
SUPERB: Simulator Utilizing Parallel Evaluation

of Resistive Bridges

PIET ENGELKE

Albert-Ludwigs-University, Freiburg

BERND BECKER

Albert-Ludwigs-University, Freiburg

MICHEL RENOVELL

LIRMM – UMII, Montpellier

JUERGEN SCHLOEFFEL

Mentor Graphics Development, Hamburg

BETTINA BRAITLING

Albert-Ludwigs-University, Freiburg

ILIA POLIAN

Albert-Ludwigs-University, Freiburg

A high-performance resistive bridging fault simulator SUPERB (Simulator Utilizing Parallel Eval-
uation of Resistive Bridges) is proposed. It is based on fault sectioning in combination with
parallel-pattern or parallel-fault multiple-stuck-at simulation. It outperforms a conventional inter-

val-based resistive bridging fault simulator by three orders of magnitude while delivering identical
results. Further competing tools are outperformed by several orders of magnitude. Industrial-size
circuits, including a multi-million-gates design, could be simulated with run times within an order

of magnitude of the run times for pattern-parallel stuck-at fault simulation.

Categories and Subject Descriptors: B.1.3 [Control Structures and Microprogramming]:

Control Structure Reliability, Testing, and Fault-Tolerance; B.2.3 [Arithmetic and Logic Struc-

tures]: Reliability, Testing, and Fault-Tolerance; B.7.2 [Integrated Circuits]: Design Aids—
Simulation; B.7.3 [Integrated Circuits]: Reliability and Testing—Testability; J.6 [Computer-

Aided Engineering]: Computer-Aided Design

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Resistive bridging faults, bridging fault simulation, PPSFP,
SPPFP, fault mapping

P. Engelke, B. Becker, B. Braitling and I. Polian are with Albert-Ludwigs-University
of Freiburg, Georges-Köhler-Allee 51, D-79110 Freiburg i. Br., Germany (e-mail:

{engelke|becker|braitlin|polian}@informatik.uni-freiburg.de). Michel Renovell is with LIRMM –
UMII, 161 Rue Ada, 34392 Montpellier, France (e-mail: renovell@lirmm.fr). Juergen Schloeffel
is with Mentor Graphics Development GmbH, Tempowerkring 1B, D-21079 Hamburg, Germany

(e-mail: juergen schloeffel@mentor.com).
Parts of this article were presented at the Asian Test Symposium 2007 and at the Design
Automation and Test in Europe Conference 2008.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2009 ACM 1529-3785/2009/0700-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009, Pages 1–20.

2 · Piet Engelke et al.

1. INTRODUCTION

Defect-based test (DBT) [Maly 1987; Sengupta et al. 1999] is a methodology to
improve the quality of micro- and nanoelectronic products by employing accurate
models of actual defects showing up in the silicon. DBT is used to complement
standard test methods which are based on the stuck-at fault model. It has long
been known that many defects are not adequately represented by the stuck-at fault
model [Maly 1987; Ferguson and Larrabee 1991; Hawkins et al. 1994; Aitken 1995;
Zachariah and Chakravarty 2000]. Although a large share of defect population
is detected by stuck-at tests, the product quality level is often inadequate when
only the stuck-at fault model is used. DBT helps to increase the quality level by
explicitly targeting and detecting defects not covered by the stuck-at fault model.

The conventional approach to testing micro- and nanoelectronic circuits includes
test generation using the stuck-at fault model and application of the generated
test patterns to the circuit by the automatic test equipment. The list of faults
to be considered is derived directly from the gate-level net-list of the circuit. In
contrast, pattern generation for DBT may require additional information, such as
circuit layout or technology parameters [Ferguson and Shen 1988; Konuk et al.
1995; Khare and Maly 1996].

Fault simulation is a key element of a DBT flow. Although test generation meth-
ods for non-standard fault models do exist [Ferguson and Larrabee 1991; Chang
et al. 1999; Krsti et al. 2001; Nourani et al. 2005; Mitra et al. 2006], they do not
always scale for industrial-size circuits. Hence, it is important to determine the
coverage of realistic defects by the existing test pattern sets (where the test pat-
tern sets might have been created using conventional fault models). Then, defects
missed by that sets could be addressed pinpointedly using expensive defect-based
test generation approaches. Alternatively, techniques such as n-detection [Ma et al.
1995] or its extensions [Grimaila et al. 1999; Polian et al. 2004] could be employed.
These techniques increase the accidental detections of non-targeted defects by tar-
geting the same stuck-at fault n > 1 times. Defect-based fault simulation is useful
in determining the value of n which leads to an adequate defect coverage, as overes-
timating n would lead to large test patterns and increased cost of test application.

Resistive short defects have been an important defect class in the past [Rodŕıguez-
Montañés et al. 1992], and their relevance continues to grow. Within a DBT frame-
work, short defects are represented by bridging faults. Simple bridging fault models
ignore the resistance of the defect [Mei 1974; Banerjee and Abraham 1985; Millman
and Garvey 1991; Maxwell and Aitken 1993; Greenstein and Patel 1992; Ferguson
and Larrabee 1991; Rearick and Patel 1993]. Resistive bridging faults (RBF) are
modeling this aspect with a higher degree of accuracy [Renovell et al. 1994; 1995;
Hao and McCluskey 1991; Favalli et al. 1993; Vierhaus et al. 1993; Liao and Walker
1996; Lee and Walker 2000; Sar-Dessai and Walker 1998; 1999; Renovell et al. 1999;
Engelke et al. 2006b; Li et al. 2003; Polian et al. 2005]. Short defect resistance Rsh

is a random parameter not known in advance. Hence, an RBF simulator calculates
for a given fault the range of resistances in which a given test pattern set detects
the fault. This range is called analogue detectability interval or ADI [Renovell et al.
1994; 1995].

An ADI is often of the shape [0, Rmax], where Rmax is the maximal Rsh value

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

SUPERB: Simulator Utilizing Parallel Evaluation of Resistive Bridges · 3

for which the fault is detected. However, an ADI can also be a union of disjoint
intervals [Renovell et al. 1999]. Once the ADI is known for each fault in the fault list,
the fault coverage is obtained by relating C-ADI, the range of resistances detected
by any test pattern from the test pattern set, to G-ADI, the range of resistances
detectable by any possible test pattern [Renovell et al. 1999; Engelke et al. 2006b].
This approach is different from the conventional bridging fault simulation, where
any fault is either detected by the test pattern set or not and the fault coverage is
the fraction of the detected faults. Calculation of G-ADI is NP complete [Engelke
et al. 2006b]; it can be obtained by exhaustive simulation or an ATPG procedure
[Engelke et al. 2006a], or approximated [Lee and Walker 2000; Engelke et al. 2006b].

In this article, we propose the high-performance resistive bridging fault simulator
SUPERB (Simulator Utilizing Parallel Evaluation of Resistive Bridges). It uses
the sectioning-based approach [Shinogi et al. 2001] in combination with a parallel
multiple-stuck-at fault engine. For a bridging fault between circuit nodes a and b,
a section [R1, R2] denotes a range of bridging defect resistances for which the logic
behavior of the circuit is identical. In particular, if a bridging defect between nodes
a and b with a resistance Rsh from section [R1, R2] is detected by a test vector,
then all bridging defects between a and b with resistances between R1 and R2 will
be detected by the same vector.

Given a section and an input vector, the faulty behavior of the circuit can be
characterized by a multiple-stuck-at fault. Since the resistive bridging fault model
considers pattern-dependency [Renovell et al. 1999; Engelke et al. 2006b], the faulty
behavior of the same circuit under a different input vector may be described by
a different multiple-stuck-at fault. We store the mapping of resistance sections to
multiple-stuck-at faults considering the pattern dependency in a hash table which is
calculated before actual simulation begins. It is possible to generate the hash table
using SPICE simulations [Lee and Walker 2000] or electrical equations [Renovell
et al. 1994; 1995; Polian et al. 2005]. Whenever the simulation arrives at a fault site,
the adequate multiple-stuck-at fault is looked up in the hash table and handed to
a multiple-stuck-at fault simulation engine which utilizes the usual speed-ups. We
reiterate that there is no one-to-one mapping between a resistive bridging fault, even
restricted to a section, and a multiple-stuck-at fault, because of pattern dependency.

Considering surrogate faults, including multiple-stuck-at faults and multiple sin-
gle-stuck-at faults, to represent complex resistive bridging defects has been proposed
in the past. Maeda and Kinoshita utilized locally exhaustive testing of the bridge
site [Maeda and Kinoshita 2000]. n-detection [Ma et al. 1995; Reddy et al. 1997]
and its extensions [Grimaila et al. 1999; Polian et al. 2004] demanded application
of multiple tests for one single-stuck-at fault. The Unified Fault Model [Chen et al.
2005] considered all possible multiple-stuck-at faults at the nodes succeeding the
bridge site. In contrast to these approaches, we retain the modeling accuracy of the
original resistive bridging fault model. The fault coverages returned by SUPERB
are not over- or underapproximations, they correspond exactly to the numbers
generated by an interval-based resistive bridging fault simulator.

We present results for large industrial circuits provided by NXP. While the simu-
lation data reported earlier assumed 10,000 faults or less in the fault list, we employ
fault lists containing 10 × S faults where S is the number of gates in the circuit.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

4 · Piet Engelke et al.

(This appears to be a realistic number of faults when inductive fault analysis [Fer-
guson and Shen 1988] with no fault list truncation is done; in our experiments this
corresponded to some 25 million faults for the largest circuit.) We also present
results for ISCAS85, ISCAS89 and ITC99 circuits using identical setup. For com-
parison, we report results for stuck-at fault simulation of the same circuits using the
same simulation engine. It turns out that, while the complexity of the RBF simu-
lation is higher than the complexity of the stuck-at fault simulation, the overhead
is limited and does not differ significantly for different classes and sizes of circuits.

Two RBF simulators employing parallelism have been published so far. Lee and
Walker proposed the interval-based simulator PROBE which processes pointers to
intervals rather than intervals themselves [Lee and Walker 2000]. The pointers
can be shared, reducing the memory requirements. Cheung and Gupta introduced
(in October 2007, the month in which the first version of SUPERB was presented
[Engelke et al. 2007]) a simulator which is based on a slightly different electrical
model [Cheung and Gupta 2007]. We will discuss the relation of SUPERB to these
simulators later in the article.

The remainder of the article is organized as follows. In Section 2 we briefly re-
iterate basic information about resistive bridging faults. In Section 3 we formalize
the fault sectioning approach [Shinogi et al. 2001] within our framework and dis-
cuss its differences from the interval-based approach in context of simulation. In
Section 4 we explain the simulator SUPERB which utilizes the sectioning technique
to leverage the accelerations known for stuck-at fault simulation and relate it to
previous work. In Section 5, experimental results are reported. They include, for
the first time, the analysis of the probability that a single resistive bridging fault
causes a double error. Section 6 concludes the article.

2. RESISTIVE BRIDGING FAULTS

In a fault-free circuit, the voltage level Va at the output a of the logic gate A is
either Va = VDD if the logical value at a is 1 or Va = 0V if the logical value at a is
0. If two lines (say, outputs a and b of gates A and B) are connected by a resistive
short defect with a resistance Rsh and have opposing logic values (say, logic-1 at a
and logic-0 at b), then Va will assume some value below VDD and Vb will assume
some value above 0V. The exact values of Va and Vb depend on the parameters of
the transistors in gates A and B, the number of driving transistors (i.e., the logical
values applied to the inputs of gates A and B) and Rsh [Renovell et al. 1994].

The intermediate voltages Va and Vb will be interpreted by the gates succeeding
lines a and b as either logic-1 or logic-0, depending on the logic threshold of the
gates. The logic threshold depends on the parameters of the transistors within the
succeeding gate; different inputs of a gate generally have different logic thresholds.
The defect is detected if at least one succeeding gate interpreted the voltage on
a line involved in the bridge as a faulty logical value and this value propagated
to an output through a sensitized path. Multiple fault effects could be propagated
through reconverging paths, resulting in fault effect cancellation for certain values of
Rsh [Renovell et al. 1999]. Further pattern-dependent effects including the multiple
strengths problem are described in [Engelke et al. 2006b].

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

SUPERB: Simulator Utilizing Parallel Evaluation of Resistive Bridges · 5

3. FAULT SECTIONING

In this section, the fault sectioning technique from [Shinogi et al. 2001] is formalized
within our framework and illustrated by an example.

A bridging fault is given by two bridged nodes a and b. A bridging defect is given
by two nodes a and b and the defect resistance Rsh. A bridging fault corresponds
to an infinite number of bridging defects having different resistances.

For a bridging fault or a bridging defect between a and b, the two gates which
drive a and b are called preceding gates and the gates driven by either a or b
(including all their fanout branches) are called succeeding gates. If an input vector
implies opposite logic values on nodes a and b, then a bridging defect will result in
intermediate voltages Va and Vb on the respective lines, i.e., 0V < Va, Vb < VDD.
For every input of each succeeding gate, a single logic threshold is assumed such
that every voltage below this threshold is interpreted as logic 0 and every voltage
above is interpreted as logic 1. Although it is possible to consider two distinct logic
thresholds per gate [Cheung and Gupta 2007], we did not implement this option to
ensure identical fault simulation outcome to earlier interval-based simulators which
assume a single threshold [Lee and Walker 2000; Shinogi et al. 2001; Engelke et al.
2006b]. For the same reason, we did not model process variations.

The resistance of a bridging defect which induces a voltage corresponding to a
logic threshold of one of the inputs driven by the node is called critical resistance.
An analogue detection interval (ADI) is the range of resistances for all bridging
defects which are detected by a test vector, i.e., which produce a wrong logic value
on at least one primary output (or other observable point). An ADI typically has
the shape [0, R] for some value of R but it can also be a union of disjoint sub-intervals
[Renovell et al. 1999]. The boundaries of the ADIs are always critical resistances.
The number of different critical resistances depends on the fault site. The ADI is
calculated at the bridge site based on an electrical analysis and propagated to the
observable points of the circuit.

The interval [R1, R2] is called a section if R1 and R2 are critical resistances
and there is no critical resistance R3 such that R1 < R3 < R2. The number of
sections is given by the number of different critical resistances. Let R1, R2, . . . , Rm

be all the critical resistances for the bridging fault between nodes a and b, sorted in
ascending order. The detection status of a bridging fault can be represented by the
detection statuses of the sections [0, R1], [R1, R2], . . . , [Rm−1, Rm], [Rm,∞]. The
detection status is uniform for every bridge resistance within a section, i.e., either
all bridging defects with a resistance from a section are detected by a test vector
or none is detected. If the detection status of all the sections is known, the ADI
can be constructed as the union of all detected sections. This approach results in
the same ADI as the technique based on interval propagation.

For illustration, we consider the circuit from Figure 1 (a) [Engelke et al. 2006b]
which is a part of a larger circuit shown in Figure 2. Solid curves in Figure 1 (b)
show possible voltage characteristics as a function of bridge resistance Rsh when
logic values 0011 are applied to gates A and B preceding the bridge and dashed
curves show the characteristics when values 0111 are applied. Logic thresholds of
the succeeding gates are ThC , ThD and ThE . The fault is not excited and no
detection is possible if nodes a and b have the same logic value. For the sake of

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

6 · Piet Engelke et al.

C

D

E

a

b

Rsh

1

1

0

(1)0

B

A

C

D

E

C E C ED
RshRR’ RR’R’

V

Va

b

V

Th

Th

Th

(a) (b)

Fig. 1. Example circuit: bridge site (a); Rsh-V -diagram (b)

C

D

E E

E

C

E C

a

b

Rsh

1

1

0

B

A
1

0
C

D

0

[0, R’] 0/1

[0, R’] 0/1

E

1

[0, R’] 0/1

[R’ , R’] 0/1

[0, R’] 1/0 [0, R’] 0/1

[0, R’] 1/0

v

w

c

d

e

z

f

0
G

F

Fig. 2. Example circuit: interval-based propagation

simplicity, we assume that the only logic value assignments to the inputs of the
preceding gates leading to a fault excitation are 0011 and 0111. (Assignment 1011
can be assumed to have effect identical to 0111.) Critical resistances are RC , RE

(for value assignment 0011), R′

C , R′

D and R′

E (for value assignment 0111). Note
that there is no critical resistance RD. Sections are [0, R′

D], [R′

D, RC], [RC , R′

E],
[R′

E , R′

C], [R′

C , RE] and [RE ,∞]. Note that the fault-free value is always assumed
in the last section such as [RE ,∞] in this example and this section does not need
to be considered explicitly.

Figure 2 shows how the fault effect is propagated for input values 0111 using
the interval-based technique. The interval assigned to a node is shown over the
node. For instance, interval [0, R′

C]0/1 means that the node assumes logic value 0
if the bridge resistance is between 0Ω and R′

C , and logic value 1 otherwise. Similarly,
interval [0, R′

E]1/0 means that the node assumes logic value 1 if the bridge resistance
is between 0Ω and R′

E , and logic value 0 otherwise. The intervals are propagated
through the circuit taking the types of the gates and the values on the side inputs
into account. For instance, no interval is propagated through the AND gate D
because its side input has controlling logic value 0. The interval is complemented
by inverting gates such as E. If two intervals reconverge, i.e., arrive at two inputs
of a single gate such as XOR gate G preceding the output, intervals not starting
at 0Ω or even having ‘holes’ may be produced. In the example, the fault-free logic
value is 1, so the fault is detected by the applied test vector if Rsh is between R′

E

and R′

C .

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

SUPERB: Simulator Utilizing Parallel Evaluation of Resistive Bridges · 7

Circuit Fault-free Value assumed in section
node value [0, R′

D
] [R′

D
, RC] [RC , R′

E
] [R′

E
, R′

C
] [R′

C
, RE]

c 1 0 0 0 0 1
d 1 0 1 1 1 1
e 0 1 1 1 0 0

f 1 0 0 0 1 1
v 1 0 0 0 0 1
w 0 1 1 1 0 0

z 1 1 1 1 0 1

Table I. Section-based propagation in circuit from Figure 2

The logic values assumed by a node for individual sections are shown in Table I.
For example, the second input c of gate C is assumes logic value 0 for bridge resis-
tances between 0Ω and R′

C , i.e., in sections [0, R′

D], [R′

D, RC], [RC , R′

E], [R′

E , R′

C],
and logic value 1 in the remaining section [R′

C , RE] (section [RE ,∞] is not shown
as explained above). The values for individual sections can be propagated through
the circuit based on the logic functions of the gates. It is obvious that, if the sec-
tions are known, five bits representing the logic values for sections contain exactly
the same information as the interval-based representation. In particular, the values
at the output of the circuit are (1, 1, 1, 0, 1), i.e., only section [R′

E , R′

C] assumes
logic value 0 and all others assume logic value 1) corresponds to ADI [R′

E , R′

C]0/1
generated by the interval propagation.

Simulating a section under a given input vector (only the values assigned to
the inputs of the preceding gates matter indeed) can be represented as simulating a
multiple-stuck-at fault. In our example, simulating section [0, R′

D] under input 0111
corresponds to simulating stuck-at faults c stuck-at-0, d stuck-at-0, and e stuck-at-
1 injected simultaneously. Stuck-at faults corresponding to all sections and inputs
are shown in Table II.

The union of all ADIs on all outputs for all vectors is called covered ADI or
C-ADI. C-ADI includes all the bridge resistances for which the fault has been
detected by at least one test vector. C-ADI for the exhaustive test set is called
global ADI or G-ADI, it represents all the resistances for which the fault could be
detected. G-ADI can be calculated using ATPG techniques [Engelke et al. 2006a].
The global fault coverage G-FC is defined as the probability that a detectable fault
f is detected:

G-FC(f) = 100% ·

(
∫

C-ADI
ρ(r)dr

)

/

(
∫

G-ADI
ρ(r)dr

)

,

where ρ(r) is the probability density function of the short resistance r which can be
derived from manufacturing data. It is possible to approximate G-ADI by [0, Rm],
where Rm is the largest critical resistance [Lee and Walker 2000]. Rm is much
easier to calculate than G-ADI. The fault coverage which uses this approximation
is called E-FC in [Engelke et al. 2006b]:

E-FC(f) = 100% ·

(
∫

C-ADI
ρ(r)dr

)

/

(

∫ Rm

0

ρ(r)dr

)

.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

8 · Piet Engelke et al.

Simulation	
S@ Fault

Creation
S@ Fault

Analysis
Electrical

Netlist

Fault−List
Bridge

R sh

Test
Patterns

Bridges
Detected

Distribution

Electrical
Data

Coverage
Calculation

Fig. 3. Resistive bridging fault simulation flow

For multiple faults, average G-FC and E-FC are calculated. Redundant faults, i.e.,
faults with an empty G-ADI, are excluded.

Some sections are very small and their contribution to the fault coverage may be
insignificant. It would be possible to achieve simulation speed-up by omitting such
sections at the cost of some accuracy. We did not implement such techniques.

Input Section Stuck-at faults

0111 [0, R′

D
] c s-a-0, d s-a-0, e s-a-1

0111 [R′

D
, RC] c s-a-0, e s-a-1

0111 [RC , R′

E
] c s-a-0, e s-a-1

0111 [R′

E
, R′

C
] c s-a-0

0111 [R′

C
, RE] –

0111 [RE ,∞] –
0011 [0, R′

D
] c s-a-0, e s-a-1

0011 [R′

D
, RC] c s-a-0, e s-a-1

0011 [RC , R′

E
] e s-a-1

0011 [R′

E
, R′

C
] e s-a-1

0011 [R′

C
, RE] e s-a-1

0011 [RE ,∞] –

Table II. Multiple stuck-at faults corresponding to resistive bridging faults

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

SUPERB: Simulator Utilizing Parallel Evaluation of Resistive Bridges · 9

4. SUPERB

Figure 3 shows the flow of SUPERB. First, SUPERB reads the list of resistive
bridging faults and gate and process technology parameters. Electrical analysis is
performed to obtain the critical resistances for all faults in the fault list [Renovell
et al. 1994; 1995]. Then, the mapping of sections to multiple stuck-at faults is
performed. For every section [Ri−1, Ri], a hash table mapping possible input values
of the gates driving the bridge I to the multiple stuck-at fault f I

i is generated
(explained in detail in Section 4.1). Then, 64-bit parallel-pattern or parallel-fault
multiple-stuck-at fault simulation is performed (details can be found in Section 4.2).
After the simulation has yielded the detection status of each section, the ADI is
determined and aggregated to C-ADI and the fault coverage (G-FC or E-FC) is
calculated.

4.1 Hash table generation

There is one hash table for every section of every considered resistive bridging fault.
Let the fault f between nodes driven by gates a and b have a section [RL, RU]. The
hash table for section [RL, RU] of fault f contains all the logic value assignments to
the inputs of gates a and b under which a resistive defect with a resistance between
RL and RU has any faulty effect. Every such input value assignment serves as a
key to look up the equivalent multiple-stuck-at faults. In the example from Table
II, the hash table for section [0, R′

D] would have two entries: (0111 7→ {c s-a-0, d
s-a-0, e s-a-1}) and (0011 7→ {c s-a-0, e s-a-1}). The hash table for section [R′

C , RE]
would have one entry (0011 7→ {e s-a-1}).

The identification of section boundaries (i.e., critical resistances) and the calcu-
lation of equivalent multiple stuck-at faults is done using the electrical equations
from [Renovell et al. 1994; 1995]. It would also be possible to use SPICE simula-
tions instead such as done in [Lee and Walker 2000]. The keys, i.e., the input value
assignments, are represented as 32-bit unsigned integers. This is valid because the
length of a key cannot exceed 2 · Imax where Imax is the maximal number of inputs
of a logic gate in the library and Imax is not supposed to exceed 16.

The maximal theoretical number of entries in a hash table is 22·Imax but in practice
the hash tables turn out to be quite small. The number of hash tables is the number
of faults in the fault list multiplied by the number of sections per fault. The latter
is typically a one-digit number, so the memory overhead for storing the hash tables
is limited.

4.2 Fault simulation

SUPERB supports both parallel-pattern single-fault processing (PPSFP) and sin-
gle-pattern parallel-fault processing (SPPFP). In PPSFP simulation, one section
is fault-simulated for 64 test vectors t1, . . . , t64 simultaneously. For this purpose,
every node j is assigned a 64-bit string Bj represented using a machine word. The
ith position of Bj corresponds to the logic value of node j under vector ti with
fault injected. If node j is an input of a gate succeeding the bridged lines, the
(multiple-stuck-at) fault injection is done using two 64-bit masks: AND mask Aj

and OR mask Oj . The ith position of Aj is set to 0 if a stuck-at-0 fault is injected
at node j under test vector ti and to 1 otherwise. The ith position of Oj is set to

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

10 · Piet Engelke et al.

1 if a stuck-at-1 fault is injected at node j under test vector ti and to 0 otherwise.
The circuit is processed in topological order. A logic gate driving node j is

simulated by applying its bit-wise logic function to the bit-strings of its inputs. In
case of gates succeeding the bridged lines, a bit-wise AND operation with Aj and
a bit-wise OR operation with Oj is performed first. For example, if a NOR3 gate
succeeding the bridge drives node n and the gate’s input bit-strings are Bk, Bl and
Bm, then Bn is obtained as

Bn =¬ ((Bk∧Ak∨Ok)∨(Bl∧Al∨Ol)∨(Bm∧Am∨Om))

where ¬, ∨ and ∧ represent bit-wise NOT, OR and AND operations, respectively.
The generation of masks Aj and Oj is done for all inputs of gates succeeding the

bridging fault to which the simulated section belongs, using the hash table of that
section. For a bit position i, the input value assignments of the preceding gates
are evaluated and the corresponding key of the hash table is looked up. The ith
component of Aj is set to 0 if the hash table entry contains a stuck-at-0 fault on
node j. The ith component of Oj is set to 1 if the hash table entry contains a
stuck-at-1 fault on node j. Note that, in contrast to traditional pattern-parallel
simulation, the masks do not always contain identical values. This is because the
faults to be injected depend on the input value assignments of the preceding gates.

In parallel-fault (SPPFP) simulation, an input vector is simulated under 64 sec-
tions, not necessarily belonging to the same fault. The AND and OR masks are set
at all the succeeding nodes of the resistive bridging faults to which the 64 sections
belong. This is done by looking up the 64 hash tables for the individual sections
using the key corresponding to the input value assignment induced by the simulated
vector. The processing of individual gates is identical to the parallel-pattern case.

Figure 4 (a) illustrates the strings B and the masks A and O for four-bit PPSFP
simulation of section [R′

E , R′

C] in circuit from Figure 2 for input vectors 1111,
0000, 0111 and 0011. (Note that we assume the side inputs of gates C and D to be
constantly at logic-0 and the side input of gate F to be constantly at logic-1.) Figure
4 (b) shows the information for four-bit SPPFP simulation of the same circuit for
input vector 0111 and four sections shown in the figure. Note that SUPERB uses
64 bit parallelism and could also simulate sections which belong to different faults
in one pass.

4.3 Relation to previous work

The authors of PROBE [Lee and Walker 2000] refer to their technique as to PPSFP
simulation. Their approach is interval-based. They maintain a list of pointers to
the intervals, and if an interval to be created already exists, they store only the
pointer, avoiding to copy the interval. In contrast to SUPERB, they do not employ
bit-parallelism for fault effect propagation. The simulator is implemented in tcl/tk
and does not include advanced optimization techniques.

Cheung and Gupta use a slightly different electrical model which considers two
logic thresholds (VIL and VIH) for each gate [Cheung and Gupta 2007]. Voltages
between VIL and VIH are interpreted as the unknown value X. In this way, the
simulator can, to some extent, account for noise margins and process variations.
In contrast, our focus was on improving the performance of the existing (single-
threshold) simulation [Engelke et al. 2006b] rather than on refining the model. The

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

SUPERB: Simulator Utilizing Parallel Evaluation of Resistive Bridges · 11

zB 0 00 0

B

1 10

1

0

0

1 1

0

1

0

0

1

1

0

0

1

1

0

Patterns

1111

0000

0111

0011

0z 10B 1

1
0 0 0 0O

0 0 0 0B

0 0 0 0B

1
0 0 0 0

B

0

0 0 0

O
A
B 1 0 0B

1B

0 0 0 0B

0 0 0 0B

0 0B

B

B

B

cB
Ac

c

d

Ad

Od

e

e

e

f

w

1

2

3

4

5

6

7

1 1 1

1 1 1

1 1

1 11

1 1 1

1 1

1 1 1 1

1 1 1

v 0 0 1

d

v

w

Fault−free

a

b

R

e

z
G

F

D

C

E

A

B

c

f

sh

(a)

E C

D

0 0 0 0O

0 0 0 0B

0 0 0 0B

1
0 0 0 0

B

0 0

O
A
B 1 0 0B

1B

0 0 0 0B

0 0 0 0B

B

B

B

B

cB
Ac

c

d

Ad

Od

e

e

e

f

w

1

2

3

4

5

6

7

1 1 1

1 1 1

1 1

1 11

1 1 1

1

1 1 1 1

1 1 1

v 0 0B

1 101

0

1

z 1B 1

11

1

1

0

Sections
D C

C E 1

1

0 0

1 10

0 0 0

0

0

1

0 0

1 1

0z 1B 1 1

[R’ , R’]

[0, R’]

a

b

R

e

zG

F

D

C

E

A

B

c

f

sh d

v

w

Fault−free

[R’ , R]

[R , R’]

(b)

Fig. 4. Four-bit parallel-pattern simulation of section [R′

E
, R′

C
] (a); four-bit parallel-fault simula-

tion of input vector 0111 for circuit from Figure 2

fault coverage figures produced by SUPERB always match the numbers yielded by
the simulator from [Engelke et al. 2006b]. SUPERB’s optimization techniques not
found in Cheung and Gupta’s simulator are summarized below.

The hash tables employed by SUPERB have been heavily optimized. Although
Cheung and Gupta give no details on the implementation of the fault character-
ization tables (their mechanism to relate the input values on the preceding gates
and the sections with the logical values interpreted), we assume that our hash
tables provide faster translation from sections to multiple stuck-at faults. Further-
more, the fault lists in Cheung and Gupta’s simulator contain bridging faults; the
simulator has to generate sections for a given bridging fault before running the
parallel-pattern simulation. SUPERB’s fault lists consist of sections, which have a
one-to-one correspondence to multiple stuck-at faults for a fixed input vector. This
simplifies the handling of the fault list by existing (multiple) stuck-at simulation
engines. In addition, this allows both parallel-pattern and parallel-fault simulation,
as 64 faults handled by the stuck-at simulation engine may correspond to sections
that belong to different bridging faults. Finally, SUPERB supports event-driven
simulation while Cheung and Gupta’s simulator traverses the full fanout cone of
the bridged signals.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

12 · Piet Engelke et al.

C
ircu

it
C

ells
P

I
P

O
R

esistive
b
rid

gin
g

fau
lt

sim
u
lation

S
tu

ck
-at

fau
lt

sim
.

F
a
u
lts

E
-F

C
G

-F
C

P
rep

ro
c.

S
im

.
T

/
B

V
M

em
F
a
u
lts

F
C

T
im

e

[s]
[s]

[m
s]

[M
B

]
[s]

IS
C

A
S

85
circu

its
c2

6
7
0

1
,5

6
6

2
3
3

1
4
0

1
5
,6

6
0

9
6
.6

5
9
7
.7

0
0
.1

2
7
.2

6
0
.0

0
0
0
5

4
6

2
,7

4
7

8
8
.3

1
0
.0

8
c3

5
4
0

1
,7

4
1

5
0

2
2

1
7
,4

1
0

9
8
.8

1
9
9
.9

4
0
.3

1
5
.6

7
0
.0

0
0
0
3

5
8

3
,4

2
8

9
5
.8

3
0
.0

4

c5
3
1
5

2
,6

0
8

1
7
8

1
2
3

2
6
,0

8
0

9
9
.6

5
1
0
0
.0

0
0
.3

1
3
.8

1
0
.0

0
0
0
2

6
9

5
,3

5
0

9
8
.9

0
0
.0

5
c6

2
8
8

2
,4

8
0

3
2

3
2

2
4
,8

0
0

9
1
.6

5
1
0
0
.0

0
0
.2

2
3
9
.3

3
0
.0

0
0
1
6

6
3

7
,7

4
4

9
9
.5

6
0
.1

7
c7

5
5
2

3
,8

2
7

2
0
7

1
0
8

3
8
,2

7
0

9
9
.0

4
9
9
.5

3
0
.3

8
1
2
.7

9
0
.0

0
0
0
3

9
4

7
,5

5
0

9
4
.2

9
0
.1

4

A
v
era

g
e

(a
ll

IS
C

A
S

8
5

circu
its)

9
7
.6

4
9
9
.7

2
0
.1

4
6
.5

7
0
.0

0
0
1
1

9
7
.4

4
0
.0

5

IS
C

A
S

89
circu

its
(com

b
in

ation
al

cores)
cs0

1
4
8
8

6
9
2

1
4

2
5

6
9
2
0

9
7
.9

4
9
9
.9

6
0
.0

6
2
.0

3
0
.0

0
0
0
3

2
7

1
,4

8
6

9
9
.8

0
0
.0

1
cs0

1
4
9
4

6
8
6

1
4

2
5

6
8
6
0

9
8
.1

2
9
9
.9

6
0
.0

7
2
.2

5
0
.0

0
0
0
3

2
7

1
,5

0
6

9
9
.0

0
0
.0

1
cs0

5
3
7
8

3
,2

2
1

2
1
4

2
2
8

3
2
2
1
0

9
9
.1

7
9
9
.8

0
0
.2

3
8
.5

3
0
.0

0
0
0
3

7
7

4
,6

0
3

9
8
.1

8
0
.0

6
cs0

9
2
3
4

6
,0

9
4

2
4
7

2
5
0

6
0
9
4
0

9
5
.5

6
9
6
.9

5
0
.3

4
3
6
.9

2
0
.0

0
0
0
6

1
2
8

6
,9

2
7

8
4
.5

5
0
.4

8

cs1
3
2
0
7

9
,4

4
1

7
0
0

7
9
0

9
4
4
1
0

9
8
.0

9
9
8
.4

0
0
.5

5
3
7
.1

5
0
.0

0
0
0
4

1
9
4

9
,8

1
5

9
0
.9

2
0
.4

6
cs1

5
8
5
0

1
1
,0

6
7

6
1
1

6
8
4

1
1
0
6
7
0

9
8
.2

6
9
8
.8

1
0
.6

1
3
4
.6

7
0
.0

0
0
0
3

2
2
1

1
1
,7

2
5

9
1
.5

7
0
.5

9
cs3

5
9
3
2

1
9
,8

7
6

1
,7

6
3

2
,0

4
8

1
9
8
7
6
0

9
6
.4

0
1
0
0
.0

1
.4

0
1
3
2
.2

8
0
.0

0
0
0
7

4
1
8

3
9
,0

9
4

8
9
.8

1
2
.0

3

cs3
8
4
1
7

2
5
,5

8
5

1
,6

6
4

1
,7

4
2

2
5
5
8
5
0

9
6
.0

0
9
8
.1

1
1
.6

1
1
5
9
.8

9
0
.0

0
0
0
6

5
2
4

3
1
,1

8
0

8
8
.7

5
1
.6

9
cs3

8
5
8
4

2
2
,4

4
7

1
,4

6
4

1
,7

3
0

2
2
4
4
7
0

9
5
.8

7
9
7
.6

4
1
.8

7
1
2
9
.0

1
0
.0

0
0
0
6

4
7
9

3
6
,3

0
3

9
4
.5

2
1
.5

7

A
v
era

g
e

(a
ll

IS
C

A
S

8
9

circu
its)

9
6
.1

0
9
8
.7

4
0
.2

5
1
9
.7

2
0
.0

0
0
0
8

9
5
.1

6
0
.2

3

IT
C

99
circu

its
(com

b
in

ation
al

cores)
b
1
4

5
,9

2
3

2
7
7

2
9
9

5
9
,2

3
0

9
6
.8

5
9
7
.8

1
0
.9

5
8
1
.5

7
0
.0

0
0
1
4

1
5
9

1
6
,1

6
7

8
8
.8

7
0
.9

6
b
1
5

8
,0

2
6

4
8
5

5
1
9

8
0
,2

6
0

8
9
.5

6
9
0
.8

8
1
.1

6
2
3
0
.4

1
0
.0

0
0
2
9

2
0
6

2
1
,2

8
2

7
3
.6

4
6
.1

0

b
1
7

2
5
,7

1
9

1
,4

5
1

1
,5

1
1

2
5
7
,1

9
0

8
7
.3

0
8
7
.9

3
4
.0

3
9
6
3
.1

4
0
.0

0
0
3
8

6
7
1

6
8
,2

0
7

7
1
.1

0
2
5
.3

6
b
1
8

7
6
,5

1
3

3
,3

0
7

3
,2

9
3

7
6
5
,1

3
0

8
9
.1

4
–

1
2
.0

1
3
8
2
6
.4

6
0
.0

0
0
5
0

1
9
9
6

2
0
6
,8

1
2

7
5
.8

0
1
3
7
.6

5
b
2
0

1
2
,9

9
1

5
2
2

5
1
2

1
2
9
,9

1
0

9
7
.6

7
9
8
.3

4
2
.0

0
1
6
3
.4

4
0
.0

0
0
1
3

3
4
2

3
5
,7

3
1

9
1
.6

5
2
.2

7

b
2
1

1
3
,1

6
8

5
2
2

5
1
2

1
3
1
,6

8
0

9
7
.5

1
9
8
.1

6
1
.8

8
1
6
7
.4

7
0
.0

0
0
1
3

3
4
5

3
6
,0

5
8

9
0
.4

8
2
.6

9
b
2
2

1
8
,7

8
9

7
3
5

7
2
5

1
8
7
,8

9
0

9
7
.8

9
9
8
.4

7
2
.9

0
2
2
3
.8

7
0
.0

0
0
1
2

4
9
0

5
1
,3

4
1

9
2
.0

1
3
.8

2

A
v
era

g
e

(a
ll

IT
C

9
9

circu
its)

9
4
.7

6
9
6
.8

0
1
.8

1
4
1
6
.0

9
0
.0

0
0
1
6

9
0
.5

1
1
3
.4

9

T
ab

le
III.

E
x
p
erim

en
tal

resu
lts

for
IS

C
A

S
85

an
d

com
b
in

ation
al

cores
of

IS
C

A
S

89
an

d
IT

C
99

circu
its,

10,000
test

vectors

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

SUPERB: Simulator Utilizing Parallel Evaluation of Resistive Bridges · 13

C
ir

cu
it

C
el

ls
P

I
P

O
R

es
is

ti
ve

b
ri

d
gi

n
g

fa
u
lt

si
m

u
la

ti
on

S
tu

ck
-a

t
fa

u
lt

si
m

u
la

ti
on

F
a
u
lt

s
E

-F
C

P
re

p
ro

c.
S
im

.
T

/
B

V
M

em
F
a
u
lt

s
F
C

T
im

e
[s

]
[s

]
[m

s]
[G

B
]

[s
]

p
3
5
k

4
8
,9

2
7

2
,9

1
2

2
,2

2
9

4
8
9
,2

7
0

8
2
.4

4
3
.5

0
9
2
2
.1

7
0
.0

0
0
1
9

1
.0

6
7
,7

3
3

5
8
.6

8
1
4
.4

9
p
4
5
k

4
6
,0

7
5

3
,7

3
9

2
,5

5
0

4
6
0
,7

5
0

9
7
.7

4
3
.5

5
3
6
0
.1

3
0
.0

0
0
0
8

1
.0

6
8
,7

6
0

9
3
.0

4
9
.9

1
p
7
7
k

7
5
,0

3
3

3
,4

8
7

3
,4

0
0

7
5
0
,3

3
0

7
8
.5

0
6
.1

4
2
4
,9

4
2
.2

0
0
.0

0
3
3
2

1
.5

1
2
0
,3

4
8

5
9
.5

1
2
,6

3
5
.8

5
p
7
8
k

8
0
,8

7
5

3
,1

4
8

3
,4

8
4

8
0
8
,7

5
0

9
7
.8

5
7
.0

0
5
1
9
.2

7
0
.0

0
0
0
7

1
.7

1
6
3
,3

1
0

1
0
0
.0

0
3
.2

4
p
8
1
k

9
6
,7

2
2

4
,0

2
9

3
,9

5
2

9
6
7
,2

2
0

8
7
.1

7
1
2
.8

1
1
,7

2
8
.0

2
0
.0

0
0
1
8

2
.2

2
0
4
,1

7
4

6
9
.2

7
1
8
.1

4
p
8
9
k

9
2
,7

0
6

4
,6

8
3

4
,5

5
7

9
2
7
,0

6
0

9
2
.0

0
7
.9

6
1
,4

2
6
.0

9
0
.0

0
0
1
5

1
.9

1
5
0
,5

3
8

7
5
.8

9
2
6
.9

1
p
1
0
0
k

1
0
2
,4

4
3

5
,9

0
2

5
,8

2
9

1
,0

2
4
,4

3
0

9
8
.2

8
8
.8

8
8
2
4
.1

5
0
.0

0
0
0
8

2
.1

1
6
2
,1

2
9

9
3
.5

7
2
7
.4

6
p
1
4
1
k

1
8
5
,3

6
0

1
1
,2

9
0

1
0
,5

0
2

1
,8

5
3
,6

0
0

9
8
.0

2
1
4
.7

7
9
8
7
.1

1
0
.0

0
0
0
5

3
.8

2
8
2
,4

2
8

9
1
.5

0
2
4
.7

1
p
2
6
7
k

2
9
6
,4

0
4

1
7
,3

3
2

1
6
,6

2
1

2
,9

6
4
,0

4
0

9
7
.1

0
2
0
.4

9
2
,0

7
5
.9

7
0
.0

0
0
0
7

5
.8

3
6
6
,8

7
1

9
0
.4

1
4
2
.3

5
p
2
6
9
k

2
9
7
,4

9
7

1
7
,3

3
3

1
6
,6

2
1

2
,9

7
4
,9

7
0

9
7
.1

2
2
1
.1

4
2
,1

1
5
.0

1
0
.0

0
0
0
7

5
.8

3
6
9
,0

5
5

9
0
.5

9
4
3
.0

0
p
2
9
5
k

3
1
1
,9

0
1

1
8
,5

0
8

1
8
,5

2
1

3
,1

1
9
,0

1
0

9
0
.8

0
2
4
.2

8
4
,2

1
4
.9

5
0
.0

0
0
1
4

6
.3

4
7
2
,0

2
2

7
7
.6

3
7
0
.0

4
p
3
3
0
k

3
6
5
,4

9
2

1
8
,0

1
0

1
7
,4

6
8

3
,6

5
4
,9

2
0

9
6
.1

2
2
9
.2

0
2
,7

0
6
.3

4
0
.0

0
0
0
7

7
.3

5
4
0
,7

5
8

8
6
.6

6
6
1
.0

6
p
3
7
8
k

4
0
4
,3

6
7

1
5
,7

3
2

1
7
,4

2
0

4
,0

4
3
,6

7
0

9
7
.9

6
3
5
.8

1
2
,7

0
2
.5

0
0
.0

0
0
0
7

8
.3

8
1
6
,5

3
4

1
0
0
.0

0
2
3
.0

2
p
3
8
8
k

5
0
6
,0

3
4

2
5
,0

0
5

2
4
,0

6
5

5
,0

6
0
,3

4
0

9
8
.8

7
4
2
.4

0
2
,2

2
3
.5

0
0
.0

0
0
0
4

1
0
.3

8
8
1
,4

1
7

9
6
.0

6
7
1
.8

4
p
4
6
9
k

4
9
,7

7
1

6
3
5

4
0
3

4
9
7
,7

1
0

9
8
.4

3
8
.7

4
2
2
,0

9
1
.8

0
0
.0

0
4
4
4

1
.3

1
4
2
,7

5
1

9
8
.5

3
2
,8

4
0
.1

9
p
9
5
1
k

1
,1

4
7
,4

9
1

9
2
,0

2
7

1
0
4
,7

4
7

1
1
,4

7
4
,9

1
0

9
9
.0

1
9
3
.7

8
4
,5

3
5
.1

3
0
.0

0
0
0
4

2
2
.9

1
,5

5
7
,9

1
4

9
5
.3

2
1
2
7
.6

3
p
1
5
2
2
k

1
,1

9
3
,8

2
4

7
1
,4

1
4

6
8
,0

3
5

1
1
,9

3
8
,2

4
0

9
3
.2

6
9
9
.3

6
1
5
,7

7
5
.4

7
0
.0

0
0
1
3

2
3
.9

1
,6

9
7
,6

6
2

8
0
.9

1
2
8
7
.2

3
p
2
9
2
7
k

2
,5

3
9
,0

5
2

1
0
1
,8

4
4

9
5
,1

4
3

2
5
,3

9
0
,5

2
0

9
6
.5

7
1
8
4
.0

6
2
7
,6

6
8
.1

6
0
.0

0
0
1
1

4
8
.8

3
,5

2
7
,6

0
7

8
8
.5

6
1
,1

0
0
.2

9

A
v
er

a
g
e

9
4
.2

9
3
4
.6

6
6
,5

4
5
.4

4
0
.0

0
0
5
2

8
5
.9

0
4
1
2
.6

3

T
ab

le
IV

.
E

x
p
er

im
en

ta
l
re

su
lt

s
fo

r
co

m
b
in

at
io

n
al

co
re

s
of

N
X

P
ci

rc
u
it

s,
10

,0
00

te
st

ve
ct

or
s

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

14 · Piet Engelke et al.

Circuit [Shinogi et al. 2001] PROBE [Lee and Walker 2000] SUPERB (PPSFP)

B T T/BV B T T/BV B T T/BV

[s] [ms] [s] [ms] [s] [ms]

c432 n/a n/a n/a 157 780.00 0.49602 5,253 1.24 0.00002
c499 n/a n/a n/a 136 900.00 0.66071 8,985 0.76 0.00001

c880 1,000 18.00 0.00180 949 6,960.00 0.73223 10,000 3.70 0.00004
c1355 1,000 114.00 0.01140 639 12,960.00 2.02493 10,000 7.17 0.00007
c1908 2,000 78.00 0.00390 1,662 37,680.00 2.26353 10,000 2.97 0.00003

c2670 5,000 840.00 0.01680 4,294 151,020.00 3.51138 10,000 4.69 0.00005
c3540 5,000 720.00 0.01440 4,431 202,860.00 4.57089 10,000 3.18 0.00003
c5315 8,000 540.00 0.00675 7,121 418,500.00 5.86760 10,000 1.34 0.00001
c6288 4,000 1,800.00 0.04500 3,216 603,240.00 18.72750 10,000 13.77 0.00014

c7552 13,000 2,700.00 0.02077 12,106 1,194,480.00 9.85108 10,000 3.29 0.00003

Σ, ∅ 6,810.00 0.01510 2,629,380.00 4.87059 42.11 0.00004

Table V. Comparison with previous approaches

5. EXPERIMENTAL RESULTS

5.1 Performance of SUPERB

We applied 10,000 random test vectors to the ISCAS 85 circuits and the combi-
national cores of ISCAS 89 and ITC 99 circuits and industrial circuits by NXP.
The number of faults considered equaled the number of cells in the circuit multi-
plied by 10. We selected the faults randomly. The faults could also be selected
based on layout analysis [Ferguson and Shen 1988]. The number of faults was
chosen to be close to typical numbers of faults obtained by layout-based selection
procedures. Since SUPERB currently does not handle oscillation, we considered
only non-feedback faults (simulation techniques for feedback faults are described in
[Polian et al. 2005]).

We employed the density function ρ derived from one used in [Lee and Walker
2000] (using a uniform distribution [Spica et al. 2001] increased the fault coverage
by 0.65% on average). We calculated G-ADI for ISCAS 85 and 89 and all except
one ITC 99 circuits using the tool from [Engelke et al. 2006a]; it was not applicable
to larger circuits, so no G-FC can be reported for them. Note that the tool from
[Engelke et al. 2006a] is a test generation tool and not part of SUPERB.

Columns 1 through 5 of Tables III and IV contain the name of the circuit, the
number of cells, inputs and outputs of its combinational core and the number
of simulated resistive bridging faults. The subsequent columns report the obtained
RBF coverage (E-FC and G-FC for ISCAS and ITC 99 circuits, only E-FC for NXP
circuits), the time for preprocessing, the simulation time, the time per bridging fault
and vector (in milliseconds), and the memory demand. For comparison, stuck-at
fault simulation has been performed for the same 10,000 random vectors using the
same simulation engine. The final three columns of Table IV contain the number of
stuck-at faults, the achieved stuck-at fault coverage and the simulation time. The
last row of the table details average numbers. The measurement was performed on
a 2.8 GHz AMD Opteron Linux machine with 16 GB RAM.

Table III does not quote results for all the benchmarks, skipping the smaller
circuits. Note that the average numbers refer to the complete respective benchmark
suite, including the skipped circuits. The run times reported here differ slightly

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

SUPERB: Simulator Utilizing Parallel Evaluation of Resistive Bridges · 15

compared to [Engelke et al. 2008] because we repeated all measurements to ensure
comparability with earlier approaches.

The RBF coverage achieved by 10,000 random vectors tends to be lower for larger
circuits, although there appear to be smaller circuits with many random-pattern
resistant faults such as p77k. The coverage is typically higher than the stuck-at
fault coverage, but it does not track for all circuits. For instance, the RBF coverage
of p100k significantly exceeds its stuck-at coverage while for p78k the opposite is
the case. For circuits for which G-FC could be calculated it often significantly
exceeds E-FC (more details on approximations of G-FC can be found in [Engelke
et al. 2006a; 2006b]).

The largest simulation time of approximately 8 hours is required for the 2.5
million gate design p2927k. The average simulation time of the RBF simulation is
approximately 19 times larger than that of the stuck-at fault simulation (this ratio
is higher for smaller circuits). Given that the number of faults is approximately
five times larger, the average simulation speed is competitive. Note that the actual
number of multiple stuck-at faults simulated during RBF simulation is still higher
because one RBF consists of multiple sections and every section is mapped to one
pattern-dependent multiple stuck-at fault.

Figure 5 (a) shows the simulation time per bridging fault as a function of the
circuit size. It can be seen that, with exception of two outliers, the time per fault is
almost independent of the circuit size. Figure 5 (b) plots the RBF simulation time
against the stuck-at simulation time. The dependency is almost perfectly linear,
with exception of the smallest circuits.

In addition to the memory usage figures reported here, we investigated the mem-
ory consumption as the function of the number of faults in the fault list. We found
that SUPERB allocates some fixed amount of memory for the circuit and the test
vectors. The remaining memory usage was almost perfectly linear in the number
of faults. For example, the ITC 99 circuit b17 required some 37 MB with an empty
fault list and some 2.5 MB for every 1,000 faults in the fault list. This memory is
consumed by the hash tables and further fault-related data structures. SUPERB’s
total memory requirements are thus sub-linear in number of faults. If the available
memory is not sufficient, SUPERB can be applied to portions of the fault list, and
the final simulation outcome can be composed of the individual results.

5.2 Comparison with previous approaches

Table V compares the 32-bit parallel version of SUPERB with the sectioning-based
tool from [Shinogi et al. 2001] and the interval-based tool PROBE [Lee and Walker
2000]. We do not compare with the tool from [Cheung and Gupta 2007] because
it is based on a different electrical model and requires more processing to simulate
the unknown values. For each tool, the number of bridging faults B (not sections)
and the reported run time T in seconds are given. Note that the original papers
[Shinogi et al. 2001; Lee and Walker 2000] report the run time in minutes. The
number of used test vectors V was always 10,000 for the tool from [Shinogi et al.
2001] and SUPERB and 10,016 for PROBE. To allow a comparison, we calculate
the normalized run time as run time T divided by the product of the number of
bridges B and the number of vectors V and report the result (in milliseconds) in
columns T/BV .

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

16 · Piet Engelke et al.

10
-5

10
-4

10
-3

10
-2

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
/B

 [
m

s
]

Circuit Size

ISCAS85
ISCAS89

ITC99
NXP

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

T
(R

B
F

)
[s

]

T(SA) [s]

ISCAS85
ISCAS89

ITC99
NXP

(b)

Fig. 5. Simulation time per resistive bridging fault as function of circuit size (a);
simulation time for resistive bridging faults vs. stuck-at faults (b)

The final row contains the sums of all run times and the average normalized
run times. SUPERB is approximately two orders of magnitude faster than the tool
from [Shinogi et al. 2001] and five orders of magnitude faster than PROBE [Lee and
Walker 2000]. Note that the experiments in [Shinogi et al. 2001] were run on a 850
MHz Pentium III, which may be three to five times slower than the computer we
used. Moreover, the average number of sections per fault for the circuits in Table
V was 3.61 for the tool from [Shinogi et al. 2001] and 3.11 for SUPERB, which may
account for some 15% of the acceleration. The measurement in [Lee and Walker

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

SUPERB: Simulator Utilizing Parallel Evaluation of Resistive Bridges · 17

10
0

10
1

10
2

10
3

10
4

10
5

10
6

c0880

c1355

c1908

c2670

c3540

c5315

c6288

c7552

cs00820

cs00832

cs00838

cs00953

cs01196

cs01238

cs01423

cs01488

cs01494

cs05378

cs09234

cs13207

cs15850

cs35932

cs38417

cs38584

R
u
n
-T

im
e
 [
lo

g
(s

)]

PPSFP SPPFP Interval

Fig. 6. Run time of SUPERB vs. interval-based approach (logscale)

2000] was done on a Sun SPARC 5 with an unspecified clock frequency which
should not have resulted in a slowdown of more than two orders of magnitude. The
remaining difference must be attributed to the interval-based simulation (despite
the acceleration through the shared pointers) and the implementation of PROBE
in tcl/tk.

Figure 6 shows the run time of SUPERB in PPSFP mode, SPPFP mode and the
interval-based tool from [Engelke et al. 2006b] for identical fault lists and 10,000
identical test vectors on the same machine, in logscale form. On average, the
PPSFP mode outperforms the SPPFP mode by approximately a factor of 10. We
observed similar acceleration on combinational cores of ITC 99 and NXP circuits
not reported here. The average speed-up of SUPERB compared to the interval-
based tool is approximately 800. The interval-based tool did not terminate for
industrial circuits in feasible time.

5.3 Double Errors Induced by Resistive Bridging Faults

A resistive bridging fault between circuit nodes a and b may induce erroneous logical
values on both nodes simultaneously. For instance, suppose that node a drives a
logic gate with logic threshold Th1 and that the fault-free logical value on a is 1.
Node b drives a gate with threshold Th2 < Th1 and b’s fault-free value is 0. A defect
with a fixed resistance Rsh results in node a having voltage level Va(Rsh) and node b
having voltage level Vb(Rsh) ≤ Va(Rsh). If Va(Rsh) < Th1 and Vb(Rsh) > Th2, the
gates driven by a and b will both interpret erroneous logical value. This behavior
is not reflected by simple bridging fault models in which one bridged node changes
its value while the other node’s value stays unchanged.

We refer to the situation when both bridged nodes changing their logical value
simultaneously as the RBF-induced double error.1 Probability of such errors is

1If nodes a or b drive several gates, some of the driven gates may interpret the fault-free value

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

18 · Piet Engelke et al.

relevant for the analysis of fault-tolerance techniques which often assume that a
single source of errors is present in the circuit. This assumption is not valid for
RBF-induced double errors.

We investigate the probability that an RBF-induced double error shows up in a
general circuit. For this purpose, we apply the local analysis employed by SUPERB
for hash table generation to all possible resistive bridging faults. We exhaustively
enumerate all combinations of gates driving the bridged nodes, values on their
inputs, and gates driven by the bridged nodes. We consider only gates which
show up in at least one ISCAS 85, ISCAS 89, ITC 99 or NXP circuit. For each
combination, we extract resistance intervals (sections) in which a double error as
defined above shows up.

In total, we evaluated 35,721,000 combinations. Out of them, RBF-induced dou-
ble errors were possible for at least one bridge resistance in 61,792 cases (0.172985
per cent). For every such case we related the resistance interval in which double
errors were observable to the maximum detectable resistance range to account for
the fault coverage impact in a manner similar to E-FC. This yielded an average
coverage of 18.8481 per cent. This means that the total double error probability
is 0.00172985 · 0.188481 = 0.0003260438, or approximately 0.03 per cent. In con-
clusion, RBF-induced double errors are possible but quite rare. It appears that
this mechanism can be safely ruled out as a source of double errors when designing
fault-tolerance techniques or assessing their efficiency.

6. CONCLUSIONS

We presented an approach for fast simulation of resistive bridging faults. Sections
of bridge resistances are mapped to multiple-stuck-at faults, thus enabling to em-
ploy acceleration techniques developed for stuck-at fault simulation. The mapping
takes the pattern-dependent circuit behavior into account. While retaining the ac-
curacy of the interval-based simulation, speed-ups of several orders of magnitude
are achieved compared to both interval-based and sectioning-based tools proposed
before. We also demonstrated the applicability of SUPERB to large industrial cir-
cuits with fault lists of realistic size. The simulation effort is not far away from
the effort for stuck-at fault simulation, and the gap decreases for larger circuits.
Based on the developed methodology, we analyzed the probability of RBF-induced
double errors and found it to be low, yet not zero. Possible extensions are support
of features present in industrial circuits such as Z values and incorporation of the
model for feedback faults from [Polian et al. 2005].

Acknowledgments

Parts of this work are supported by the German Research Foundation under grant
BE 1176/14-1. We are grateful to Prof. Gössel of the University of Potsdam for
pointing us to the double-error issue investigated in Section 5.3.

while others interpret the erroneous value, depending on their threshold. In our definition of
double error, we require that at least one successor of both a and b interprets the erroneous value.
The situation when several gates driven by one node but none driven by the other node interpret

the erroneous value is not considered double error.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

SUPERB: Simulator Utilizing Parallel Evaluation of Resistive Bridges · 19

REFERENCES

Aitken, R. C. 1995. Finding defects with fault models. In Int’l Test Conf. 498–505.

Banerjee, P. and Abraham, J. A. 1985. A multivalued algebra for modeling physical failures

in mos vlsi circuits. IEEE Trans. on CAD 4, 5, 312–321.

Chang, Y.-S., Gupta, S. K., and Breuer, M. A. 1999. Test generation for ground bounce in

internal logic circuitry. In VLSI Test Symp. 95–104.

Chen, G., Reddy, S. M., Pomeranz, I., Rajski, J., Engelke, P., and Becker, B. 2005. An uni-

fied fault model and test generation procedure for interconnect opens and bridges. In European

Test Symposium. 22–27.

Cheung, H. and Gupta, S. K. 2007. Accurate modeling and fault simulation of byzantine resistive
bridges. In IEEE Int’l Conf. on Computer Design. 347–353.

Engelke, P., Braitling, B., Polian, I., Renovell, M., and Becker, B. 2007. SUPERB:
Simulator utilizing parallel evaluation of resistive bridges. In Asian Test Symp. 433–438.

Engelke, P., Polian, I., Renovell, M., and Becker, B. 2006a. Automatic test pattern gen-
eration for resistive bridging faults. Jour. Electronic Testing: Theory and Applications 22, 1
(February), 61–69.

Engelke, P., Polian, I., Renovell, M., and Becker, B. 2006b. Simulating resistive bridging
and stuck-at faults. IEEE Trans. on CAD 25, 10 (October), 2181–2192.

Engelke, P., Polian, I., Schlöffel, J., and Becker, B. 2008. Resistive bridging fault simula-
tion of industrial circuits. In Conf. on Design, Automation and Test in Europe. 628–633.

Favalli, M., Dalpasso, M., Olivo, P., and Riccò, B. 1993. Analysis of dynamic effects of
resistive bridging faults in CMOS and BiCMOS digital ICs. In Int’l Test Conf. 865–873.

Ferguson, F. J. and Larrabee, T. 1991. Test pattern generation for realistic bridge fault in
CMOS ICs. In Int’l Test Conf. 492–499.

Ferguson, F. J. and Shen, J. 1988. Extraction and simulation of realistic CMOS faults using
inductive fault analysis. In Int’l Test Conf. 475–484.

Greenstein, G. S. and Patel, J. H. 1992. E-PROOFS: a CMOS bridging fault simulator. In
Int’l Conf. on CAD. 268–271.

Grimaila, M. R., Lee, S., Dworak, J., Butler, K. M., Stewart, B., Balachandran, H.,
Houchins, B., Mathur, V., Park, J., Wang, L.-C., and Mercer, M. R. 1999. REDO-

random excitation and deterministic observation–first commercial experiment. In VLSI Test

Symp. 268–274.

Hao, H. and McCluskey, E. J. 1991. Resistive shorts within CMOS gates. In Int’l Test Conf.

292–301.

Hawkins, C. F., Soden, J., Righter, A., and Ferguson, F. J. 1994. Defect classes - an overdue
paradigm for CMOS IC testing. In Int’l Test Conf. 413–425.

Khare, J. and Maly, W. 1996. From contamination to defects, faults and yield loss. Kluwer
Academic Publisher.

Konuk, H., Ferguson, F. J., and Larrabee, T. 1995. Accurate and efficient fault simulation
of realistic CMOS network breaks. In ACM IEEE Design Automation Conf. 345–351.

Krsti, A., Jiang, Y. M., and Cheng, K.-T. 2001. Pattern generation for delay testing and
dynamic timing analysis considering power-supply noise effects. IEEE Trans. on CAD 20, 3,
416–425.

Lee, C. and Walker, D. M. H. 2000. PROBE: A PPSFP simulator for resistive bridging faults.
In VLSI Test Symp. 105–110.

Li, Z., Lu, X., Qiu, W., Shi, W., and Walker, D. M. H. 2003. A circuit level fault model for
resistive bridges. ACM Trans. on Design Automation of Electronic Systems 8, 4 (October),

546–559.

Liao, Y. and Walker, D. M. H. 1996. Fault coverage analysis for physically-based CMOS

bridging faults at different power supply voltages. In Int’l Test Conf. 767–775.

Ma, S. C., Franco, P., and McCluskey, E. J. 1995. An experimental chip to evaluate test

techniques experimental results. In Int’l Test Conf. 663–672.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

20 · Piet Engelke et al.

Maeda, T. and Kinoshita, K. 2000. Precise test generation for resistive bridging faults of CMOS

combinational circuits. In Int’l Test Conf. 510–519.

Maly, W. 1987. Realistic fault modeling for VLSI testing. In ACM IEEE Design Automation

Conf. 173–180.

Maxwell, P. C. and Aitken, R. C. 1993. Biased voting: A method for simulating CMOS
bridging faults in the presence of variable gate logic thresholds. In Int’l Test Conf. 63–72.

Mei, K. C. Y. 1974. Bridging and stuck-at faults. IEEE Trans. on CAD C-23, 7 (July), 720–727.

Millman, S. D. and Garvey, S. J. P. 1991. An accurate bridging fault test pattern generator.
In Int’l Test Conf. 411–418.

Mitra, D., Bhattacharjee, S., Sur-Kolay, S., Bhattacharya, B. B., Zachariah, S. T., and

Kundu, S. 2006. Test pattern generation for power supply droop faults. In VLSI Design.

Nourani, M., Tehranipour, M., and Ahmed, N. 2005. Pattern generation and estimation for
power-supply noise analysis. In VLSI Test Symp. 439–444.

Polian, I., Engelke, P., Renovell, M., and Becker, B. 2005. Modeling feedback bridging faults
with non-zero resistance. Jour. Electronic Testing: Theory and Applications 21, 1 (February),
57–69.

Polian, I., Kundu, S., Galliere, J.-M., Engelke, P., Renovell, M., and Becker, B. 2005.
Resistive bridge fault model evolution from conventional to ultra deep submicron technologies.

In VLSI Test Symp. 343–348.

Polian, I., Pomeranz, I., Reddy, S. M., and Becker, B. 2004. On the use of maximally dom-

inating faults in n-detection test generation. IEE Proceedings Computers and Digital Tech-

niques 151, 3 (May), 235–244.

Rearick, J. and Patel, J. H. 1993. Fast and Accurate CMOS Bridging Fault Simulation. In
Int’l Test Conf. 54–62.

Reddy, S. M., Pomeranz, I., and Kajihara, S. 1997. Compact test sets for high defect coverage.
IEEE Trans. on CAD 16, 923–930.

Renovell, M., Azäıs, F., and Bertrand, Y. 1999. Detection of defects using fault model
oriented test sequences. Jour. Electronic Testing: Theory and Applications 14, 13–22.

Renovell, M., Huc, P., and Bertrand, Y. 1994. CMOS bridge fault modeling. In VLSI Test

Symp. 392–397.

Renovell, M., Huc, P., and Bertrand, Y. 1995. The concept of resistance interval: A new
parametric model for resistive bridging fault. In VLSI Test Symp. 184–189.

Rodŕıguez-Montañés, R., Bruls, E. M. J. G., and Figueras, J. 1992. Bridging defects resis-
tance measurements in a CMOS process. In Int’l Test Conf. 892–899.

Sar-Dessai, V. and Walker, D. M. H. 1998. Accurate fault modeling and fault simulation of

resistive bridges. In Int’l Symp. Defect and Fault Tolerance in VLSI Systems. 102–107.

Sar-Dessai, V. and Walker, D. M. H. 1999. Resistive Bridge Fault Modeling, Simulation and

Test Generation. In Int’l Test Conf. 596–605.

Sengupta, S., Kundu, S., Chakravarty, S., Paravathala, P., Galivanche, R., Kosonocky,

G., Rodgers, M., and Mak, T. M. 1999. Defect-based test: A key enabler for successful
migration to structural test. Intel Technology Journal 1.

Shinogi, T., Kanbayashi, T., Yoshikawa, T., Tsuruoka, S., and Hayashi, T. 2001. Faulty
resistance sectioning technique for resistive bridging fault ATPG systems. In Asian Test Symp.

76–81.

Spica, M., Tripp, M., and Roeder, R. 2001. A new understanding of bridge defect resistances
and process interactions from correlating inductive fault analysis predictions to empirical test

results. In IEEE Int’l Workshop on Current and Defect-Based Testing. 11–16.

Vierhaus, H., Meyer, W., and Gläser, U. 1993. CMOS bridges and resistive transistor faults:
IDDQ versus delay effects. In Int’l Test Conf. 83–91.

Zachariah, S. T. and Chakravarty, S. 2000. A scalable and efficient methodology to extract
two node bridges from large industrial circuits. In Int’l Test Conf. 750–759.

Received Month Year

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, May 2009.

