
Design Reuse by Modularity: A Scalable Dynamical
(Re)Configurable Multiprocessor System

Rolf Drechsler Nicole Drechsler Elke Mackensen Tobias Schubert Bernd Becker

Institute of Computer Science
Chair of Computer Architecture

Albert-Ludwigs-University
79110 Freiburg im Breisgau, Germany

fdrechsle,ndrechsl,mackense,schubert,beckerg@informatik.uni-freiburg.de

Abstract

We present a scalable, low cost multiprocessor system,
which is used in the area of measurement, regulation, con-
trolling and soft computing. The system is an example of
extremely modular hardware/software design. Modular in
this context means that we can easily change or optimize
individually the components in the system for a given prob-
lem. One of the most important aspects of our multiproces-
sor system is the fact, that the user can dynamically change
the communication topology by software ’on-the-fly’. Thus,
the hardware can be (re)configured during operation in less
than 1ms. By this, the CPUs in the multiprocessor system
can communicate directly without any invention of another
processor preventing the typical bottleneck in parallel sys-
tems. First applications have been implemented in an em-
bedded controller for a vote counting machine with empha-
sis on high data security and high throughput.

1 Introduction

Parallel hardware is getting more and more popular,
since many hard problems require large computational
power. Many CPUs in parallel offer new opportunities to
handle large problem instances.
One of the major drawbacks of most parallel systems is that
the communication topology is fixed (see e.g. Transputers).
On the other hand different problems often work only effi-
ciently with different hardware requirements [2, 3]. In re-
cent studies it has been shown by simulations that for vary-
ing applications different communication topologies should
be preferred (see e.g. [1]). Thus, there is need for parallel
systems that can be dynamically adapted to a given problem
description.
In this paper we present a dynamical (re)configurable, low

cost multiprocessor system. The system is based on the
HSB bus definitions [1]. Small RISC type CPUs, the so-
called Processor Nodes (PNs), are the basic computing units
of the system. The PNs are put on an carrier board. As a
carrier board we used a long PC ISA card. Thus the multi-
processor system can be used as a plug-in in each PC, but it
can also be run stand alone. Up to 9 PNs can be used on the
carrier board. Several cards can be run in parallel on a single
PC. Coupling carrier boards across PC boundaries is also
possible. The communication channels between the PNs
can dynamically be switched by a Field Programmable In-
terconnection Device (FPID) realizing a crosspoint switch.
The controlling of this FPID is done by a Communication
Processor (CP), that is also placed on the carrier board. It
is important to notice that the CP controls the information
exchange between the PNs in the multiprocessor system,
but does not actively take part. PC-based software tools
have been developed that allow in a comfortable way to
program the multiprocessor board. As programming lan-
guages assembler and C can be used. A Win95based en-
vironment is available for software development and de-
bugging. The user can flexibly change the communication
topology and download programs to the PNs. The system
is a very good example for design reuse based on modular-
ity. The board can be reconfigured dependent on the appli-
cation. The multiprocessor system finds application in the
area of measurement, regulation and controlling. Due to the
execution speed the multiprocessor system is also suitable
for real-time-applications. We discuss an industrial applica-
tion based on these principles that has already been imple-
mented successfully.

The paper is structured as follows. The definition of the
HSB buses, that is the underlying bus structure in the sys-
tem, is given in Section 2. In Section 3 the architecture of



the multiprocessor system is introduced and the main com-
ponents are presented. The communication structure is de-
scribed in Section 4. An industrial application is presented
in Section 5. Finally, in Section 6 we summarize the main
results.

2 Modular Hardware

In this section, we describe the Hierarchical System of
Busses(HSB), which builds the core structure of the hard-
ware and determines the modularity of the system by def-
inition. The HSB standard originally has been defined to
support embedded control systems in small to medium vol-
ume applications. Major design goals were the reuseability
of hardware by means of an extremely modular design, the
support for multiple bus protocols and multiple processors
in one system, and finally, small module sizes to comple-
ment the ongoing decrease in size of electronic circuitry,
while its complexity increases.

HSB definitions arrange the overall structure of a com-
puting system into four hierarchically ordered layers, each
with its own bus definition:

� Layer 1: HSB-AB, the local CPU bus,

� Layer 2: HSB-BB, the system bus,

� Layer 3: HSB-CB, the controller bus, and

� Layer 4: HSB-DX, the driver ’bus’.

The local multiprotocol CPU bus, HSB-AB, is suitable for
multiplexed or non-multiplexed 8-32 bit processors. HSB
CPU modules are credit card sized (95 * 55 mm2).
Any of the standard bus definitions available on the mar-
ket can be used for the system bus HSB-BB (e.g. AT96,
PC-ISA, STD, STE, or VMEbus, to name only a few). In
embedded control applications the system bus may even be
omitted, thus giving room to additional IO pins. According
to the system bus chosen, HSB carrier boards may vary in
board size and shape.
The controller bus HSB-CB is capable of running multi-
ple bus protocols also. It uses an 8 bit wide multiplexed
data/address path. Single width HSB controller modules
measure 94 * 23 mm2. Double width HSB controllers al-
low for 16 bit transfers. Programmed IO, interrupts, and
DMA transfers as well as IO coprocessors are all supported
by the HSB-CB controller bus, as are auxiliary serial busses
like I2C-, SPI-Bus, or Microwire. A common trigger signal
can be used for synchronizing all clocks or AD converters
in the system.
The driver ’bus’, HSB-DX, is no real bus in most instances,
but allows for the unified connection of HSB controllers to
their respective HSB driver modules. This can be done in a

daisy chain or party line manner, or any other scheme ap-
propriate for the application. Thus, a multichannel serial
controller can be equipped with different driver modules on
a channel by channel basis.

In a configured HSB system the local CPU and the con-
trollers can concurrently run different bus protocols in an
arbitrary mix. Incompatibilities of the various bus protocols
used are resolved by a small PLD on the HSB carrier board.
If the PLD is being replaced by a more sophisticated FPGA,
the HSB definitions allow for autoconfiguration, also.

3 Multiprocessor System Architecture

In this section, we describe the most important hardware
components of our multiprocessor system (see Figure 1).
The system is characterized by its modularity. It mainly
consists of three elements, i.e. the Carrier Board (CB), the
Processor Nodes (PNs) and the Communication Processor
(CP), that will be described below.

Before these components are explained some general
properties of the system are discussed:

� Each processor, i.e. the PNs and the CPs, is located on
separate boards and for this can easily be exchanged or
in the case of PNs even be removed. Dependent on the
application other modules can be used and by this it is
allowed to reuse large parts of existing hardware also
in new applications/projects.

� The communication topology of the whole system can
be reconfigured ’on-the-fly’ in less than 1ms. Notice
that this is not possible with most commonly used par-
allel computers, like e.g. Transputers. Furthermore,
we make use of a Field Programmable Interconnec-
tion Device (FPID) realizing a crosspoint switch (the
device is located below the CP on the CB). The FPID
allows to establish a real hardware connection between
PNs that want to exchange information. Thus, the typ-
ical bottleneck of parallel computers is prevented (the
communication between the PNs is described in more
detail in Section 4).

� The systems is dimensioned such that up to 81 proces-
sors (corresponding to nine CBs) can be run in parallel.

� For providing a comfortable user interface the CB can
be plugged in a PC, but it can also be run in a stand
alone mode.

3.1 Carrier Board (CB)

A long PC ISA slot card serves as the CB. The CB is the
core of the multiprocessor system and it is used for commu-



Figure 1. Picture of the Multiprocessor System

nication switching. Furthermore, during software develop-
ment all programs are downloaded using the interface to the
PC. Besides the CP up to nine PNs fit onto one board (see
Figure 1). Notice that the CB can also be run with less PNs,
e.g. in applications where less are sufficient.
A dual port RAM on the CB serves for connecting the local
bus of the CB to the PC ISA bus. In our hardware environ-
ment we use a local bus also for connecting different CBs.
This results from our applications, where the multiproces-
sor system is also used in real-time applications, but the PC
ISA bus cannot guarantee any timing behavior due to the
specification.

The connection between PNs is established by a cross-
point switch. In our case we use the ICUBE IQ160, a Field
Programmable Interconnection Device (FPID) [4, 5]. Off
board channel connections are made through 3 IDC cables
running between the carrier boards. This cables are placed
on the top of the CB.
The internal routing of the CB has been done in such a way
that the complete layout can be transferred also to a short

PC ISA card. This allows to reuse not only the hardware,
but also gives the opportunity to reuse most of the design
information.
For all components, i.e. the CP and the PNs, on a CB a com-
munication protocol is specified that allows to exchange the
different components (see below).

3.2 Processor Node (PN)

The PNs are the basic computing units. First, we give
one more detailed example of a PN and then outline some
alternatives.

The PN used in Figure 1 (see also top of Figure 2) has
the following main characteristics:

� Microchip PIC 17C43 CPU, i.e. a pipelined RISC type
Harvard architecture [7].

� 256 Byte local RAM and 4 KB local EPROM.

� External 64 K x 16 Bit RAM.



Figure 2. Different PN Modules

The PIC 17C43 CPU from Microchip was chosen for
our purposes, since it is a low cost and for our applications
satisfying module (see Section 5). The external RAM is
reserved for the application program of the PN, while the
EPROM contains basic functionality, like downloading pro-
grams and a simple operating system. The PN is equipped
with one serial communication channel, capable of trans-
ferring data at 5 Mbit/s. Dependent on the application this
channel can be used in two different ways:

1. In the field of Evolutionary Algorithmsfor example the
serial ports of all PNs are connected to the FPID device
to establish the communication between the PNs.

2. For regulation and measurements the serial port of
each PN can be used for communication with the ’out-
side world’. This further underlines the flexibility of
the system.

The PNs interface to the CP is implemented very flex-
ibly, i.e. it can easily be replaced by other modules. Two
more examples are given in Figure 2:

1. In the middle an analog/digital converter is shown.
This allows to also input analog data into the system.

2. A Microchip PIC16C64 CPU, i.e. a smaller CPU than
described above without external memory, for applica-
tions where this is sufficient.

Notice that PNs of different type can easily be run in
parallel on the same CB. Especially the combination of dif-
ferent PNs shows the advantages of the modular design. For
completely different applications still the same CB can be
used and only some components have to be designed. This
allows effective hardware design and fast time-to-market
also with highly optimized components.

3.3 Communication Processor (CP)

The CP serves for handling the requests for communica-
tion issued by the PNs, for arbitrating with the CP on other
CBs, and for controlling the channel switching FPID on its
own CB.



Figure 3. CP with Motorola MC68340 CPU

The CP consists of the following (see Figure 3):

� Motorola MC68340, i.e. a CISC type CPU of the 68-
family tuned for data exchange [8].

� 256 KB RAM.

� 128 KB EPROM.

In our software environment the CP also handles the
communication with the PC: It receives the application pro-
grams for the PNs from the PC, and then the CP is respon-
sible for downloading the programs into the PNs. Since the
crosspoint switch on the CB realized by an FPID is used,
the programs can also be distributed in parallel (broadcast-
ing). Due to the modular design of our system also the CP
can be replaced by other CPU types.

4 Communication Structure

So far we have only focussed on the hardware of the sys-
tem. In this section the communication between PNs is ex-
plained in more detail. By this, the modularity and the close
interaction between hardware and software will be demon-
strated. An example is given to show how the PNs can
communicate without the influence of the CP during data
exchange.

In Figure 4 the principle of the communication process
is shown. The communication between the PNs takes place
by the serial communication ports of the PNs. The serial
ports of all PNs on the CB are directly connected to the
on-board crosspoint switch ICUBE IQ160. The channel
switching is left to this device. A crosspoint switch can

rapidly switch connections on and off, thus decreasing the
switching overhead to almost meaningless figures (< 1ms).
The FPID used to realize the crosspoint switch allows for
one-to-one, as well as one-to-many connections. With this
feature we can realize different communication topologies
as star, ring, and cubes, to name only a few.

The user can choose (on-line) a desired communication
topology by software. The CP manages the present com-
munication topology by a RAM-list. The CPs as master
processors accept the request for communication issued by
the PNs and control the crosspoint switch, but they do not
participate in the communication between the PNs. Conse-
quently, the active communication tasks do not slow down
the channel assignments, and vice versa. The communi-
cation channels are completely separated from the CP bus,
thus reducing the hardware requirements considerably and
preserving the CP bus bandwidth.

To illustrate the communication principle we give a brief
example (see Figure 4): If PN 1 wants to exchange data with
an other PN, it gives a signal to the local CP. The CP looks
up in the RAM-list, where the actual communication topol-
ogy and the switched channels are tagged. A free channel at
the crosspoint switch has to be found and then is assigned.
This one has to be flagged in the RAM-list as being in use
now. The assignment has to be reported to the participants
of the communication, in our example PN 1 and PN 3, and
then the CP drives the crosspoint switch to route the cho-
sen channels (dotted lines). The CP uses the FPID like a
memory device and (dis)connecting two channels is done
by writing a ’1’ (’0’) to the corresponding address.



Figure 4. Principle of the Communication Structure

The participants are now allowed to exchange their mes-
sage(s). Upon completion the channel assignment is re-
leased, the assignment flags are cleared, and the release is
reported to the participants of the communication. Notice
once more that the CP is only responsible for establishing
the connection, but not for transferring the data.

5 Modular Design in Real Applications

The HSB bus has in the meantime been used as a back-
bone structure in other applications, e.g in embedded con-
trol. In the following we briefly report on a successful im-
plementation, that has frequently been used in industry. We
start with a short definition of the embedded control task:

The HSB definitions have first been used in the embed-
ded control system of a fast batch reader for barcode cards,
which was specified to read at a rate of 800-1000 cards/min.
The data collected by a mark/sense and a 2-channel bar-
code read head had concurrently to be gathered, interpreted,
approved by validity check, and merged, before being for-
matted, buffered, and sent to the host processor. A con-
trol panel incorporating a distribution of concurrent soft-
ware tasks onto different processors simplified the software
by eliminating the need for a fast real time operating sys-
tem. Thus, the design became less error prone and featured
greatly enhanced testability, both, from a hardware and soft-
ware point of view.

By modularity the design invited to delegate the im-
plementation of different design tasks to different persons.
Hardware and software could concurrently be developed.
As the hardware structure was based on the highly modular
HSB bus definitions, design prepartitioning, which is con-

sidered to be a mission-critical issue, did not show up as an
explicit and demanding step in the design flow. Moreover,
most of the tests, necessary to verify proper system oper-
ation, were restricted to the narrow scope of the modules
themselves. A common over-all system test proved to be
quite unambitious.

Meanwhile, these barcode batch readers are being used
for vote counting on large shareholders assemblies by nine
of the fifteen largest shareholder companies in Germany.
This is a critical application, demanding a very high stan-
dard of reliability and data validity.

6 Conclusion

We presented a modular, low cost multiprocessor sys-
tem. Each PN consists of a RISC type Harvard architecture
CPU. The system can dynamically be (re)configured during
runtime, i.e. the communication topology can be adapted to
the given application.
Based on the use of crosspoint switches it is possible to
switch the communication topology, i.e. to simulate differ-
ent communication structures like chains, arrays, or cubes.
Even more exotic ones are possible, e.g. rings, spirals, and
helixes, to name only a few. Thus, the method is well suited
for education and research purposes. Additionally, we dis-
cussed software and hardware aspects with special empha-
sis on modularity.
The system has been especially designed for the area of
measurement, regulation, controlling and experimenting
with different parallel algorithms in real-time environments.

A first embedded control application in a fast batch
reader for barcode cards, which utilizes a 4-processor struc-



ture, has successfully demonstrated the merits of the highly
modular design described.

Acknowledgement

The authors like to thank Peter Biermann (y), Horst
Reinhardt, and Kai Reidelbach from pd Computer GmbH
for their help with the hardware implementation.

References

[1] P. Biermann, R. Drechsler, and B. Becker. Modular-
ity as key element in modern system design - a case
study for industrial application of parallel processing.
In European Design & Test Conf. User Forum, 1997.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM3 user’s guide
and reference manual. Technical Report ORNL/TM-
12187, Oak Ridge National Laboratory, September
1994.

[3] K. Hwang and F.A. Briggs. Computer Architecture
and Parallel Processing. McGraw-Hill, New York,
1984.

[4] I-Cube Inc. Optimizing performance in a multistage
network. In Application Note No. 3, 1994.

[5] I-Cube Inc. Using FPID devices in FPGA-based pro-
totyping. In Application Note No. 2, 1994.

[6] Microchip Technology Inc. Embedded Control Hand-
book, 1994.

[7] Microchip Technology Inc. Microchip Data Book,
1994.

[8] Motorola Inc. MC68340 Integrated Processor with
DMA - User’s Manual, 1992.

[9] T. Schubert, E. Mackensen, N. Drechsler, R. Drech-
sler, B. Becker. Specialized hardware for implemen-
tation of Evolutionary Algorithms. Technical Report,
Albert-Ludwigs-University of Freiburg, 2000.

[10] N. Sitkoff, M. Wazlowski, A. Smith, and H. Silver-
man. Implementing a genetic algorithm on a paral-
lel custom computing machine. In International Sym-
posium On FPGAs for Custom Computing Machines,
pages 180-187, 1995.

Trademarks used herein are the property of their respec-
tive owners.


