Optimization Techniques for BDD-based Bisimulation Computation

Ralf Wimmer, Marc Herbstritt, Bernd Becker

Institute of Computer Science
University of Freiburg
Germany

Great Lakes Symposium on VLSI
March 13th, 2007
Outline

1 Motivation

2 Foundations
 - Signature-based Computation
 - Symbolic Implementation

3 Optimizations
 - Block Forwarding
 - Split-driven Refinement
 - Block Ordering

4 Experimental Results

5 Conclusion
Motivation
Model Checking

Real System

Modeling

System Model
Possible behaviour

Requirements

Formalizing

Requirement specification
Allowed Behaviour

Model Checker

No
Counterexample

Yes

Next Requirement

Done!
The Models: **STATEMATE**

Industrial state-of-the-practice tool:

Hierarchical, state-transition oriented specifications of reactive systems. Underlying: an LTS $M = (S, A, T)$ with internal behaviour (τ-steps).

![Diagram of a state-transition model]
Labelled Transition System (LTS)

Realistic models consist of billions of states!
The Specification: Timed Reachability

Example
What is the probability to reach a set of goal states within a certain time bound?

⇒ Timed reachability for uniform continuous-time Markov decision processes.
Tool Flow

- **StateMate description**
- **Safety requirements**
- **Failure-modes**

Stochastic model checking → **Continuous-Time Markov Decision Process** → **Composition** → **Interactive Markov Chain**

Discrete Domain

- **Symbolic LTS**
- **Branching Minimization**
- **Explicit Quotient LTS**

Stochastic Domain
Foundations
An equivalence relation $P \subseteq S \times S$ on the state space is a **branching bisimulation** iff $s \xrightarrow{a} s'$ and $a \neq \tau \lor (s, s') \notin P$ implies for all t with $(s, t) \in P$:

![Diagram showing branching bisimulation](image-url)
Idea

Characterize the states by the ability to execute visible actions.

\[(a, B) \in \text{sig}(P, s) \subseteq A \times P \text{ iff }\]

\[a \neq \tau \lor B \neq B'\]
Refinement Operator

Group states according to their signature:

\[
\text{sigref}(P) = \bigcup_{B \in P} \left\{ \{ t \in B \mid \text{sig}(P, s) = \text{sig}(P, t) \} \mid s \in B \right\}
\]

Applying \text{sigref} until a fixpoint is reached yields the coarsest branching bisimulation [Blom/Orzan, 2003].
Data Representation

- Use the **characteristic function** of
 - state space
 - transition relation

 ⇒ BDDs $S(s), T(s, a, t)$.

- **Partition representation:**
 - Assign a unique number to each block, i.e., $P = \{B_1, \ldots, B_n\}$.
 - Binary encoding of the block numbers.
 - BDD $P(s, k) = 1 \iff s \in B_{\langle k \rangle}$.

- **Signature representation:**
 \[
 \sigma(s, a, k) = 1 \iff (a, B_{\langle k \rangle}) \in \text{sig}(P, s)
 \]
Signature computation

Operations

Current BDD packages (e.g. CuDD) provide all necessary operations:

- Reflexive transitive closure of a relation
- Concatenation of relations
- Substitution of a state by its block number
- ...
Partition Refinement

New operation needed:

Signature of all states that lead to node v

BDD-representation of the new block number
Optimizations
Avoiding expensive expressions

Observation
The computation of
\[\exists k : (P(s, k) \land P(t, k)) \] (1)
(needed for the identification of inert transitions) is very expensive.
Avoiding expensive expressions

Observation
The computation of

$$\exists k : (P(s, k) \land P(t, k))$$ \hfill (1)

(needed for the identification of inert transitions) is very expensive.

Solution
Avoid it by refining not all blocks in one step but only one block $B(s)$ at a time. Replace (1) by

$$B(s) \land B(t).$$
Idea

Update the partition after each refinement step:

\[P \leftarrow (P \setminus B) \cup \text{sigref}(P, B) \]

⇒ Faster convergence.
Split-driven Refinement (1)

Idea

Refine only those block which are possibly unstable.

\[bw_{\text{sig}}(P, B) = \{ B' \in P \mid \exists s \in B' \exists a \in A : (a, B) \in \text{sig}(P, s) \} \]
Because we are walking backwards, we again need the expensive expression
\(\exists k : (\mathcal{P}(s, k) \land \mathcal{P}(t, k)) \).
(We have to ignore inert \(\tau \)-steps).
Solution

Compute an \textbf{over-approximation} of the potentially unstable blocks. This does not impact the correctness.

\[
\text{bw}_{-}\text{sig}^{oa}(P, B) = \{B' \in P \mid \exists s' \in B', s \in B, a \in A : s' \xrightarrow{a} s\}
\]

We ignore the following condition: If \(a = \tau \) then \(B' \neq B \).

Most of \(\text{bw}_{-}\text{sig}^{oa} \) can be computed in a preprocessing step. So, it’s very efficient.
Block Ordering

Observation
The order in which the blocks are refined influences the runtimes.

Heuristics for the determination of a block order:

- **SortByBlockSize**
 Refine blocks with many states first.

- **SortByBWSig**
 Refine blocks first which influence many other blocks.

- **SortByBDDSize**
 Refine blocks represented by a small BDD first.
Experimental Results
Benchmarks

- Milner’s Scheduler (ml-n)
- Kanban Production System (kb-n)
- StateMate models of a train control system (etcs-n), a braking controller of an airplain (bs-p), and an industrial benchmark (ctrl).
Number of Refined Blocks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Original</th>
<th>Split-Driven Refinement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kb-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kb-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kb-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kb-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kb-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kb-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ml-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ml-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ml-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ml-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ml-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etcs1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etcs2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>etcs3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bs-p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ctrl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Original
- Split-driven refinement
- Split-driven refinement w.r.t. block sizes
- Split-driven refinement w.r.t. size of bw_sig
Runtimes

Runtime of Sigref Benchmark
original
with split-driven refinement
sdr + order w.r.t. block sizes
sdr + order w.r.t. size of bw_sig

Benchmark
kb-4 kb-5 kb-6 kb-7 kb-8 kb-9 ml-4 ml-5 ml-6 ml-7 ml-8 etcs1 etcs2 etcs3 bs-p ctrl

Runtime of Sigref

With split-driven refinement, the runtime is significantly reduced compared to the original. The order w.r.t. block sizes further minimizes the runtime, and the order w.r.t. size of bw_sig provides the most significant reduction.
Conclusion
Summary + Future Work

We have seen:
- symbolic computation of branching bisimulations
- signature-based approach
- optimizations that speed-up the computation
- experimental results showing the effectiveness of the optimizations.

To be done:
- Symbolic computation of stochastic bisimulations
- Handling different notions of divergence
Thank you for your attention!
Do you have questions?