Int J Parallel Prog
DOI 10.1007/s10766-009-0124-7

Thread-Parallel Integrated Test Pattern Generator
Utilizing Satisfiability Analysis

Alexander Czutro - Ilia Polian - Matthew Lewis -
Piet Engelke - Sudhakar M. Reddy - Bernd Becker

Received: 21 July 2009 / Accepted: 14 December 2009
© Springer Science+Business Media, LLC 2009

Abstract Efficient utilization of the inherent parallelism of multi-core architectures
is a grand challenge in the field of electronic design automation (EDA). One EDA algo-
rithm associated with a high computational cost is automatic test pattern generation
(ATPG). We present the ATPG tool TIGUAN based on a thread-parallel SAT solver.
Due to a tight integration of the SAT engine into the ATPG algorithm and a carefully
chosen mix of various optimization techniques, multi-million-gate industrial circuits
are handled without aborts. TIGUAN supports both conventional single-stuck-at faults
and sophisticated conditional multiple stuck-at faults which allows to generate pat-
terns for non-standard fault models. We demonstrate how TIGUAN can be combined
with conventional structural ATPG to extract full benefit of the intrinsic strengths of
both approaches.

Keywords Thread-parallel SAT - SAT-based automatic test pattern generation

1 Introduction

Semiconductor manufacturing processes are yield processes: a significant fraction
of manufactured microchips are defective [1]. To prevent delivery of such defective
products to the customer, every circuit is tested by special automated test equipment.

A. Czutro - I. Polian (<) - M. Lewis - P. Engelke - B. Becker

Computer Architecture Group, Institute for Computer Science, Albert-Ludwigs-University,
Georges-Kohler-Allee 51, 79110 Freiburg i. Br., Germany

e-mail: polian @informatik.uni-freiburg.de; ilia@polian.de

S. M. Reddy
ECE Department, University of lowa, lowa City, 1A, 52242, USA

Published online: 01 January 2010 &\ Springer

Int J Parallel Prog

This equipment applies input vectors called test patterns to the chip and compares the
responses calculated by the chip with pre-computed reference responses. The circuit
passes the test if all responses match.

The testing process is associated with significant cost which may reach up to 40%
of the total manufacturing cost according to the International Technology Roadmap
for Semiconductors. To reduce this cost, test patterns are generated by tools called
automatic test pattern generators (ATPG) [17,19-21,34]. Although test generation
is an NP-complete problem, state-of-the-art test generators are able to handle large
industrial multi-million-gate designs.

ATPG tools use the notion of a fault model which is an abstraction of actual man-
ufacturing defects. For instance, the (single-)stuck-at fault model assumes that one
circuit line is permanently stuck at O or 1 due to a defect. Given a fault list (e.g., the
complete list of all stuck-at-0 and stuck-at-1 faults in the circuit), an ATPG tool would
try to generate a compact set of test patterns (fest set) which detects the faults in the
fault list. If no test pattern is found for a fault, an ATPG tool attempts to prove that
this fault is redundant and no test pattern could detect it. Undetected faults not proven
redundant are considered aborted or unclassified.

The advent of multi-core architectures raises the question how ATPG, among other
electronic design automation (EDA) algorithms, can benefit from these architectures
in an optimal way. Significant research on distributed ATPG has been performed in
the past [18]. However, it was based on the general assumption that communication
between processor nodes is very expensive. This assumption is not necessarily true
for multi-core architectures where individual cores are located in physical proximity
to each other, sharing fast caches, or are connected by fast buses.

Traditional deterministic automatic test pattern generation (ATPG) algorithms work
directly on the circuit structure [17,20,21,34], possibly in conjunction with additional
data structures such as implication graphs [44] or advanced techniques to prune the
solution space [19,45]. It has long been known that an ATPG problem can be reduced
to a Boolean satisfiability (SAT) instance and solved using a SAT solver [28,43]. How-
ever, this approach has not become widely adopted as the structural approaches tended
to exhibit better performance.

It has recently been shown that SAT-based ATPG outperforms structural approaches
for several classes of faults [10]. One such class consists of redundant faults. SAT
solvers are routinely used to prove unsatisfiability in applications such as equivalence
checking [26], and a number of techniques have been developed to quickly prune large
parts of the solution space. In contrast, structural ATPG methods may need to traverse
almost the complete solution space to make sure that no test pattern for a fault exists.
It has also been reported that there are testable faults for which structural ATPG per-
forms a large number of backtracks to find a pattern while SAT-based ATPG swiftly
finds a solution [10].

The ability to handle redundant faults is becoming more important for two rea-
sons. First, defects in nanoscale manufacturing technologies may not be described
adequately by stuck-at faults [2]. Non-standard fault models such as resistive bridging
faults [15,33] or interconnect opens [23,37] may impose very specific conditions on
the lines in the circuit, which are, in many cases, impossible to satisfy, so the fault
is undetectable. Second, redundant structures are being increasingly used to enhance

@ Springer

Int J Parallel Prog

circuit reliability and yield [40,46]. A significant fraction of faults in these structures
are not detectable. To accurately estimate the defect coverage, the proof that the fault
in question is undetectable (rather than aborted) is essential.

In this article we present the ATPG tool TIGUAN (Thread-parallel Integrated test
pattern Generator Utilizing satisfiability Analysis) which is based on the in-house
SAT solver MiraXT [29]. MiraXT is a state-of-the-art SAT solver which incorpo-
rates various optimization techniques developed in the last few years. Moreover,
it supports thread parallelism, thus fully utilizing the performance of multi-proces-
sor systems or multi-core processors. In contrast to other existing tools [10,16],
TIGUAN is tightly coupled with the SAT engine and can dynamically control its inter-
nal parameters such as which preprocessing steps are performed or number of threads
to be used. Additionally, we present a two-phase method which utilizes MiraXT’s
inherent parallelism without wasting too much time for thread initialization on easy
instances.

Another feature of TIGUAN is the support of the general conditional multiple-
stuck-at (CMS @) fault model. The model allows faulty effects to be present on multiple
circuit lines (victims) simultaneously if a number of conditions on other lines (aggres-
sors) are satisfied. Many static non-standard fault models can be mapped to conditional
multiple-stuck-at faults, making TIGUAN a flexible tool to handle various defect
classes.

Experiments demonstrate that TIGUAN can generate complete stuck-at test sets for
large industrial circuits with up to several million gates without aborts. For two classes
of non-standard fault models (represented by CMS @ fault lists) TIGUAN completely
classifies all ISCAS and ITC benchmarks and most industrial circuits. TIGUAN also
outperforms earlier SAT-based ATPG tools.

The remainder of the article is organized as follows. The CMS @ fault model and
the mapping of other fault models to the CMS @ fault model is introduced in the next
section. Section 3 introduces SAT-based ATPG, gives the overall flow of TIGUAN,
and explains how parallelism is integrated. Experimental results using up to 16 threads
are reported in Sect. 4 for stuck-at faults as well as more complex faults mapped to
CMS @ faults. Section 5 concludes the article.

2 CMS@ Fault Model

TIGUAN incorporates the conditional multiple-stuck-at (CMS @) fault model which
includes the standard single-stuck-at fault model and is related to generic fault model-
ing approaches such as fault tuples [9] or the Generalized Fault Model [27]. A CMS @

fault with r aggressor lines and s victim lines consists of a list {a /a}’“l s, dy /a;’“l }
and a list {vl/v’f“l, e vs/v;}”l} , where each a; and each v; denotes a signal line

and all ai”“l and U}f“l stand for a logical value (0 or 1). A circuit under a CMS @ fault
exhibits faulty behavior under any input vector which sets every aggressor line a; to
a}“l. In this case, the value on each victim line v; changes to v;“’ .

A single-stuck-at-fault is represented by a CMS @ fault with an empty aggressor
list and a victim list consisting of one entry. In the following, we explain the mapping

of other fault models to CMS @ faults.

@ Springer

Int J Parallel Prog

Fig. 1 Example circuit (a) and (a)
its miter circuit (b) a
— ¢ [¢
b
s@1
(b)
{{+a, —c}, {+b, —c}, {—a, -b, +c}}
a
[¢
b

— >
_} {{+c, +c’, -0},
(o}

| — {+c, —¢’, +0},
{—c, +c’, +0},
{{+a, -}, {—-a, +¢c’}} {-c, —¢’, —0}}

2.1 Gate-Exhaustive Testing

Gate-exhaustive testing requires that every single-stuck-at fault at the output of a
gate is detected using all valid value combinations on the inputs of that gate [6].
A stuck-at-1 fault at the output of an AND2 gate would be tested independently by
three patterns, one justifying 00 at the gate’s inputs, one justifying 01 and one jus-
tifying 10. Gate-exhaustive testing was demonstrated to be effective in identifying
hard-to-detect defects on actual manufactured silicon [6]. Generally, 2" — 1 test pat-
terns must be generated for a stuck-at-1 fault at the output of an n-input AND or NOR
gate and for a stuck-at-0 fault at the output of a NAND or OR gate. One pattern must be
generated for the opposite stuck-at fault, respectively. 2" ~! patterns must be generated
for a stuck-at-1 or a stuck-at-0 fault at the output of an XOR or XNOR gate.

Gate-exhaustive testing is easily mapped to the CMS @ fault model. For instance,
testing the stuck-at-1 fault at line c of the circuit in Fig. larequires the detection of three
CMS@ faults: f; with A = {a/0,b/1}, V = {c/1}; f» with A = {a/1,b/0},V =
{c/1},and f3 with A = {a/0, b/0}, V = {c/1}. Similar transformations are performed
for other gate types.

2.2 Resistive Bridging Faults

Bridging faults with non-zero bridge resistance may impact the behavior of a digital
circuitin a non-trivial way [15,33]. In general, a short defect with a non-zero resistance
R;j, between interconnects a and b imposes intermediate voltages V,, and V}, between
0and Vpp on the affected interconnects. These voltages are interpreted as logic values
by the gates driven by a and b, depending on the logic thresholds of the gates. To detect
a resistive short defect with a given resistance, specific values (detection conditions)

@ Springer

Int J Parallel Prog

on the gates driving the shorted interconnects may be required, and the fault effect
may be visible on one or multiple gates driven by the shorted interconnects.

These detection conditions may differ for short defects which involve the same pair
of interconnects but have different resistances Ry;,. It was shown in [13,39] that for
every pair of interconnects a and b there is a finite number of representative resistances
Ry, such that a test set which detects all short defects with these resistances covers all
possible short defects between a and b. It is possible to formulate CMS @ faults which
correspond to short defect with representative resistances (the mapping is discussed
in [13] and is omitted here for brevity).

3 Tiguan

Given a circuit, a CMS @ fault list and a set of parameters which includes a timeout
value, TIGUAN generates a test set which detects all faults for which a test pattern
could be found within the time budget. All faults in the lists are classified as either
detected, undetectable, or aborted (not classified within the time budget).

3.1 Test Generation Procedure

TIGUAN selects a fault from the fault list and attempts to generate a pattern for this
fault by formulating a SAT instance in conjunctive normal form (CNF) and handing
it to the MiraXT engine (described below). A miter circuit consisting of the fault-free
circuit and the circuit with the fault injected, both connected to an XOR network, is
constructed and represented in conjunctive normal form (CNF). Figure 1b shows the
miter circuit and the corresponding CNF parts for the fault in Fig. 1a. Note that in
CNF format, {{+a, —c'}, {—a, +c’}} corresponds to (a vV =c’) A (—a V '), etc. We
employ the D-chain technique [43] to speed up the computation. For every circuit line
[through which the fault effect could be propagated, a new variable Dj is introduced
which equals 1 if and only if line / is sensitized, i.e., the values in the fault-free and
the faulty sub-circuits of the miter circuit differ. New clauses are added to ensure the
existence of a propagation path, i.e., at least one output o must be sensitized (D, = 1)
and every gate with a sensitized output must have at least one sensitized input. The
clauses belonging to the D-chain are not shown in Fig. 1b for the sake of simplicity.

The CNF formula is handed to the thread-parallel SAT solver engine MiraXT [29]
along with a timeout. If MiraXT finds a model (i.e., a satisfying variable assignment)
of the SAT instance, the test pattern is derived from the solution. If MiraXT reports
that the instance is unsatisfiable, the fault is proven to be undetectable. TIGUAN can
be started in the fault-dropping mode; all yet-undetected faults in the fault list are sim-
ulated with generated patterns and covered faults are marked detected and excluded
from further processing. We employ an in-house 32-bit pattern-parallel CMS @ fault
simulator, so fault dropping is invoked after 32 new patterns have been accumulated.
The ATPG process is continued until all faults have been classified.

It is possible to speed up the computation by a technique known as incremental
solving. Significant parts of CNFs generated for different faults are identical, and such
common parts can be reused in multiple invocations of the SAT solver. We performed

@ Springer

Int J Parallel Prog

extensive experiments with incremental solving and found that our current implemen-
tation does not benefit from it. Currently, we perform structural analysis to exclude
from the CNF circuit parts which cannot be affected by the considered fault. For incre-
mental solving, larger parts of the circuit must be included in the CNF. Overall, the
overhead associated with generating the larger CNFs exceeded the time savings due to
incremental solving in our experiments. Hence, we currently do not employ incremen-
tal solving. The performance of MiraXT is tuned by adjusting several solver-internal
control variables to values appropriate for ATPG instances.

TIGUAN also provides a mode in which the percentage of don’t-cares (Xes) in
the generated patterns is maximized. An X in a test pattern indicates that the pattern
will detect the fault irrespective of the logic value (0 or 1) at this bit position. Test
patterns with a large number of Xes are desirable for two reasons. First, the Xes can
be assigned values which are useful to detect other faults, thus reducing the number
of patterns in the test set (test compaction [31]). Second, the freedom to assign the
Xes is essential to compress the patterns and thus reduce the test data volume (test
compression [32]). The injection of Xes is performed by the SAT engine; on top of
that, an input-output-cone analysis similar to [11] is performed to identify further Xes.
We are currently integrating more elaborate methods of test set relaxation [12,24] into
TIGUAN to achieve very high don’t-care densities comparable to percentages obtained
by structural ATPG approaches.

3.2 Multi-Threaded Solving

Parallel test pattern generation requires an intelligent partitioning of the problem being
solved into smaller sub-problems and distribution of these sub-problems to individual
threads. To allow the threads to run and cooperate efficiently, an appropriate represen-
tation of the data shared among the threads and an efficient mechanism to access this
data are required. In the following, we first describe the data organization and then
provide an overview of how TIGUAN partitions the test generation problem being
solved.

3.2.1 Distributed Data Organization

There are two basic paradigms to implement search-space parallelism: message pass-
ing and shared memory. Message passing is typically used on classical workstation
clusters. The computation is divided into multiple processes which may run on differ-
ent processors and communicate with each other by sending messages according to
a protocol such as MPI [42]. Shared memory refers to physical storage which can be
accessed by all threads running on multiple processors. It is generally assumed that
message passing requires relatively long time and provides limited bandwidth, but is
scalable to a large number of processors. In contrast, shared memory can provide data
rates comparable with ‘regular’ memory in a uniprocessor environment. This is par-
ticularly the case for state-of-the-art multi-core systems which include sophisticated
mechanisms to accelerate accesses to a core’s local memory by other cores located on
separate processors. A shared level-3 cache is used for most communication between

@ Springer

Int J Parallel Prog

cores on the same processor die. The drawback of a shared-memory solution is con-
gestion when the number of different threads simultaneously accessing the memory
is high.

TIGUAN implements parallelism based on the shared memory paradigm. There
have been two reasons for this design decision. First, the volume of the data commu-
nicated is relatively high. Second, the target environments for TIGUAN are multi-core
processors rather than workstation clusters. The number of cores in today’s processors
is not very large, and mechanisms to support shared-memory accesses are provided.
Note that a version of MiraXT designed for clusters of multi-core workstations which
uses both shared-memory and message passing exists [38] but is not used in this work.

MiraXT and thus TIGUAN maintains one common Shared Clause Database which
provides access to the full instance for all threads. Note that clauses representing the
fault-free circuit, the circuit with the fault injected and auxiliary clauses from the
D-chains are treated equally. During solving, every thread generates conflict clauses
which indicate parts of the search space which contain no solution and can be excluded
from the consideration. These conflict clauses are communicated to other threads by
inserting them into the Shared Clause Database (knowledge sharing). Furthermore,
conflict clauses may become obsolete, so clause deletion has to be performed. Both
clause insertion and deletion are implemented by optimized algorithms which mini-
mize the need for locks and reduce the performance overhead due to lock conflicts to
fractions of a per cent. Details on clause insertion and deletion can be found in [38].

Every thread keeps in its local memory a Watched Literals Reference List, which
contains selected literals of each clause. Empirical data has shown that this restricted
information is sufficient for most solving operations of a thread, resulting in a good
cache utilization. If a thread requires the complete clause information, it must access
the Shared Clause Database, which may require inter-processor communication. Spe-
cial data structures are provided for a thread to quickly recognize clauses which have
been inserted into the Shared Clause Database since the thread’s last access to it [38].

3.2.2 Problem Partitioning and Solving

When run in single-threaded mode (no parallelism), TIGUAN hands the generated
CNF to the MiraXT engine, which performs Davis-Putnam-style SAT solving [8].
Necessary assignments to variables (e.g., unit clauses) are identified, a decision var-
iable is selected and assigned, and implications of this decision are collected using
Boolean Constraint Propagation. In general, the decision may lead to a conflict (incon-
sistency). Then, a conflict clause is generated to avoid entering the inconsistent part of
the solution state later on, and one or several decisions are undone (backtracking). This
process is continued until either all variables are assigned and consistent (satisfying
assignment has been found), or a conflict is identified with no option to backtrack (the
instance is proven unsatisfiable).

Parallel SAT solving dynamically divides the solution space and assigns
sub-problems to individual threads. This is managed by the Master Control Object
(MCO) of very limited complexity. MCO essentially makes messages available to
threads and does not intervene with a thread’s computation process. MCO also

@ Springer

Int J Parallel Prog

Fig. 2 TIGUAN’s flow l
]

Get next
’[unclassified fault Lz LU }

MiraXT
_‘
3
@
©
o
_|
0
3
@
Q
o
N
_|
=y
3
[0]
Q
Q.
S

Pattern
exists ?

fault dropping
(if applicable)

manages running and idle threads which are waiting for new sub-problems. The flow
of TIGUAN in multi-threaded mode is shown in Fig. 2.

After CNF generation, the multi-threaded solver starts by giving the complete
instance to one of the threads, and it begins the solving process. All other threads
communicate to the MCO that they are idle. Idle threads are put into sleep mode
in which they do not poll and consequently do not cause communication overhead.
Running threads poll the MCO periodically whether any global events have occurred.

Possible global events are ‘instance has been solved by another thread’, ‘timeout has
been exceeded’, and ‘idle threads exist’. In the latter case, the running thread divides
its sub-problem into two parts, wakes up one of the sleeping threads and transfers
control of one part to this thread. If a thread’s sub-problem is unsatisfiable, it re-enters
the idle state. The problem is proven unsatisfiable if all threads become idle.

3.3 Two-Stage Method

It has been noted, e.g., in [21], that sophisticated performance enhancements are
effective for relatively few hard-to-detect faults while slowing down the processing of
easy-to-detect faults. We observed that, with average SAT solving time per fault below
0.1's for most circuits, various optimizations do not result in a net run-time gain. This
is also true for thread parallelism: the overhead to initialize the threads and set up the
communication infrastructure does not appear to be justified for most faults.
Consequently, we implemented the two-stage ATPG strategy shown in Fig. 3. In
the first stage, easy-to-detect faults are processed using low-overhead procedures, and
in the second stage the full computational power of TIGUAN is applied to the residual
hard-to-detect faults. If a structural ATPG is available, it can be used as the first-stage
tool. Otherwise, TIGUAN is run in the single-thread mode with an aggressive time
limit, e.g., 1s. Structural ATPGs tend to be faster for easy-to-detect faults, and they

@ Springer

Int J Parallel Prog

Fig. 3 Two-stage fault
classification flow M
ATPG type

>0 ot

!

Aborted
Faults

Stage 2
TIGUAN
(n Threads)

A ¢ A ¢ Y

Redundant Aborted Detected
Faults Faults Faults

Stage 1

TIGUAN
(1 Thread)

Structural
ATPG

often produce very compact test sets because they incorporate sophisticated test com-
paction algorithms, yet they typically classify less faults then SAT-based ATPGs. In
the second stage, TIGUAN employing thread parallelism is applied to the hard-to-
detect faults aborted by the first-stage tool. The solving times for these faults tend to
be much higher than the thread initialization overhead, so that multi-threaded solving
provides net benefits.

4 Experimental Results

TIGUAN was applied to ISCAS 85 circuits [5] and combinational cores of ISCAS
89 circuits [4], ITC 99 circuits [7] and industrial circuits provided by NXP. The mea-
surements for stuck-at faults (Tables 1, 2, 3 and 4) were performed on a 2.8 GHz
AMD Opteron computer with 16 GB RAM, the measurements for up to 16 threads
(Fig. 4) were performed on an AMD Opteron system with four quad-core processors
with 64 GB RAM, and the measurements for non-standard fault models (Tables 5
and 6) were performed on a 2.3 GHz machine with 4 GB RAM (TIGUAN is a 32-bit
application which uses only up to 4 GB RAM).

4.1 Single-Threaded Single-Stuck-at ATPG
Table 1 reports ATPG results for industrial circuits using fault dropping and 20's time-

out per fault (a fault was classified as aborted if no pattern was found within 20s).
The name of the circuit, the number of gates and collapsed faults and the distribution

@ Springer

Int J Parallel Prog

Table 1 Results of single-threaded TIGUAN for stuck-at faults with fault dropping for NXP circuits,
timeout 20 per fault

Circuit Gates Faults Det. Red. Ab. Pat. Time per fault (s) T (s)
CNF SAT FSIM

p35k 48,927 67,733 66,721 1,012 0 11,536 0.033 0.0278 0.0007 1,364
p45k 46,075 68,760 68,564 196 0 3,604 0.005 0.0017 0.0008 47
p77k 75,033 1,20,348 1,13,049 7299 0 5318 0.029 0.3455 0.0510 5,454
p78k 80,875 1,63,310 1,63,310 0 0 468 0.005 0.0006 0.0061 7
p8lk 96,722 2,04,174 2,02,981 1,193 0 7,529 0.010 0.0017 0.0015 162
p89k (*) 92,706 1,50,538 1,48,604 1,934 0 9,868 0.007 0.0015 0.0018 154
p100k 1,02,443 1,62,129 1,61,404 725 0 5,142 0.006 0.0032 0.0028 91
plalk (*) 1,85360 2,82,428 2,79,189 3239 0 8,893 0.050 0.0337 0.0024 1,706
p267k 2,96,404 3,066,871 3,065,423 1,448 0 11,579 0.020 0.0031 0.0037 447
p269k (*) 2,97,497 3,69,055 3,67,607 1,448 0 11,633 0.018 0.0031 0.0046 436
p286k (*) 3,73,221 6,50,368 6,40,103 10,264 1 20,243 0.041 0.0490 0.0062 3,456
p295k (*) 3,11,901 4,72,022 4,68,174 3847 1 22,786 0.024 0.0053 0.0042 1,159
p330k 3,65,492 5,440,758 5,35,070 5,656 32 23,392 0.038 0.0388 0.0048 3,208
p378k 4,04,367 8,16,534 8,16,534 0 0 1,107 0.022 0.0007 0.0145 44
p388k (¥) 5,06,034 8,81,417 8,76,750 4,665 2 11,975 0.029 0.0078 0.0065 830
p469k 49,771 1,42,751 1,40,869 1,762 120 578 0.094 4.4455 1.7238 13,139

p951k (*) 11,47.491 1557914 1542,633 15281 0 20,899 0.060 0.0011 0.0119 2,668
pl1522k (*) 11,93,824 16,97,662 16,81,874 15,788 0 63,549 0.073 0.0099 0.0173 9,324
p2927k 25,39,052 35,27,607 34,12,613 1,14,907 87 39,842 0.156 0.0308 0.0602 33,758

of the faults into classes detected (Det.), provably redundant (Red.) and aborted (Ab.)
is shown in columns 1 through 6. Column 7 contains the number of generated pat-
terns. The average time (in seconds) per fault for CNF generation, SAT solving and
fault simulation (fault dropping) can be found in columns 8 through 10, the total time
(T [s]) in column 11. No thread parallelism of the MiraXT engine was employed.

Circuits marked by asterisk (*) contain tristate elements. TIGUAN replaces bufif1
gates by AND gates and notif1 gates by NAND gates which retains the circuit’s func-
tionality. To prevent bus contention, an additional clause which ensures that at most
one driver is active at the same time can be generated. We did not generate such a
clause in our experiments.

TIGUAN can handle multi-million-gate designs with very few aborts and in limited
time. The number of patterns is rather large, however we point out that no compaction
techniques such as reverse-order simulation were employed. The option to maximize
don’t-cares was not used.

Tables 2 and 3 compare the performance of TIGUAN (without thread parallelism)
with the best published results by the state-of-the-art SAT-based tool PASSAT avail-
able to us [10,16] (only results for circuits quoted in [10,16] are reported in Tables 2

@ Springer

Int J Parallel Prog

Table 2 Results of single-threaded TIGUAN without fault dropping for ISCAS, ITC and NXP circuits for
stuck at faults and comparison with [16]

Circuit Gates Faults TIGUAN PASSAT

Det. Red. Ab. T (s) Ab. T (s)
c0432 203 524 520 4 0 0.5 0 2.6
c0499 275 758 750 8 0 1.0 0 21.0
cl1355 619 1,574 1,566 8 0 4.5 0 325
c1908 938 1,879 1,870 9 0 4.6 0 14.4
c3540 1,741 3,428 3,291 137 0 14.0 0 479
c7552 3,827 7,550 7,419 131 0 19.4 0 106.5
s01494 686 1,506 1,494 12 0 0.6 0 2.7
805378 3,221 4,603 4,563 40 0 4.1 0 14.3
s15850 11,067 11,725 11,336 389 0 47.8 0 121.3
$38417 25,585 31,180 31,015 165 0 89.7 0 191.3
b10 197 486 486 0 0.1 0 0.3
bll 579 1,436 1,434 0 1.0 0 4.8
bl2 1,127 2,827 2,826 1 0 1.5 0 5.6
bl4 5,923 16,167 16,137 30 0 122.1 0 1426.8
bl5 8,026 21,282 20,545 737 0 378.8 0 2673.6
p81k 96,722 2,04,174 2,02,981 1,193 0 4,429 0 12,116
p89k 92,706 1,50,538 1,48,604 1,934 0 2,544 0 5,755
p100k 1,02,443 1,62,129 1,61,404 725 0 2,102 19 15,397
pldlk 1,85,360 2,82,428 2,79,189 3,239 0 29,938 236 95,452
p951k 11,47,491 15,57,914 15,42,633 15,281 0 1,58,875 132 1,66,791

Table 3 Comparison of number of aborts (Ab.) and run time for TIGUAN and PASSAT [10] with fault
dropping

ITC 99 circuits NXP circuits
Circuit PASSAT TIGUAN Circuit PASSAT TIGUAN
Ab. T (s) Ab. T (s) Ab. T (s) Ab. T (s)

bl4 0 19.0 0 13.2 p35k 0 1,561.0 0 1,364.0
bl5 0 24.0 0 44.0 p81k 0 583.0 0 162.0
bl7 0 142.0 0 123.6 p89k 0 573.0 0 154.0
b18 0 1,350.0 0 341.8 p100k 0 410.0 0 91.0
b20 0 56.0 0 29.4 pldlk 0 4,740.0 0 1,706.0
b21 0 59.0 0 333 p469k 77 6,180.0 120 13,139.0
b22 0 95.0 0 36.0 p951k 1 18,300.0 0 2,668.0

@ Springer

Int J Parallel Prog

Table 4 Performance of the two-stage approach with TIGUAN as the first-stage tool

Circuit Two-stage approach One-stage No timeout
approach
First stage Second stage (timeout 20 s) (from
(timeout 1 5) 2 Threads 4 Threads Table 1)

T (s) Faults Ab. T(s) Total Ab. T(s) Total Ab. Time Ab. Time

left time (s) time (s) (s) (s)
p77k 4,545 1,322 0 1,354 5,899 0 1,003 5,548 0 5454 0 5,454
p286k 2,115 126 1 1,232 3,347 1 1,609 3,724 1 3,456 0 3,497
p295k 1,062 3 1 62 1,124 1 66 1,128 1 1,159 0 1,228
p330k 2,376 70 17 616 2992 16 491 2,867 32 3208 O 23,475
p388k 800 2 2 41 841 2 40 840 2 830 0 1,263
p469k 17,929 2,680 28 3,343 21,272 3 2,152 20,081 120 13,139 0 30,815
pl522k 9,295 22 0 15 9,310 0 19 9,314 0 9324 0 9,324
p2927k 25,856 666 80 3,298 29,154 73 3,120 28976 87 33,758 0 50,812

and 3).! Results in Table 2 have been generated with fault dropping switched off and
timeout of 20s (as in [16]). We quote the best numbers achieved by PASSAT among
different learning techniques presented in [16]. Table 3 compares results obtained
using fault dropping and timeout of 20 s with columns 4 and 5 in Table VI in [10] (run
times were converted into seconds). Although the same industrial circuits were used
in [10,16], some of them were named differently: circuits p44k, p49k, p80k, p88k,
P99k, p177k and p1330k in [10, 16] correspond to circuits p35k, p469k, p81k, p89k,
p100k, pl41k and p951 in Tables 2 and 3, respectively.

TIGUAN outperforms PASSAT both with respect to aborts and run time. For
circuits p89k, pl41k and p951k, part of the run time advantage is due to the sim-
plified encoding of tristate elements for the three circuits mentioned above (PASSAT
switches to multi-valued logic which includes the high-impedance value if a circuit
contains tristate elements). All other circuits are purely Boolean and do not require
multi-valued logic.

4.2 Multi-Threaded Performance

We performed two experiments on TIGUAN in two-stage mode described in Sect. 3.3.
In the first experiment, single-threaded TIGUAN with a timeout of 1s per fault was
used as the first-stage tool. In the second experiment, a state-of-the-art commercial
structural ATPG tool was used as the first-stage tool.

Table 4 summarizes the results of the first experiment for circuits with at least one
abort during the first stage. Column 2 gives the run time of the first stage. The number
of faults aborted during the first stage and targeted by the second stage can be found

I An AMD Athlon with 2.2 GHz and 1 GB RAM was used in [16]. A dual-core Xeon with 3 GHz and 32 GB
RAM was used in [10].

@ Springer

Int J Parallel Prog

p295k

p330k
=

avg. thread init.
time

+

avg. SAT solving
time

avg. total TPG
fime

2 4 6 8 10 12 14 16 2 4 6 81012 14 16
13 5 7 9 11 1315 13 5 7 9 111315

p388k p469k p2927k

 ONeA AT
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
1 3 5 7 9 11 13 15 1 3 5 7 9 11 1315 1 3 5 7 9 11 13 15

Fig. 4 Average thread initialization times, SAT solving times and total test generation time for stuck-at
faults aborted by structural ATPG

@ Springer

Int J Parallel Prog

Table 5 Results for gate-exhaustive testing with fault dropping, timeout 20s per fault

Circuit Gates Faults Distribution Pats. Run time (s)
Det. Red. Ab Per fault Total

c5315 2,608 12,084 10,194 1,890 0 1,069 0.0004 4
c6288 2,480 9,664 7,934 1,730 0 439 0.0019 18
c7552 3,827 15,050 12,345 2,705 0 1,227 0.0006 9
cs13207 9,441 26,004 22,950 3,054 0 1,381 0.0006 15
cs15850 11,067 29,922 26,703 3,219 0 1,213 0.0009 26
¢s35932 19,876 60,064 46,484 13,580 0 128 0.0004 23
cs38417 25,585 70,236 66,228 4,008 0 2,425 0.0003 20
cs38584 22,447 75,278 64,629 10,649 0 1,549 0.0003 24
bl7 25,719 1,38,230 97,826 40,404 0 6,041 0.0040 554
b18 76,513 3,96,886 2,92,165 1,04,721 0 16,084 0.0058 2,313
b20 12,991 66,444 52,049 14,395 0 5,048 0.0028 187
b21 13,168 66,420 52,444 13,976 0 5,597 0.0029 192
b22 18,789 94,022 73,540 20,482 0 5,522 0.0026 244
p330k 3,65492 11,66,046 10,37,130 1,28,843 73 36,401 0.0102 11,934
p378k 4,04,367 13,70,984 11,91,909 1,79,075 0 1,980 0.0037 5,117
p388k 5,06,034 16,63,442 14,63,686 199,754 2 17,317 0.0049 8,220
p469k 49,771 3,12,784 2,41,562 70,844 378 652 0.1618 50,603
p951k 11,47,491 32,50,198 28,84,773 3,65,425 0 28,050 0.0089 28,863
p1522k 11,93,824 37,08,692 33,50,769 3,57,923 0 80,404 0.0140 52,036

p2927k 25,39,052 70,48,378 62,53,392 7,94,723 263 51,340 0.0241 1,69,859

in column 3. The second stage was run for 2 and 4 parallel threads with a timeout
of 205s. For each scenario, the number of aborts during the second stage, its run time
and the cumulative run time of the first and the second stage are given in columns 4
through 9.

Columns 10 and 11 give the number of aborts and the run time of the one-stage
method from columns 6 and 11 of Table 1, respectively. Note that the timeout for the
one-stage method was 20s. The minimal run time of columns 6, 9 and 11 is marked
bold. This indicates the minimal time which is required for the complete ATPG process
by either two-stage or one-stage approach. The two-stage method with multi-threading
always yields less aborts than the one-stage approach and reduces the ATPG time for
more than half of the circuits. 2-thread parallelism often yields lower run times while
using 4 threads helps to reduce aborts.

For reference, the final two columns of Table 4 report the number of aborts and the
time which TIGUAN consumes when started without a time limit. Clearly, all faults
are classified without aborts. Note that all circuits not included in Table 4 have already
been classified without aborts using a timeout of 1s. Hence, TIGUAN completely
classifies all faults in the industrial circuits (as it does for ISCAS and ITC circuits not
included in Tables 1 and 4).

@ Springer

Int J Parallel Prog

Table 6 Results for resistive bridging faults with fault dropping, timeout 20s per fault

Circuit Faults Distribution Patterns Run time (s)
Det. Red. Ab. Per fault Total

c5315 28,214 19,594 8,620 0 1,661 0.0008 23.50
c6288 33,603 20,086 13,517 0 1,320 0.0037 125.28
c7552 32,028 19,024 13,004 0 1,224 0.0013 41.94
cs13207 20,366 15,107 5,259 0 1,115 0.0007 14.42
cs15850 20,061 14,803 5,258 0 1,090 0.0014 28.18
¢s35932 27,160 9,332 17,828 0 133 0.0015 41.97
cs38417 25,976 20,174 5,802 0 1,619 0.0011 27.34
cs38584 26,602 17,207 9,395 0 1,486 0.0012 32.43
bl7 41,651 7,966 33,685 0 2,925 0.0142 591.01
b18 42,881 8,753 34,128 0 3,926 0.0250 1,070.18
b20 44,378 8,073 36,305 0 2,285 0.0104 461.74
b21 44915 8,027 36,888 0 2,293 0.0104 467.61
b22 44,824 8,551 36,273 0 2,170 0.0108 482.63
p330k 23,716 20,991 2,725 0 4,428 0.0216 511.33
p378k 27,898 23,659 4,239 0 529 0.0060 166.41
p388k 24,637 21,495 3,142 0 2,139 0.0112 274.79
p469k 45,528 13,444 31,837 247 774 0.4523 20,594.07
p951k 21,967 20,106 1,861 0 1,958 0.0149 326.58
p1522k 22,731 19,167 3,564 0 5,731 0.0522 1,186.51
p2927k 22,638 19,351 3,286 1 3,761 0.0634 1,434.36

In the second experiment, a structural ATPG was used as the first-stage tool, and
multi-threaded TIGUAN with a different number of threads and with no timeout was
used as the second-stage tool. The number of aborts by the first-stage tool was 19, 186,
66, 210 and 5,601 for circuits p295k, p330k, p388k, p469k, and p2927k, respectively.
TIGUAN was able to classify all of these aborted faults. The average run times per
fault for up to 16 threads are shown in Fig. 4 in graph form. The total time per fault
consists of the thread initialization time, the SAT solving time and time for auxiliary
processes such as CNF generation and fault dropping (their contribution is negligible
for hard-to-detect faults considered).

It can be seen that the thread initialization time increases linearly with the number
of threads (and thus cores) used. The SAT solving time per fault decreases rapidly for
the first 4-6 available cores and then stagnates, fluctuates randomly or even increases.
One reason for run time increase could be memory congestion due to constant rate
of conflict clause generation by individual threads: currently each thread produces
roughly 10,000 conflict clauses per second, so the total conflict clause production
increases linearly with the number of threads used. We are investigating an adaptive
strategy in this regard.

@ Springer

Int J Parallel Prog

4.3 Non-Standard Fault Models

Table 5 reports the application of TIGUAN to generate gate-exhaustive test sets for
larger ISCAS, ITC and NXP circuits. The number of faults (column 3) significantly
exceeds the number of gates (column 2). A significant fraction of the generated faults
are redundant (column 5). There are little aborts (column 6). The run times per fault
exceed those for stuck-at faults but are generally reasonable (column 8).

To demonstrate test generation for resistive bridging faults, we first generated resis-
tive bridging fault lists by selecting, for each circuit, 10,000 pairs of interconnects
randomly. For every pair of interconnects, we calculated the representative resistances
using the tool flow from [13] and assuming the same technology parameters as in
[13]. For every section, we generated one conditional multiple-stuck-at fault. The
aggressor list consisted of the conditions on the inputs of the gates driving the shorted
interconnects. The victim list included all inputs of the gates driven by the shorted
interconnects on which an erroneous value was interpreted.

Table 6 summarizes the performance of TIGUAN for the resistive bridging fault
list generated as explained in Sect. 2.2. The format of the table is similar to Table 5.
The number of CMS@ faults equals 10,000 multiplied by the average number m of
representative resistances per resistive bridging fault. This number ranges between
14,489 for b13 and 45,528 for p469k. There are again no aborts for almost all circuits
while the run times are reasonable. We also applied the two-stage method, observ-
ing results similar to the case of stuck-at faults: the number of aborts was reduced,
and the run time went down for circuits with the largest SAT solving time. We are
not aware of comparable results by PASSAT or any other SAT-based tool. Existing
resistive bridging fault ATPGs [14,36] cannot handle multi-million gate designs.

5 Conclusions

TIGUAN currently can completely classify all single-stuck-at faults in both large
industrial circuits and structurally complex ISCAS circuits without aborts. It is also an
effective and flexible tool to generate tests for non-standard fault models for which no
adequate dedicated ATPG tool is available. This is achieved by providing a mapping
between the non-standard model and conditional multiple-stuck-at fault model which
TIGUAN supports. The two-stage approach allows to identify hard-to-detect faults for
which sophisticated optimization strategies of the SAT engine and thread parallelism
are effective.

One research direction for the future is the incorporation of state-of-the-art static
and dynamic compaction [3,22,25,31,35] and test set relaxation techniques [12,24] to
reduce the pattern count. We also plan to extend the CMS @ concept to dynamic fault
models such as delay faults [41], and power droop [30]. Moreover, we investigate the
theoretical findings on fault vs. search parallelism [18] to better utilize novel multi-
processor and multi-core architectures with ultra-fast interprocessor communication.

Acknowledgments Parts of this work have been supported by the German Research Council under pro-
ject BE 1176/14-1 and by the Alexander-von-Humboldt Foundation. We are thankful to Juergen Schloeffel

@ Springer

Int J Parallel Prog

of NXP Hamburg for providing industrial circuits and Tobias Schubert of University of Freiburg for fruitful
discussions on SAT solving.

References

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

. Abramovici, M., Breuer, M.A., Friedman, A.D.: Digital Systems Testing and Testable Design. Com-

puter Science Press, New York (1990)

Aitken, R.C.: New defect behavior at 130 nm and beyond. In: European Test Symposium, pp. 279-284
(2004)

Ayari, B., Kaminska, B.: A new dynamic test vector compaction for automatic test pattern genera-
tion. IEEE Trans. CAD 13(3), 353-358 (1994)

Brglez, F., Bryan, D., Kozminski, K.: Combinational profiles of sequential benchmark circuits. In:
International Symposium on Circuits and Systems, pp. 1929-1934 (1989)

Brglez, F., Fujiwara, H.: A neutral netlist of 10 combinational circuits and a target translator in fortran.
In: International Symposium on Circuits and Systems, Special Sess. on ATPG and Fault Simulation,
pp. 663-698 (1985)

Cho, K.Y., Mitra, S., McCluskey, E.J.: Gate exhaustive testing. In: International Test Conference (2005)
Corno, F., Sonza Reorda, M., Squillero, G.: RT-level ITC 99 benchmarks and first ATPG results. IEEE
Des. Test Comput. 17(3), 44-53 (2000)

Davis, M., Putnam, H.: A computing procedure for quantification theory.J. ACM 7(3),201-215 (1960)
Desineni, R., Dwarkanath, K.N., Blanton, R.D.: Universal test generation using fault tuples. In: Inter-
national Test Conference, pp. 812-819 (2000)

Drechsler, R., EggersgliiB, S., Fey, G., Glowatz, A., Hapke, F., Schloffel, J., Tille, D.: On acceleration
of SAT-based ATPG for industrial designs. IEEE Trans. CAD 27(7), 1329-1333 (2008)

EggersgliiB, S., Drechsler, R.: Improving test pattern compactness in SAT-based ATPG. In: Asian Test
Symposium, pp. 445452 (2007)

El-Maleh, A.H., Al-Utaibi, K.: An efficient test relaxation technique for synchronous sequential cir-
cuits. IEEE Trans. CAD 23(6), 933-940 (2004)

Engelke, P., Braitling, B., Polian, 1., Renovell, M., Becker, B.: SUPERB: simulator utilizing parallel
evaluation of resistive bridges. In: Asian Test Symposium, pp. 433-438 (2007)

Engelke, P., Polian, I., Renovell, M., Becker, B.L: Automatic test pattern generation for resistive
bridging faults. J. Electron. Test. Theory Appl. 22(1), 61-69 (2006)

Engelke, P., Polian, I., Renovell, M., Becker, B.: Simulating resistive bridging and stuck-at faults. IEEE
Trans. CAD 25(10), 2181-2192 (2006)

Fey, G., Warode, T., Drechsler, R.: Reusing learned information in SAT-based ATPG. In: VLSI Design,
IEEE Computer Society, pp. 69—76 (2007)

Fujiwara, H.: FAN: A fanout-oriented test pattern generation algorithm. In: IEEE International Sym-
posium on Circuits and Systems, pp. 671-674 (1985)

. Fujiwara, H., Inoue, T.: Optimal granularity of test generation in a distributed system. IEEE Trans.

CAD 9(8), 885-892 (1990)

Gizdarski, E., Fujiwara, H.: SPIRIT: a highly robust combinational test generation algorithm. IEEE
Trans. CAD 21(12), 1446-1458 (2002)

Goel, P.: An implicit enumeration algorithm to generate tests for combinational logic circuits. IEEE
Trans. CAD 30, 215-222 (1981)

Hamzaoglu, 1., Patel, J.H.: New techniques for deterministic test pattern generation. J. Electron. Test.
Theory Appl. 15, 63-73 (1999)

Hamzaoglu, 1., Patel, J.H.: Test set compaction algorithms for combinational circuits. IEEE Trans.
CAD 19(8), 957-963 (2000)

Hillebrecht, S., Polian, I., Engelke, P., Becker, B., Keim, M., Cheng, W.-T.: Extraction, simulation and
test generation for interconnect open defects based on enhanced aggressor-victim model. In: Interna-
tinal Test Conference, pp 1-10 (2008)

Kajihara, S., Miyase, K.: On identifying don’t care inputs of test patterns for combinational circuits.
In: Internatinal Conference on CAD, pp. 364-369 (2001)

Kajihara, S., Pomeranz, 1., Kinoshita, K., Reddy, S.M.: Cost-effective generation of minimal test sets
for stuck-at faults in combinational logic circuits. IEEE Trans. CAD 14(12), 1496-1504 (1995)
Kropf, T.: Introduction to Formal Hardware Verification. Springer, Berlin (2000)

@ Springer

Int J Parallel Prog

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Kundu, S., Zachariah, S.T., Chang, Y.-S., Tirumurti, C.: On modeling crosstalk faults. IEEE Trans.
CAD 24(12), 1909-1915 (2005)

Larrabee, T.:. Efficient generation of test patterns using Boolean difference. In: Internatinal Test Con-
ference, pp. 795-801 (1989)

Lewis, M., Schubert, T., Becker, B.: Multithreaded SAT solving. In: ASPDAC 2007, Yokohama, Japan,
January 2007. 12th Asia and South Pacific Design Automation Conference (2007)

Polian, L., Czutro, A., Kundu, S., Becker, B.: Power droop testing. IEEE Des. Test Comput. 24(3), 276—
284 (2007)

Pomeranz, 1., Reddy, L.N., Reddy, S.M.: COMPACTEST: a method to generate compact test sets for
combinational circuits. In: Internatinal Test Conference, pp. 194-203 (1991)

Rajski, J., Tyszer, J., Kassab, M., Mukherjee, N.: Embedded deterministic test. IEEE Trans.
CAD 23(5), 776-792 (2004)

Renovell, M., Azais, F., Bertrand, Y.: Detection of defects using fault model oriented test sequences.
J. Electron. Test. Theory Appl. 14, 13-22 (1999)

Roth, J.P.: Diagnosis of automata failures: a calculus and a method. IBM J. Res. Dev. 10, 278-281 (1966)
Rudnick, E.M., Patel, J.H.: Efficient techniques for dynamic test sequence compaction. IEEE Trans.
Comput. 48(3), 323-330 (1999)

Sar-Dessai, V., Walker, D.M.H.: Resistive bridge fault modeling, simulation and test generation. In:
Internatinal Test Conference, pp. 596-605 (1999)

Sato, Y., Yamazaki, I., Yamanaka, H., Ikeda, T., Takakura, M.: A persistent diagnostic technique for
unstable defects. In: Internatinal Test Conference, pp. 242-249 (2002)

Schubert, T., Lewis, M., Becker, B.: PaMiraXT: Parallel SAT solving with threads and message pass-
ing. J. Satisfiability, Boolean Model. Comput. 6, 203-222 (2009)

Shinogi, T., Kanbayashi, T., Yoshikawa, T., Tsuruoka, S., Hayashi, T.: Faulty resistance sectioning
technique for resistive bridging fault ATPG systems. In: Asian Test Symposium, pp. 76-81 (2001)
Siewiorek, D.P., Swarz, R.S.: Reliable Computer Systems—Design and Evaluation. Digital Press,
Belford (1992)

Smith, G.L.: Model for delay faults based upon paths. In: International Test Conference, pp. 342-349
(1985)

Snir, M., Otto, S.W., Walker, D.W., Dongarra, J., Huss-Lederman, S.: MPI: The Complete Refer-
ence. MIT Press, Cambridge (1996)

Stephan, P., Brayton, R., Sangiovanni-Vincentelli, A.: Combinational test generation using satisfiabil-
ity. IEEE Trans. CAD 15(9), 1167-1176 (1996)

Tafertshofer, P., Ganz, A.: SAT based ATPG using fast justification and propagation in the implication
graph. In: Internatinal Conference on CAD, pp.139-146 (1999)

Wang, C., Reddy, S.M., Pomeranz, 1., Lin, X., Rajski, J.: Conflict driven techniques for improving
deterministic test pattern generation. In: Internatinal Conference on CAD (2002)

Zhang, M., Mitra, S., Mak, T.M., Seifert, N., Wang, N.J., Shi, Q., Kim, K.S., Shanbhag, N.R., Patel,
S.J.: Sequential element design with built-in soft error resilience. IEEE Trans. VLSI Syst. 14(12), 1368—
1378 (2006)

@ Springer

	Thread-Parallel Integrated Test Pattern Generator Utilizing Satisfiability Analysis
	Abstract
	1 Introduction
	2 CMS@ Fault Model
	2.1 Gate-Exhaustive Testing
	2.2 Resistive Bridging Faults

	3 Tiguan
	3.1 Test Generation Procedure
	3.2 Multi-Threaded Solving
	3.3 Two-Stage Method

	4 Experimental Results
	4.1 Single-Threaded Single-Stuck-at ATPG
	4.2 Multi-Threaded Performance
	4.3 Non-Standard Fault Models

	5 Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

