
TIGUAN: Thread-parallel Integrated test pattern Generator Utilizing satisfiability ANalysis∗

Alejandro Czutro∗, Ilia Polian∗, Matthew Lewis∗, Piet Engelke∗, Sudhakar M. Reddy∗∗, Bernd Becker∗

∗Institute for Computer Science

Albert-Ludwigs-University

D-79110 Freiburg i. Br., Germany

∗∗ECE Department

University of Iowa

Iowa City, IA 52242, USA

Abstract
We present the automatic test pattern generator TIGUAN
based on a thread-parallel SAT solver. Due to a tight integra-
tion of the SAT engine into the ATPG algorithm and a care-
fully chosen mix of various optimization techniques, multi-
million-gate industrial circuits are handled without aborts.
TIGUAN supports both conventional single-stuck-at faults
and sophisticated conditional multiple stuck-at faults which
allows to generate patterns for non-standard fault models.

1 Introduction
Traditional deterministic automatic test pattern generation
(ATPG) algorithms work directly on the circuit structure
[1–4], possibly in conjunction with additional data structures
such as implication graphs [5] or advanced techniques to
prune the solution space [6, 7]. It has long been known that
an ATPG problem can be reduced to a Boolean satisfiability
(SAT) instance and solved using a SAT solver [8, 9]. How-
ever, this approach has not become widely adopted as the
structural approaches tended to exhibit better performance.
It has recently been shown that SAT-based ATPG outper-

forms structural approaches for several classes of faults [10].
One such class consists of redundant faults. SAT solvers are
routinely used to prove unsatisfiability in applications such
as equivalence checking, and a number of techniques have
been developed to quickly prune large parts of the solution
space. In contrast, structural ATPGmethods may need to tra-
verse almost the complete solution space to make sure that
no test pattern for a fault exists. It has also been reported
that there are testable faults for which structural ATPG per-
forms a large number of backtracks to find a pattern while
SAT-based ATPG swiftly finds a solution [10].
The ability to handle redundant faults is becoming more

important for two reasons. First, defects in nanoscale man-
ufacturing technologies may not be described adequately by
stuck-at faults [11]. Non-standard fault models such as re-
sistive bridging faults [12, 13] or interconnect opens [14, 15]
may impose very specific conditions on the lines in the cir-
cuit, which are, in many cases, impossible to satisfy, so the
fault is undetectable.

∗Parts of this work have been supported by the German Research Coun-

cil under project BE 1176/14-1 and by the Alexander-von-Humboldt Foun-

dation. We are thankful to Juergen Schloeffel of NXP Hamburg for pro-

viding industrial circuits and Tobias Schubert of University of Freiburg for

fruitful discussions on SAT solving.

Second, redundant structures are increasingly used to en-
hance circuit reliability and yield [16,17]. A significant frac-
tion of faults in these structures are not detectable. To accu-
rately estimate the defect coverage, the proof that the fault in
question is undetectable (rather than aborted) is essential.

State of the art in SAT-based ATPG is currently given by
the tool PASSAT [10] which is integrated into NXP’s struc-
tural ATPG framework AMSAL. Performance enhancement
of SAT-based ATPG by utilizing learning techiques has been
discussed in [18].

In this paper we present the ATPG tool TIGUAN (Thread-
parallel Integrated test pattern Generator Utilizing satisfiabil-
ity ANalysis) which is based on the in-house SAT solver Mi-
raXT [19]. MiraXT is a state-of-the-art SAT solver which in-
corporates various optimization techniques developed in the
last few years. Moreover, it supports thread parallelism, thus
fully utilizing the performance of multi-processor systems
or multi-core processors. In contrast to PASSAT, TIGUAN
is tightly coupled with the SAT engine and can dynamically
control its internal parameters such as preprocessing steps to
be performed or number of threads to be used. Moreover,
we present a two-phase method which allows to utilize Mi-
raXT’s inherent parallelism in a meaningful way.

Another feature of TIGUAN is the support of the gen-
eral conditional multiple-stuck-at (CMS@) fault model. The
model allows faulty effects to be present on multiple cir-
cuit lines (victims) simultaneously if a number of conditions
on other lines (aggressors) are satisfied. Many static non-
standard fault models can be mapped to conditional multi-
ple stuck-at faults, making TIGUAN a flexible tool to handle
various defect classes.

Experiments demonstrate that TIGUAN can generate
complete stuck-at test sets for large industrial circuits with
up to several million gates without aborts. For two classes of
non-standard fault models (represented by CMS@ fault lists)
TIGUAN completely classifies all ISCAS and ITC bench-
marks and most industrial circuits. TIGUAN also outper-
forms comparable SAT-based ATPG tools.

The remainder of the paper is organized as follows. The
CMS@ fault model and the mapping of other fault models
to the CMS@ fault model is introduced in the next section.
Section 3 gives the overall flow of TIGUAN. Experimen-
tal results for stuck-at faults as well as more complex faults
mapped to CMS@ faults are reported in Section 4. Section
5 concludes the paper.



2 CMS@ Fault Model
TIGUAN considers the conditional multiple-stuck-at
(CMS@) fault model which includes the standard single-
stuck-at fault model and is related to generic fault modeling
approaches such as fault tuples [20] or the Generalized Fault
Model [21]. A CMS@ fault with r aggressor lines and s
victim lines consists of a list {a1/aval

1
, . . . , ar/aval

r } and
a list {v1/vval

1
, . . . , vs/vval

s } , where each ai and each vj

denotes a signal line and all aval
i and vval

j stand for a logical

value (0 or 1). A circuit under a CMS@ fault exhibits faulty
behavior under any input vector which sets every aggressor
line ai to aval

i . In this case, the value on each victim line vj

changes to vval
j .

A single-stuck-at-fault is represented by a CMS@ fault
with an empty aggressor list and a victim list consisting of
one entry. In the following, we explain the mapping of other
fault models to CMS@ faults.

2.1 Gate-exhaustive testing
Gate-exhaustive testing requires that every single-stuck-at
fault at the output of a gate is detected using all valid value
combinations on the inputs of that gate [22]. A stuck-at-1
fault at the output of an AND2 gate would be tested indepen-
dently by three patterns, one justifying 00 at the gate’s inputs,
one justifying 01 and one justifying 10. Gate-exhaustive test-
ing was demonstrated to be effective in identifying hard-to-
detect defects on actual manufactured silicon [22].
Generally, 2n − 1 test patterns must be generated for a

stuck-at-1 fault at the output of an n-input AND or NOR gate
and for a stuck-at-0 fault at the output of a NAND or OR gate.
One pattern must be generated for the opposite stuck-at fault,
respectively. 2n−1 patterns must be generated for a stuck-at-
1 or a stuck-at-0 fault at the output of an XOR or XNOR gate.
Gate-exhaustive testing is easily mapped to the CMS@

fault model. For the example of the stuck-at-1 fault at the
output c of an AND2 gate with inputs a and b, three CMS@
faults are injected. All three faults have the same victim list
{c/1}; the aggressor lists of the three faults are {a/0, b/0},
{a/0, b/1} and {a/1, b/0}, respectively. Similar transfor-
mations are performed for other gate types.

2.2 Resistive bridging faults
Bridging faults with non-zero bridge resistance may impact
the behavior of a digital circuit in a non-trivial way [12, 13].
In general, a short defect with resistance Rsh between in-
terconnect a driven by gate A and interconnect b driven by
gate B imposes intermediate voltages Va and Vb between 0
and VDD on the affected interconnects. These voltages are
interpreted as logic values by the gates driven by a and b,
depending on the logic thresholds of the gates. The volt-
ages Va and Vb are determined by the electrical parameters
of transistors within gates A and B and the number of tran-
sistors which are activated. The latter parameter depends on
the logic values on the inputs of gates A and B. Hence, to
detect a resistive short defect with a given resistance, specific
values on the gates driving the shorted interconnects may be
required, and the fault effect may be visible on one or more
gates driven by the shorted interconnects.

The detection conditions may differ for short defects
which involve the same pair of interconnects but have dif-
ferent resistances Rsh. It has been shown in [23, 24] that
there exists a partition of the continuous space of Rsh values
into m + 1 sections [R0, R1], [R1, R2], . . . , [Rm−1, Rm],
[Rm,∞], where R0 := 0 < R1 < · · · < Rm < ∞, such
that the logical behavior of the circuit is identical for Rsh

values within one section. This means that a test pattern
generated for a short defect with a fixed resistance detects
all defects between the same interconnects with a resistance
from the same section. In other words, to fully cover all pos-
sible resistive short defects between interconnects a and b, it
is sufficient to generate a test set which detectsm + 1 repre-
sentative defects (one from each section).
To demonstrate test generation for resistive bridging

faults, we first generated resistive bridging fault lists by se-
lecting, for each circuit, 10,000 pairs of interconnects ran-
domly. For every pair of interconnects, we calculated the
section information using the tool flow from [24] and as-
suming the same technology parameters as in [24]. For ev-
ery section, we generated one conditional multiple-stuck-at
fault. The aggressor list consisted of the conditions on the in-
puts of the gates driving the shorted interconnects. The vic-
tim list included all inputs of the gates driven by the shorted
interconnects on which an erroneous value was interpreted.

3 TIGUAN
Given a circuit, a CMS@ fault list and a set of parameters
which includes a timeout value, TIGUAN generates a test
set which detects all faults for which a test pattern could be
found within the time budget. All faults in the lists are clas-
sified as either detected, undetectable, or aborted (not classi-
fied within the time budget).

3.1 Test generation procedure

TIGUAN selects a fault from the fault list and attempts to
generate a pattern for this fault by formulating a SAT in-
stance in conjunctive normal form (CNF) and handing it to
the MiraXT engine. The generation of the CNF is described
in detail in [8, 9]. We apply the usual speed-up techniques
such as D-chains [9]. The MiraXT engine incorporates sev-
eral methods to accelerate SAT solving, which are described
in [19] along with details on the multi-threading solving
mechanism. We tuned the performance of MiraXT by ad-
justing several solver-internal control variables to values ap-
propriate for ATPG instances. Based on extensive empirical
data, we decided not to reuse parts of a CNF generated for
one fault when considering other faults.
If MiraXT finds a model (i.e., a satisfying variable as-

signment) of the SAT instance, the test pattern is derived
from the solution. If MiraXT reports that the instance is un-
satisfiable, the fault is proven to be undetectable. TIGUAN
can be started in the fault dropping mode; all yet-undetected
faults in the fault list are simulated with generated patterns
and covered faults are marked detected and excluded from
further processing. We employ an in-house 32-bit pattern
parallel fault simulator, so fault dropping is invoked after 32
new patterns have been accumulated. The ATPG process is
continued until all faults have been classified.



Table 1: ATPG for stuck-at faults with fault dropping for NXP circuits, timeout 20 seconds per fault

Circuit # gates # faults # detected # redundant # aborts # patterns Time per fault [s] Total time

CNF gen. SAT FSIM T [s]

p35k 48927 67733 66721 1012 0 11536 0.033 0.0278 0.0007 1364

p45k 46075 68760 68564 196 0 3604 0.005 0.0017 0.0008 47

p77k 75033 120348 113049 7299 0 5318 0.029 0.3455 0.0510 5454

p78k 80875 163310 163310 0 0 468 0.005 0.0006 0.0061 7

p81k 96722 204174 202981 1193 0 7529 0.010 0.0017 0.0015 162

p89k (*) 92706 150538 148604 1934 0 9868 0.007 0.0015 0.0018 154

p100k 102443 162129 161404 725 0 5142 0.006 0.0032 0.0028 91

p141k (*) 185360 282428 279189 3239 0 8893 0.050 0.0337 0.0024 1706

p267k 296404 366871 365423 1448 0 11579 0.020 0.0031 0.0037 447

p269k (*) 297497 369055 367607 1448 0 11633 0.018 0.0031 0.0046 436

p286k (*) 373221 650368 640103 10264 1 20243 0.041 0.0490 0.0062 3456

p295k (*) 311901 472022 468174 3847 1 22786 0.024 0.0053 0.0042 1159

p330k 365492 540758 535070 5656 32 23392 0.038 0.0388 0.0048 3208

p378k 404367 816534 816534 0 0 1107 0.022 0.0007 0.0145 44

p388k (*) 506034 881417 876750 4665 2 11975 0.029 0.0078 0.0065 830

p469k 49771 142751 140869 1762 120 578 0.094 4.4455 1.7238 13139

p951k (*) 1147491 1557914 1542633 15281 0 20899 0.060 0.0011 0.0119 2668

p1522k (*) 1193824 1697662 1681874 15788 0 63549 0.073 0.0099 0.0173 9324

p2927k 2539052 3527607 3412613 114907 87 39842 0.156 0.0308 0.0602 33758

TIGUAN also provides a mode in which the percentage
of don’t cares (Xes) in the generated patterns is maximized.
This property is essential for static as well as dynamic com-
paction [25] and test compression [26]. The injection of Xes
is performed by the SAT engine; on top of that, an input-
output-cone analysis similar to [27] is performed to iden-
tify further Xes. We are currently integrating more elabo-
rate methods of test set relaxation [28, 29] into TIGUAN to
achieve very high don’t care densities comparable to percent-
ages obtained by structural ATPG approaches.

3.2 Multi-threaded solving
Parallel test pattern generation requires an intelligent par-
titioning of the problem being solved into smaller sub-
problems and distribution of these sub-problems to individ-
ual threads. This must be complemented by an appropri-
ate representation of the data shared among the threads and
an efficient mechanism to access this data. In the follow-
ing, we first describe the data organization and then provide
an overview of how TIGUAN partitions the test generation
problem being solved.

3.2.1 Distributed data organization

MiraXT and thus TIGUAN implement parallelism based on
the shared memory paradigm (rather than message passing).
A common clause data base contains pointers to clauses of
the original SAT instance as well as conflict clauses pro-
duced during solving. Note that clauses representing the
fault-free circuit, clauses representing the circuit with the
fault injected and auxilliary clauses from D-chain are treated
equally. Every thread keeps a local list which contains two
selected literals of each clause, called watch literals. If a
thread requires the complete clause information, it must ac-
cess the global data base, which may require inter-processor
communication. State-of-the-art multi-processor and multi-
core systems include mechanisms such as AMD’s Hyper-
Transport Bus which accelerate this kind of communication.

Utilizing a common clause database allows threads to
share clauses. This concept is called knowledge sharing and
basically allows the solver threads to learn from each others’
mistakes (conflicts). Before inserting a clause into the com-
mon database, the thread analyzes whether clauses recently
inserted by other threads are more effective, i.e., prune larger
parts of the search space. An optimized fine-grained lock
management is implemented. It has been shown to reduce
the performance overhead due to lock conflicts to fractions
of a per cent. Clause deletion is implemented by a two-stage
garbage collection strategy which almost eliminates the need
for locks.

3.2.2 Problem partitioning and solving

The solving and the partitioning of the instance is man-
aged by the master control object (MCO) of very limited
complexity. MCO essentially forwards messages between
threads and does not intervene with a thread’s computation
process. MCO also manages running and idle threads which
are waiting for new sub-problems.

After CNF generation, several preprocessing steps are
performed to simplify the instance. The multithreaded solver
starts by giving the complete decision tree to one of the
threads, and it begins the solving process. All other threads
communicate to the MCO that they are idle. Idle threads
are put into sleep mode in which they do not poll and con-
sequently do not cause communication overhead. Running
threads poll the MCO periodically whether any global events
have occurred.

Possible global events are ‘instance has been solved by
another thread’, ‘timeout has been exceeded’, and ‘idle
threads exist’. In the latter case, the running thread divides
its sub-problem into two parts, wakes one of the sleeping
threads and transfers control of one part to this thread. If a
thread’s sub-problem is unsatisfiable, it inserts the required
conflict clauses into the data base and enters the idle state.
The problem is unsatisfiable if all threads become idle.



Table 2: ATPG without fault dropping for ISCAS, ITC and

NXP circuits for stuck at faults and comparison with [18]

Circuit Gates Faults TIGUAN PASSAT

Det. Red. Ab. T [s] Ab. T [s]

c0432 203 524 520 4 0 0.5 0 2.6

c0499 275 758 750 8 0 1.0 0 21.0

c1355 619 1574 1566 8 0 4.5 0 32.5

c1908 938 1879 1870 9 0 4.6 0 14.4

c3540 1741 3428 3291 137 0 14.0 0 47.9

c7552 3827 7550 7419 131 0 19.4 0 106.5

s01494 686 1506 1494 12 0 0.6 0 2.7

s05378 3221 4603 4563 40 0 4.1 0 14.3

s15850 11067 11725 11336 389 0 47.8 0 121.3

s38417 25585 31180 31015 165 0 89.7 0 191.3

b10 197 486 486 0 0 0.1 0 0.3

b11 579 1436 1434 2 0 1.0 0 4.8

b12 1127 2827 2826 1 0 1.5 0 5.6

b14 5923 16167 16137 30 0 122.1 0 1426.8

b15 8026 21282 20545 737 0 378.8 0 2673.6

p81k 96722 204174 202981 1193 0 4429 0 12116

p89k 92706 150538 148604 1934 0 2544 0 5755

p100k 102443 162129 161404 725 0 2102 19 15397

p141k 185360 282428 279189 3239 0 29938 236 95452

p951k 1147491 1557914 1542633 15281 0 158875 132 166791

3.3 Two-stage method
It has been noted, e.g. in [4], that sophisticated performance
enhancements are effective for relatively few hard-to-detect
faults while slowing down the processing of easy-to-detect
faults. We observed that, with average SAT solving time per
fault below 0.1 second for most circuits, various optimiza-
tions do not result in a net run time gain. This is also true for
thread parallelism: the overhead to initialize the threads and
set up the communication infrastructure does not appear to
be justified for most faults.
Consequently, we implemented a two-stage ATPG strat-

egy. In the first stage, TIGUAN is run in the single-thread
mode with an aggressive time limit. In the second stage,
TIGUAN is applied to the remaining hard-to-detect faults
employing thread parallelism.

4 Experimental Results

TIGUAN was applied to ISCAS 85 circuits and combina-
tional cores of ISCAS 89 circuits, ITC 99 circuits and indus-
trial circuits provided by NXP. The measurements for stuck-
at faults (Tables 1 – 4) were performed on a 2.8 GHz AMD
Opteron computer with 16 GB RAM, and the measurements
for non-standard fault models (Tables 5 and 6) were per-
formed on a 2.3 GHz machine with 4 GB RAM.

4.1 Single-threaded single-stuck-at ATPG

Table 1 reports ATPG results for industrial circuits using
fault dropping and 20 seconds timeout per fault (a fault was
classified as aborted if no pattern was found within 20 sec-
onds). The name of the circuit, the number of gates and col-
lapsed faults and the distribution of the faults into classes de-
tected, provably redundant and aborted is shown in columns
1 through 6. Column 7 contains the number of generated
patterns.

Table 3: Comparison of number of aborts (Ab.) and run time

for TIGUAN and PASSAT [10] with fault dropping

ITC-99 circuits
Circ. PASSAT TIGUAN

Ab. T [s] Ab. T [s]

b14 0 19.0 0 13.2

b15 0 24.0 0 44.0

b17 0 142.0 0 123.6

b18 0 1350.0 0 341.8

b20 0 56.0 0 29.4

b21 0 59.0 0 33.3

b22 0 95.0 0 36.0

NXP circuits
Circ. PASSAT TIGUAN

Ab. T [s] Ab. T [s]

p35k 0 1561.0 0 1364.0

p81k 0 583.0 0 162.0

p89k 0 573.0 0 154.0

p100k 0 410.0 0 91.0

p141k 0 4740.0 0 1706.0

p469k 77 6180.0 120 13139.0

p951k 1 18300.0 0 2668.0

The time (in seconds) per fault for CNF generation, SAT
solving and fault simulation (fault dropping) can be found in
columns 8 through 10, the total time T [s] in column 11. No
thread parallelism of the MiraXT engine was employed.
Circuits marked by asterisk (*) contain tristate elements.

TIGUAN replaces bufif1 gates by AND gates and notif1 gates
by NAND gates which retains the circuit’s functionality. To
prevent bus contention, an additional clause which ensures
that at most one driver is active at the same time can be gen-
erated. We did not generate such a clause in our experiments.
TIGUAN can handle multi-million-gate designs with very

few aborts and in limited time. The number of patterns is
rather large, however we point out that no compaction tech-
niques such as reverse-order simulation were employed. The
option to maximize don’t cares was not used.
Tables 2 and 3 compare the performance of TIGUAN

(without thread parallelism) with the best published results
by PASSAT available to us [10, 18] (only results for circuits
quoted in [10, 18] are reported in Tables 2 and 3).1 Results
in Table 2 have been generated with fault dropping switched
off and timeout of 20 seconds (as in [18]). We quote the
best numbers achieved by PASSAT among different learning
techniques presented in [18]. Table 3 compares results ob-
tained using fault dropping and timeout of 20 seconds with
columns 4 and 5 in Table VI in [10] (run times were con-
verted into seconds). Although the same industrial circuits
were used in [10,18], some of them were named differently:
circuits p44k, p49k, p80k, p88k, p99k, p177k and p1330k
in [10, 18] correspond to circuits p35k, p469k, p81k, p89k,
p100k, p141k and p951 in Tables 2 and 3, respectively.
TIGUAN outperforms PASSAT both with respect to

aborts and run time. For circuits p89k, p141k and p951k,
part of the run time advantage is due to the simplified en-
coding of tristate elements for the three circuits mentioned
above (PASSAT switches to multi-valued logic which in-
cludes the high-impedance value if a circuit contains tristate
elements). All other circuits are purely Boolean and do not
require multi-valued logic.

4.2 Multithreaded performance

We ran TIGUAN in the two-stage mode described in Section
3.3. The limits for the first and the second stage were 1 and
20 seconds, respectively. Table 4 summarizes the results for
circuits with at least one abort during the first stage. Column

1An AMD Athlon with 2.2 GHz and 1 GB RAM was used in [18]. A

dual-dual-core Xeon with 3 GHz and 32 GB RAM was used in [10].



Table 4: Performance of thread-parallel two-stage approach for single-stuck-at faults

Circuit Two-stage approach One-stage No timeout

First stage Second stage approach (no aborts)

(Timeout 1 s) (Timeout 20 s) (Timeout 20 s) T [s]

T [s] Faults 1 thread 2 threads 4 threads From table 1

left aborts T [s] tot.time aborts T [s] tot.time aborts T [s] tot.time Aborts T [s]

p77k 4545 1322 0 2940 7485 0 1354 5899 0 1003 5548 0 5454 5454

p286k 2115 126 1 1459 3574 1 1232 3347 1 1609 3724 1 3456 3497

p295k 1062 3 1 45 1107 1 62 1124 1 66 1128 1 1159 1228

p330k 2376 70 31 806 3182 17 616 2992 16 491 2867 32 3208 23475

p388k 800 2 2 40 840 2 41 841 2 40 840 2 830 1263

p469k 17929 2680 141 10434 28363 28 3343 21272 3 2152 20081 120 13139 30815

p1522k 9295 22 0 63 9358 0 15 9310 0 19 9314 0 9324 9324

p2927k 25856 666 92 3929 29785 80 3298 29154 73 3120 28976 87 33758 50812

2 gives the run time of the first stage. The number of faults
aborted during the first stage and targeted by the second stage
can be found in column 3. The second stage was run for 1,
2 and 4 parallel threads with a timeout of 20 seconds. For
each scenario, the number of aborts during the second stage,
its run time and the cumulative run time of the first and the
second stage are given in columns 4 through 12.

Columns 13 and 14 give the number of aborts and the run
time of the one-stage method from columns 6 and 11 of Ta-
ble 1, respectively. Note that the timeout for the one-stage
method was 20 seconds. The minimal run time of columns
6, 9, 12 and 13 is marked bold. This indicates the minimal
time which is required for the complete ATPG process by ei-
ther two-stage or one-stage approach. The two-stage method
with multithreading always yields less aborts than the one-
stage approach and reduces the ATPG time for more than
half of the circuits. 2-thread parallelism often yields lower
run times while using 4 threads helps to reduce aborts.

For reference, the final column of Table 4 reports the time
which TIGUAN consumes when started without a time limit

Table 5: Results for gate-exhaustive testing with fault drop-

ping, timeout 20 seconds per fault

Circuit Gates Faults Distribution Pats. Run time [s]

Det. Red. Ab. per flt. total

c5315 2608 12084 10194 1890 0 1069 0.0004 4

c6288 2480 9664 7934 1730 0 439 0.0019 18

c7552 3827 15050 12345 2705 0 1227 0.0006 9

cs13207 9441 26004 22950 3054 0 1381 0.0006 15

cs15850 11067 29922 26703 3219 0 1213 0.0009 26

cs35932 19876 60064 46484 13580 0 128 0.0004 23

cs38417 25585 70236 66228 4008 0 2425 0.0003 20

cs38584 22447 75278 64629 10649 0 1549 0.0003 24

b17 25719 138230 97826 40404 0 6041 0.0040 554

b18 76513 396886 292165 104721 0 16084 0.0058 2313

b20 12991 66444 52049 14395 0 5048 0.0028 187

b21 13168 66420 52444 13976 0 5597 0.0029 192

b22 18789 94022 73540 20482 0 5522 0.0026 244

p330k 365492 1166046 1037130 128843 73 36401 0.0102 11934

p378k 404367 1370984 1191909 179075 0 1980 0.0037 5117

p388k 506034 1663442 1463686 199754 2 17317 0.0049 8220

p469k 49771 312784 241562 70844 378 652 0.1618 50603

p951k 1147491 3250198 2884773 365425 0 28050 0.0089 28863

p1522k 1193824 3708692 3350769 357923 0 80404 0.0140 52036

p2927k 2539052 7048378 6253392 794723 263 51340 0.0241 169859

(all faults are classified without aborts). Note that all circuits
not included in Table 4 have already been classified without
aborts using a timeout of one second. Hence, TIGUAN com-
pletely classified all faults in the industrial circuits (as it did
for ISCAS and ITC circuits not included in Tables 1 and 4).

4.3 Non-standard fault models

Table 5 reports the application of TIGUAN to generate gate-
exhaustive test sets for larger ISCAS, ITC and NXP circuits.
The number of faults (column 3) significantly exceeds the
number of gates (column 2). A significant fraction of the
generated faults are redundant (column 5). There are little
aborts (column 6). The run times exceed those for stuck-at
faults but are generally reasonable (column 8).
Table 6 summarizes the performance of TIGUAN for the

resistive bridging fault list generated as explained in Section
2.2. The format of the table is similar to Table 5. The num-
ber of CMS@ faults equals 10,000 multiplied by the average
numberm of sections per resistive bridging fault. This num-

Table 6: Results for resistive bridging faults with fault drop-

ping, timeout 20 seconds per fault

Circuit Faults Distribution Patterns Run time [s]

Det. Red. Aborts per fault total

c5315 28214 19594 8620 0 1661 0.0008 23.50

c6288 33603 20086 13517 0 1320 0.0037 125.28

c7552 32028 19024 13004 0 1224 0.0013 41.94

cs13207 20366 15107 5259 0 1115 0.0007 14.42

cs15850 20061 14803 5258 0 1090 0.0014 28.18

cs35932 27160 9332 17828 0 133 0.0015 41.97

cs38417 25976 20174 5802 0 1619 0.0011 27.34

cs38584 26602 17207 9395 0 1486 0.0012 32.43

b17 41651 7966 33685 0 2925 0.0142 591.01

b18 42881 8753 34128 0 3926 0.0250 1070.18

b20 44378 8073 36305 0 2285 0.0104 461.74

b21 44915 8027 36888 0 2293 0.0104 467.61

b22 44824 8551 36273 0 2170 0.0108 482.63

p330k 23716 20991 2725 0 4428 0.0216 511.33

p378k 27898 23659 4239 0 529 0.0060 166.41

p388k 24637 21495 3142 0 2139 0.0112 274.79

p469k 45528 13444 31837 247 774 0.4523 20594.07

p951k 21967 20106 1861 0 1958 0.0149 326.58

p1522k 22731 19167 3564 0 5731 0.0522 1186.51

p2927k 22638 19351 3286 1 3761 0.0634 1434.36



ber ranges between 14,489 for b13 and 45,528 for p469k.
There are again no aborts for almost all circuits while the run
times are reasonable. We also applied the two-stage method,
observing results similar to the case of stuck-at faults: the
number of aborts was reduced, and the run time went down
for circuits with the largest SAT solving time. We are not
aware of comparable results by PASSAT or any other SAT-
based tool.

5 Conclusions
TIGUAN currently can completely classify all single-stuck-
at faults in both large industrial circuits and structurally com-
plex ISCAS circuits without aborts. It is also an effective
and flexible tool to generate tests for non-standard fault mod-
els for which no adequate dedicated ATPG tool is available.
This is achieved by providing a mapping between the non-
standard model and conditional multiple stuck-at fault model
which TIGUAN supports. The two-stage approach allows
to identify hard-to-detect faults for which sophisticated opti-
mization strategies of the SAT engine and thread parallelism
are effective.
One research direction for the future is the incorporation

of state-of-the-art static and dynamic compaction [25,30–33]
and test set relaxation techniques [28, 29] to reduce the pat-
tern count. We also plan to extend the CMS@ concept to
dynamic fault models such as delay faults [34], and power
droop [35]. Moreover, we investigate the theoretical find-
ings on fault vs. search parallelism [36] to better utilize novel
multi-processor and multi-core architectures with ultra-fast
interprocessor communication.

6 References
[1] J.P. Roth. Diagnosis of automata failures: A calculus and a method.

IBM J. Res. Dev., 10:278–281, 1966.

[2] P. Goel. An implicit enumeration algorithm to generate test for com-

binational logic. IEEE Trans. on Comp., 30:215–222, 1981.

[3] H. Fujiwara. FAN: A Fanout-Oriented Test Pattern Generation Al-

gorithm. In IEEE International Symposium on Circuits and Systems,

pages 671–674, 1985.

[4] I. Hamzaoglu and J.H. Patel. New techniques for deterministic test

pattern generation. Jour. of Electronic Testing: Theory and Applica-

tions, 15:63–73, 1999.

[5] P. Tafertshofer and A. Ganz. SAT based ATPG using fast justification

and propagation in the implication graph. In Int’l Conf. on CAD, pages

139–146, 1999.

[6] E. Gizdarski and H. Fujiwara. SPIRIT: A highly robust combinational

test generation algorithm. IEEE Trans. on CAD, 21(12):1446–1458,

12 2002.

[7] C. Wang, S.M. Reddy, I. Pomeranz, X. Lin, and J. Rajski. Conflict

driven techniques for improving deterministic test pattern generation.

In Int’l Conf. on CAD, 2002.

[8] T. Larrabee. Efficient Generation of Test Patterns Using Boolean Dif-

ference. In Int’l. Test Conference, pages 795–801, 1989.

[9] P. Stephan, R.K. Brayton, and A.L. Sangiovanni-Vincentelli. Com-

binational test generation using satisfiability. IEEE Transactions on

CAD, 15(9):1167–1176, September 1996.

[10] R. Drechsler, S. Eggersglüß, G. Fey, A. Glowatz, F. Hapke, J. Schlo-

effel, and D. Tille. On acceleration of SAT-based ATPG for industrial

designs. IEEE Trans. on CAD, 27(7):1329–1333, 2008.

[11] R. Aitken. New defect behavior at 130nm and beyond. In Euro-

pean Test Symposium (Emerging Ideas Contribution), pages 279–284,

2004.

[12] M. Renovell, F. Azaı̈s, and Y. Bertrand. Detection of defects using

fault model oriented test sequences. Jour. of Electronic Testing: The-

ory and Applications, 14:13–22, 1999.

[13] P. Engelke, I. Polian, M. Renovell, and B. Becker. Simulating resistive

bridging and stuck-at faults. IEEE Trans. on Computer-Aided Design

of Integrated Circuits and Systems, 25(10):2181–2192, Oct. 2006.

[14] Y. Sato, I. Yamazaki, H. Yamanaka, T. Ikeda, and M. Takakura. A

persistent diagnostic technique for unstable defects. In Int’l Test Conf.,

pages 242–249, 2002.

[15] S. Hillebrecht, I. Polian, P. Engelke, B. Becker, M. Keim, and W.-

T. Cheng. Extraction, simulation and test generation for interconnect

open defects based on enhanced aggressor-victim model. In Int’l Test

Conf., 2008. In press.

[16] D.P. Siewiorek and R.S. Swarz. Reliable Computer Systems – Design

and Evaluation. Digital Press, 1992.

[17] M. Zhang, S. Mitra, T.M. Mak, N. Seifert, N.J. Wang, Q. Shi, K.S.

Kim, N.R. Shanbhag, and S.J. Patel. Sequential element design with

built-in soft error resilience. IEEE Trans. on VLSI, 14(12):1368–1378,

2006.

[18] G. Fey, T. Warode, and R. Drechsler. Reusing learned information in

SAT-based ATPG. In VLSI Design, pages 69–76, 2007.

[19] M. Lewis, T. Schubert, and B. Becker. Multithreaded SAT solving. In

ASPDAC 2007, Yokohama, Japan, January 2007. 12th Asia and South

Pacific Design Automation Conference.

[20] R. Desineni, K.N. Dwarkanath, and R.D. Blanton. Universal test gen-

eration using fault tuples. In Int’l Test Conf., pages 812–819, 2000.

[21] S. Kundu, S.T. Zachariah, S.-Y. Chang, and C. Tirumurti. On model-

ing crosstalk faults. IEEE Trans. on CAD, 24(12):1909–1915, 2005.

[22] K.Y. Cho, S. Mitra, and E.J. McCluskey. Gate exhaustive testing. In

Int’l Test Conf., 2005.

[23] T. Shinogi, T. Kanbayashi, T. Yoshikawa, S. Tsuruoka, and

T. Hayashi. Faulty resistance sectioning technique for resistive bridg-

ing fault ATPG systems. In Asian Test Symp., pages 76–81, 2001.

[24] P. Engelke, B. Braitling, I. Polian, M. Renovell, and B. Becker. SU-

PERB: Simulator utilizing parallel evaluation of resistive bridges. In

Asian Test Symp., pages 433–438, 2007.

[25] I. Pomeranz, L.N. Reddy, and S.M. Reddy. COMPACTEST: A

method to generate compact test sets for combinational circuits. In

Int’l Test Conf., pages 194–203, 1991.

[26] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee. Embedded deter-

ministic test. IEEE Trans. on CAD, 23(5):776–792, 5 2004.

[27] S. Eggersglüß and R. Drechsler. Improving test pattern compactness

in SAT-based ATPG. In Asian Test Symp., pages 445–452, 2007.

[28] S. Kajihara and K. Miyase. On identifying don’t care inputs of test

patterns for combinational circuits. In Int’l Conf. on CAD, pages 364–

369, 2001.

[29] A.H. El-Maleh and K. Al-Utaibi. An efficient test relaxation technique

for synchronous sequential circuits. IEEE Trans. on CAD, 23(6):933–

940, 2004.

[30] S. Kajihara, I. Pomeranz, K. Kinoshita, and S.M. Reddy. Cost-

effective generation of minimal test sets for stuck-at faults in com-

binational logic circuits. IEEE Trans. on CAD, 14(12):1496–1504,

1995.

[31] B. Ayari and B. Kaminska. A new dynamic test vector compaction for

automatic test pattern generation. IEEE Trans. on CAD, 13(3):353–

358, 1994.

[32] I. Hamzaoglu and J. Patel. Test set compaction algorithms for combi-

national circuits. IEEE Trans. on CAD, 19(8):957–963, 2000.

[33] E.M. Rudnick and J. Patel. Efficient techniques for dynamic test

sequence compaction. IEEE Trans. on Computers, 48(3):323–330,

1999.

[34] G.L. Smith. Model for Delay Faults Based upon Paths. In Int’l Test

Conf., pages 342–349, 1985.

[35] I. Polian, A. Czutro, S. Kundu, and B. Becker. Power droop testing.

IEEE Design & Test Magazine, 2007.

[36] T. Fujiwara, H.; Inoue. Optimal granularity of test generation in a

distributed system. IEEE Trans. on CAD, 9(8):885–892, 1990.


