmark circuits. In the table, ANDN denotes N -input gates of type AND
(analogously for gates of type OR, NAND or NOR). Currently, we do not
dispose of timing information regarding the cell library for the used ISCAS
benchmarks. Hence, all delay times in the table were chosen at random such
as to be between 1 and 7 nanoseconds. The simulator’s implementation can
read these delay data from file. Thus, there is no difficulty in using a different
set of delay times if these become available.

All measurements were performed on an Intelr XEONTM 2.00GHz
machine with 2GB RAM running Debian Linux.

Tables 7.2 and 7.3 list the benchmark circuits’ properties and an overview
of all obtained results. The meaning of the column labels is the following:

Signals: This is the number of signals in the circuit.

Faults: This is the number of simulated faults.

Depth: This is the circuit’s depth. If one wants to assess the worst-case
time which the simulator needs to perform fault-free and faulty-circuit
simulation, the circuit’s depth may be a better reference measure than
the circuit’s size expressed as number of signals.

99

100 7. EXPERIMENTAL RESULTS

Gate Rising Falling

type delay delay

BUF 3544 1551

AND2 4282 1811

AND3 3002 4302

AND4 3710 2345

AND5 4374 4460

AND6 6896 2517

AND7 3939 4130

AND8 5876 1618

AND9 4671 3666

AND10 1690 1304

AND11 1323 3196

OR2 4175 1933

OR3 3536 2552

OR4 3451 4293

OR5 5444 4133

OR6 5451 5013

OR7 4695 5631

OR8 2475 4506

OR9 3525 1367

OR10 4123 1996

OR11 5529 1997

Gate Rising Falling

type delay delay

INV 2932 5362

NAND2 1509 5836

NAND3 3307 1468

NAND4 5048 4249

NAND5 2002 3980

NAND6 5689 4070

NAND7 1136 5756

NAND8 4058 3174

NAND9 3182 3387

NAND10 3316 6173

NAND11 5641 1831

NOR2 2977 1482

NOR3 3361 6149

NOR4 1567 2159

NOR5 6713 6592

NOR6 6727 2667

NOR7 5824 2659

NOR8 2870 5153

NOR9 4559 2075

NOR10 6065 4747

NOR11 1894 3737

Table 7.1: Rising and falling delay times of each gate type

101

PLST: This is the guaranteed time in picoseconds after which all paths in
the fault-free circuit have stabilised after modifying any primary or
secondary input.

TC: This is the clock sampling time in picoseconds. All experiments were
run setting TC to 1.2 times PLST.

O-FC: The measured optimistic fault coverage, i.e. the percentage of faults
that were detected for at least one resistance.

FC: The measured fault coverage as defined in Section 6.4.

Time: This is the time in seconds which was needed to perform the simula-
tion of all 100 test pairs on the machine mentioned above.

Memory peak: This is the highest amount of RAM (in MB) which the
simulator used at any time during the process.

The diagrams in Figures 7.1 and 7.2 show how the needed time and
memory depend on the number of simulated faults (in this case, also on the
circuit’s number of signals) and on the circuit’s depth, respectively. The
amount of needed time and memory clearly rises only linearly as the number
of treated faults rises. Meanwhile, there is no identifiable relation between
circuit depth and use of computing resources.

The diagrams in Figures 7.3 and 7.4 show how the fault coverage depends
on the number of simulated faults and on the circuit’s depth, respectively.
The fault coverage values are uniformly distributed around their respective
average values and the dispersion is not large.

Here, it was observed, that a fault coverage of slightly more than 50%
was achieved with only 100 randomly generated test pairs. In order to learn
more about this topic a further experiment was performed on c5315 (second
largest combinational circuit) and on s35932 (third largest sequential circuit).
Two hundred random test pairs were simulated for each one of these two
circuits. The achieved fault coverage was measured after the simulation of
each test pattern, in order to see how fault coverage depends on the number
of random test patterns. The diagrams in Figures 7.5 and 7.6 report the
obtained results. In both cases, only about thirty to forty test pairs were
needed to achieve a fault coverage of more than 60%. Furthermore, hundred
test patterns were enough to achieve a fault coverage of more than 70% (80%
according to the optimistic metric).

102 7. EXPERIMENTAL RESULTS

C
ir

cu
it

S
ig

n
a
ls

F
a
u
lt

s
D

e
p
th

P
L
S
T

T
C

O
-F

C
(%

)
F
C

(%
)

T
im

e
M

e
m

.
p
e
a
k

c0
0
1
7

11
22

5
17

50
8

21
00

9
10

0.
00

90
.6

9
1

0.
06

c0
0
9
5

32
64

6
20

82
0

24
98

3
10

0.
00

94
.8

5
1

0.
10

c0
8
8
0

44
3

88
6

26
11

65
24

13
98

28
90

.8
6

78
.4

7
14

0.
94

c1
9
0
8

91
3

18
26

42
20

98
34

25
18

00
66

.0
5

56
.1

7
40

1.
77

c3
5
4
0

17
19

34
38

49
23

15
94

27
79

12
64

.5
5

55
.1

5
16

6
4.

17

c5
3
1
5

24
85

49
70

51
25

60
32

30
72

38
91

.5
7

76
.5

5
14

8
5.

68

c7
5
5
2

37
19

74
38

45
22

97
85

27
57

41
85

.6
7

72
.4

5
19

4
8.

76

s0
0
0
2
7

17
34

8
27

99
4

33
59

2
97

.0
6

87
.2

5
1

0.
07

s0
0
2
0
8

12
2

24
4

13
50

84
9

61
01

8
68

.0
4

59
.2

3
4

0.
27

s0
0
2
9
8

13
6

27
2

11
38

99
6

46
79

5
79

.7
8

68
.9

5
4

0.
30

s0
0
3
8
6

17
2

34
4

13
51

16
1

61
39

3
66

.5
7

60
.3

3
5

0.
36

s4
9
9

17
5

35
0

14
61

39
9

73
67

8
14

.2
9

12
.5

0
5

0.
36

s0
0
3
8
2

18
2

36
4

11
47

58
4

57
10

0
74

.7
3

65
.3

3
7

0.
39

s0
0
3
4
4

18
4

36
8

22
91

33
7

10
96

04
89

.9
5

76
.9

6
5

0.
40

s0
0
3
4
9

18
5

37
0

22
91

33
7

10
96

04
89

.7
3

76
.7

8
6

0.
40

s0
0
4
0
0

18
6

37
2

11
47

58
4

57
10

0
73

.3
9

64
.0

9
6

0.
40

s0
0
4
4
4

20
5

41
0

13
58

78
2

70
53

8
64

.1
5

55
.4

2
6

0.
43

s0
0
5
2
6

21
8

43
6

11
38

99
6

46
79

5
56

.4
3

48
.8

4
7

0.
46

s0
0
5
1
0

23
6

47
2

14
49

02
8

58
83

3
80

.5
1

71
.1

6
7

0.
49

s0
0
4
2
0

25
2

50
4

15
59

19
9

71
03

8
33

.1
4

29
.2

0
8

0.
51

s0
0
8
3
2

31
0

62
0

12
49

87
8

59
85

3
43

.2
3

37
.5

4
10

0.
60

s0
0
8
2
0

31
2

62
4

12
49

87
8

59
85

3
42

.9
5

37
.3

2
10

0.
62

s6
3
5

32
0

64
0

12
9

60
71

30
72

85
55

31
.4

1
25

.1
2

9
0.

62

Table 7.2: Experimental results: tabular overview

103

C
ir

cu
it

S
ig

n
a
ls

F
a
u
lt

s
D

e
p
th

P
L
S
T

T
C

O
-F

C
(%

)
F
C

(%
)

T
im

e
M

e
m

.
p
e
a
k

s0
0
6
4
1

43
3

86
6

76
37

64
83

45
17

79
81

.5
3

67
.9

3
13

0.
90

s0
0
9
5
3

44
0

88
0

18
72

86
0

87
43

1
51

.6
0

44
.2

4
14

0.
86

s0
0
7
1
3

44
7

89
4

76
38

02
75

45
63

29
78

.0
8

64
.9

9
14

0.
94

s0
0
8
3
8

51
2

10
24

19
75

89
9

91
07

8
13

.7
7

11
.9

8
15

0.
97

s9
3
8

51
2

10
24

19
75

89
9

91
07

8
16

.8
0

14
.7

1
16

0.
97

s0
1
2
3
8

54
0

10
80

24
10

48
38

12
58

05
59

.3
6

49
.9

9
16

1.
04

s0
1
1
9
6

56
1

11
22

26
11

72
09

14
06

50
57

.4
0

48
.1

1
17

1.
06

s0
1
4
9
4

66
1

13
22

19
77

88
6

93
46

3
71

.9
4

64
.0

3
20

1.
22

s0
1
4
8
8

66
7

13
34

19
77

88
6

93
46

3
71

.9
7

64
.1

0
21

1.
26

s0
1
4
2
3

74
8

14
96

61
26

19
25

31
43

09
72

.0
0

58
.2

4
24

1.
52

s1
5
1
2

86
6

17
32

32
12

96
28

15
55

53
64

.3
8

53
.8

1
27

1.
71

s3
2
7
1

17
14

34
28

30
14

02
04

16
82

44
88

.8
0

75
.4

1
29

3
6.

63

s3
3
8
4

19
11

38
22

62
26

05
11

31
26

13
92

.2
6

76
.0

6
65

3.
99

s3
3
3
0

19
61

39
22

31
13

61
75

16
34

09
64

.0
3

54
.3

8
61

3.
70

s0
5
3
7
8

29
93

59
86

27
12

55
31

15
06

37
63

.2
9

55
.7

5
97

5.
71

s0
9
2
3
4

58
44

11
68

8
60

28
12

00
33

74
39

43
.6

1
36

.1
8

26
4

10
.7

2

s1
3
2
0
7

86
51

17
30

2
61

30
46

32
36

55
58

57
.0

6
46

.6
7

38
2

16
.1

3

s1
5
8
5
0

10
38

3
20

76
6

84
42

22
86

50
67

43
62

.2
1

50
.9

0
48

5
18

.9
6

s3
5
9
3
2

17
82

8
35

65
6

31
15

33
05

18
39

65
89

.4
7

78
.3

7
73

3
36

.0
3

s3
8
5
8
4

20
71

7
41

43
4

58
29

41
45

35
29

73
73

.3
6

60
.0

9
10

51
38

.9
7

s3
8
4
1
7

23
84

3
47

68
6

49
22

96
13

27
55

35
77

.8
8

65
.3

4
99

2
44

.2
1

A
V

G
:

2
6
0
8

5
2
1
6

3
3

1
5
0
0
3
7

1
8
0
0
4
4

6
7
.1

6
5
7
.7

6
1
2
0

5
.1

3

Table 7.3: Experimental results: tabular overview

104 7. EXPERIMENTAL RESULTS

9537 19074 28611 38148 47685 number of faults

time

memory peak

36

27

18

9210

420

630

840

451050

time mem.

(sec.) (MB)

Figure 7.1: Use of resources depending on number of faults

36

27

18

9210

420

630

840

451050

circuit depth26 52 78 104 130

time

memory peak

time mem.

(sec.) (MB)

Figure 7.2: Use of resources depending on depth of circuit

105

9537 19074 28611 38148 47685 number of faults

20

100

80

60

40

(%)

O−FC

FC

Figure 7.3: Fault coverage depending on number of faults

20

100

80

60

40

(%)

26 52 78 104 130 circuit depth

O−FC

FC

Figure 7.4: Fault coverage depending on depth of circuit

106 7. EXPERIMENTAL RESULTS

20 40 60 80 100 120 140 160 180 200
number of
test pairs

20

40

60

80

100
O−FC

FC

Figure 7.5: Fault coverage depending on number of test pairs,
circuit c5315

20 40 60 80 100 120 140 160 180 200
number of
test pairs

20

40

60

80

100
O−FC

FC

Figure 7.6: Fault coverage depending on number of test pairs,
circuit s35932

107

An interesting observation is made when analysing Figures 7.3 through
7.6. The gap between O-FC and FC is rather small; in fact, O-FC never
exceeds FC by more than about 10 percentage points. This means that, in
the average, all faults which were detected for any resistance, could also be
detected for a large range of resistances.

An analysis of the simulator’s log files brought forth that all faults that
were detected for any resistance had the range [Rmax, +∞[in their C-ADI.
Thus, ignoring that range for the computation of FC does not influence in a
negative way the value FC (f) for any detected fault f .

Unfortunately, we are not aware of other authors having already proposed
a similar simulator for resistive opens. Hence, it was not possible to compare
the obtained results with achievements of other authors.

108 7. EXPERIMENTAL RESULTS

8

Conclusions

Resistive opens are frequent defects in modern deep sub-micron technologies.
They do not always affect the logic value of signal nodes, but cause signal
changes to delay. Although these delays may be small enough as to make
the fault hard-to-detect, it is very important to test for this kind of defects.

The resistance of an open is an unpredictable parameter, but it is essential
to characterise the behaviour of the defect. In this work, a simulator for
resistive opens was designed and implemented. It computes each fault’s
C-ADI, i.e. a set of ranges of resistances such that the open is detected
by the test set if its resistance is in one of those ranges. These simulation
results are especially useful during test pattern generation, as they tell if it
is necessary to generate more test pairs that assure that the fault can be
detected for a wide range of resistances.

The simulator works in three Phases. All three phases were presented and
the method of Phase 1 was treated extensively. Additionally, possibilities of
measuring fault coverage based on ADI were discussed. A new fault coverage
metric was defined.

Experiments were performed on ISCAS 85 and ISCAS 89 circuits, the re-
sults were reported. One conclusion was that the use of computing resources
depends only linearly on the circuit’s size.

Future work includes the integration of the technology-based delay-to-
resistance mappings for Phase 2 of the RO-simulator, performance profiling
and increasing interoperability with existing tools for static resistive bridging
faults like that presented in [12].

109

110 8. CONCLUSIONS

Appendix A

Contents of the Attached
CD-ROM

Directory tree: Contents of directory:

Diplomarbeit
|-- bin Makefile, README, executable files and
| configuration files needed to compile
| and run the simulator
|-- include header files and documentation on
| implemented classes
|-- lib compiled library and object files
|-- share
| |-- Benchmarks benchmark files
| |-- Documents support documents and some of the foreign
| | works mentioned in the bibliography
| |-- Experiments
| | |--Inputs complete lists of faults and lists of
| | | randomly generated test pattern pairs
| | | used to perform the experiments
| | ‘--Outputs complete lists of faults and log files
| | generated by the experiments
| ‘-- Thesis this document
| ‘-- Sources pdfLATEX-sources
| ‘-- Graphics included pdf-graphics
‘-- src source files of main applications,

libraries and library testing routines

111

112 APPENDIX A. CONTENTS OF THE ATTACHED CD-ROM

Bibliography

[1] M. Abramovici, M.A. Breuer, A.D. Friedman. Digital systems
testing and testable design. Computer Science Press, 1990.

[2] R.C. Aitken. Nanometer technology effects on fault models
for IC testing. IEEE Transactions on Computer, vol. 32, no. 11,
pp. 46-51, November 1999.

[3] B. Becker, I. Polian. Testen von digitalen ICs. Course held at the
Albert-Ludwigs-University of Freiburg, Winter Term 2003/04.

[4] M.L. Bushnell, V.D. Agrawal. Essentials of electronic testing
for digital, memory and mixed-signal VLSI circuits. Kluwer
Academic Publishers, 2001.

[5] A. Campbell, E. Cole, C. Henderson, M. Taylor. Case history:
failure analysis of a CMOS SRAM with an intermittent
open contact. 17th International Symposium for Testing and Failure
Analysis, Los Angeles, CA, November 1991.

[6] J.L. Carter, V.S. Iyengar, B.K. Rosen. Efficient test coverage
determination for delay faults. Proceedings 1987 IEEE Interna-
tional Test Conference, pp. 418-427, 1987.

[7] V.H. Champac, A. Zenteno. Detectability conditions for inter-
connection open defects. IEEE VLSI Test Symposium, pp. 305-
311, 2000.

[8] V.H. Champac, J. Figueras. Testability of floating gate de-
fects in sequential circuits. Proceedings of the 13th IEEE VLSI
Test Symposium, pp. 202-207, 2005.

113

114 BIBLIOGRAPHY

[9] K.T. Cheng, A. Krstic. Current directions in automatic test-
pattern generation. IEEE Transactions on Computer, vol. 32,
no. 11, pp. 58-64, November 1999.

[10] R.D. Eldred. Test routines based on symbolic logical state-
ments. Journal of the ACM, 6(1), pp. 33-36, 1959.

[11] P. Engelke, I. Polian, M. Renovell, B. Becker. Automatic test pat-
tern generation for resistive bridging faults. Proceedings of
the Ninth IEEE European Test Symposium, pp. 160-165, 2004.

[12] P. Engelke, I. Polian, M. Renovell, B. Becker. Simulating resistive-
bridging and stuck-at faults. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 25, i. 10, pp. 2181-
2192, October 2006.

[13] P. Engelke, I. Polian, M. Renovell, B. Seshadri, B. Becker. The pros
and cons of very-low-voltage testing: an analysis based on
resistive bridging faults. Proceedings of the 22nd IEEE VLSI Test
Symposium, pp. 171-178, April 2004.

[14] J.M. Galey, R.E. Norby, J.P. Roth. Techniques for the
diagnosing of switching circuit failures. Symposium on Switch-
ing Circuit Theory and Logical Design, pp. 152-160, March 1961.

[15] C.D. Graas, H.A. Le, T.A. Rosi. Correlations between initial
via resistance and reliability performance. 35th Annual Pro-
ceedings IEEE International Reliability Physics Symposium, April 1997.

[16] C. Hawkins, J. Soden, A. Righter, F.J. Ferguson. Defect classes -
an overdue paradigm for CMOS IC testing. International Test
Conference, pp. 413-425, 1994.

[17] C.L. Henderson, J.M. Soden, C.F. Hawkins. The behavior and
testing implications of CMOS IC open circuits. International
Test Conference, pp. 302-303, 1991.

[18] K. Heragu, J.H. Patel, V.D. Agrawal. Segment delay faults: a
new fault model. VLSI Test Symposium, pp. 32-39, 1996.

BIBLIOGRAPHY 115

[19] S. Irajpour, S.K. Gupta, M.A. Breuer. Multiple tests for each
gate delay fault: higher coverage and lower test appli-
cation cost. Proceedings 2005 IEEE International Test Conference,
pp. 9-17, November 2005.

[20] V.S. Iyengar, B.K. Rosen, J.A. Waicukauski. On computing the
sizes of detected delay faults. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 9, no. 3, pp. 299-
312, March 1990.

[21] N. Jha, S. Gupta. Testing of digital systems. Cambridge
University Press, 2003.

[22] H. Konuk. Voltage and current-based fault simulation for
interconnect open defects. Transactions On Computer-Aided De-
sign of ICs and Systems, vol. 18, pp. 1768-1779, December 1999.

[23] C. Lee, D.M.H. Walker. PROBE: a PPSFP simulator for resis-
tive bridging faults. VLSI Test Symposium, pp. 105-110, 2000.

[24] Z. Li, X. Lu, W. Qiu, W. Shi, D.M.H. Walker. A circuit level fault
model for resistive opens and bridges. VLSI Test Symposium,
pp. 379-384, 2003.

[25] J.C.M. Li, E.J. McCluskey. Testing for tunneling opens. Pro-
ceedings of the International Test Conference 2000, pp. 85-94, 2000.

[26] E. Lindbloom, J.A. Waicukauski, B. Rosen, V. Iyengar. Transition
fault simulation by parallel pattern single fault propaga-
tion. International Test Conference, pp. 542-549, 1986.

[27] A.K. Majhi, J. Jacob, L.M. Patnaik, V.D. Agrawal. On test
coverage of path delay faults. VLSI Design, pp. 418-421, 1996.

[28] A.K. Majhi, V.D. Agrawal. Tutorial: delay fault models and
coverage. VLSI Design, pp. 364-369, 1998.

[29] W. Maly. Realistic fault modeling for VLSI testing. Design
Automation Conference, pp. 173-180, 1987.

[30] W. Maly, P.K. Nag, P. Nigh. Testing oriented analysis of CMOS
ICs with opens. Proceedings 1988 IEEE International Conference on
Computer Aided Design, pp. 344-347, 1988.

116 BIBLIOGRAPHY

[31] E.J. McCluskey, C.W. Tseng. Stuck-fault tests versus actual
defects. International Test Conference, pp. 336-343, 2000.

[32] W. Needham, C. Prunty, E.H. Yeoh. High voltage microprocessor
test escapes, an analysis of defects our tests are missing.
Proceedings 1998 IEEE International Test Conference, pp. 25-34, Octo-
ber 1998.

[33] E.S. Park et al. Statistical delay fault coverage and defect
level for delay faults. Proceedings 1988 IEEE International Test
Conference, pp. 492-499, September 1988.

[34] I. Polian. On non-standard fault models for logic digi-
tal circuits: simulation, design for testability, industrial
applications. VDI Fortschritt-Berichte, Reihe 20, Nr. 377, VDI-
Verlag, Düsseldorf, 2004.

[35] A.K. Pramanick, S.M. Reddy. On the detection of delay faults.
Proceedings 1988 IEEE International Test Conference, pp. 845-856,
1988.

[36] A.K. Pramanick, S.M. Reddy. On the fault coverage of gate
delay fault detecting tests. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 15, no. 1, pp. 78-
94, January 1997.

[37] M. Renovell, G. Cambon. Topology dependence of floating
gate faults in MOS integrated circuits. Electronics Letters,
vol. 22, pp. 152-153, January 1986.

[38] M. Renovell, P. Huc, Y. Bertrand. CMOS bridge fault modeling.
VLSI Test Symposium, pp. 392-397, 1994.

[39] M. Renovell, P. Huc, Y. Bertrand. The concept of resistance
interval: a new parametric model for resistive bridging
faults. VLSI Test Symposium, pp. 184-189, 1995.

[40] M. Renovell, F. Azäıs, Y. Bertrand. Detection of defects
using fault model oriented test sequences. Journal of Elec-
tronic Testing: Theory and Applications, 14:13-22, 1999.

BIBLIOGRAPHY 117

[41] M. Renovell, M. Comte, I. Polian, P. Engelke, B. Becker. Analyzing
the memory effect of resistive open in CMOS random logic.
Design and Test of Integrated Systems in Nanoscale Technology 2006,
pp. 251-256, September 2006.

[42] R. Rodŕıguez-Montañés, E.M.J.G. Bruls, J. Figueras. Bridging de-
fects resistance measurements in a CMOS process. Interna-
tional Test Conference, pp. 892-899, 1992.

[43] R. Rodŕıguez-Montañés, P. Volf, J. Pineda de Gyvez. Resistance
characterization for weak open defects. IEEE Design & Test,
v. 19 n. 5, p. 18-26, September 2002.

[44] G.L. Smith. Model for delay faults based upon paths.
Proceedings 1985 IEEE International Test Conference, pp. 342-349,
1985.

[45] J. Soden, R. Treece, M. Taylor, C. Hawkins. CMOS IC stuck-
open fault electrical effects and design considerations.
Proceedings 1989 IEEE International Test Conference, pp. 423-430,
1989.

[46] C.W. Starke. Built-in test for CMOS circuits. International Test
Conference, pp. 309-314, 1984.

[47] N.N. Tendolkar. Analysis of timing failures due to random AC
defects in VLSI modules. Proceedings 22nd ACM/IEEE Design
Automation Conference, pp. 709-714, June 1985.

