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Abstract

We present a simulator which determines the coverage of

small-delay faults, i.e., delay faults with a size below one

clock cycle, caused by resistive-open defects. These defects

are likely to escape detection by stuck-at or transition fault

patterns. For the first time, we couple the calculation of the

critical size of a small-delay fault with the computation of

the resistance range of the corresponding resistive-open de-

fect for which this size is exceeded. By doing so, we are

able to extend probabilistic fault coverage metrics initially

developed for static resistive bridging faults to small-delay

defects.

Keywords: Small-delay defects, resistive opens, proba-
bilistic fault coverage, bridging fault simulation.

1 Introduction

Small-delay faults are not adequately covered by stuck-at
and transition test sets [1]. Low-resistance interconnect
open defects are a major source of small-delay faults [2, 3].
Hence, an accurate assessment of a test set’s coverage of
small-delay faults should take into account the physical pa-
rameters of the open defects causing the potential defects.
State-of-the-art small-delay fault simulation approaches de-
termine for every considered fault site the sizes of the fault
for which the fault is covered by a test set [4, 5] (earlier meth-
ods used less sophisticated concepts [6]). These approaches
do not consider physical parameters of defects correspond-
ing to small-delay faults. On the other hand, interconnect-
open simulators concentrate on full-open defects which are
detectable by stuck-at and transition fault testing [7, 8, 9].

In this paper, we present a small-delay fault simulation
approach which calculates realistic coverage of such faults
based on the occurrence probability of the low-resistance in-
terconnect open defects. We concentrate on faults with size
less than one clock cycle because faults with larger sizes are
targeted by stuck-at and transition fault test sets. We first cal-
culate, in a manner similar to [4, 5], the fault sizes which are
covered by the given test set. Then, we compute the range of
resistances of interconnect open defects which would lead to
delay faults of size determined in the first step. Finally, we
obtain the realistic fault coverage as the probability that the

resistance of an actual open defect indeed falls in that range
of resistances.

The remainder of the paper is structured as follows. A
detailed overview of the method is given in Section 2. Fault
simulation in the timing domain is explained in detail in Sec-
tion 3. The description is enhanced compared with [5] and
provides a comprehensive coverage of all stages of the sim-
ulation process. The mapping between the size of a delay
fault and the resistance of the corresponding interconnect
open defect is outlined in Section 4. Experimental results
are reported in Section 5. Section 6 concludes the paper.

2 Overview of the Method

The inputs of the method are a circuit (a gate-level net-list ac-
companied by timing and physical information such as gate
delays, clock cycle, transistor and topological parameters),
a set of test pairs and a list of faults. Faults are specified
by a line (i.e., a gate output) on which a transition is slowed
down and the direction of the transition. In case of fanouts,
we currently consider faults located at the fanout stem. The
exact amount δ of the slowdown (the size of the fault) is not
specified in the fault list—indeed, the ranges of δ for which
a given fault is detected are an (intermediate) result of the
simulation. Furthermore, the probability distribution den-
sity ρ of interconnect open defect resistance obtained from
manufacturing data is required. Refer to [2] for details on
estimating ρ and a typical distribution measured at Philips.
Based on this information, the simulator calculates a realis-
tic coverage of delay defects with size less than one clock
cycle.

Figure 1 shows the flow of the simulator in graph form.
First, a line-delay fault simulation is performed for each test
pair and each fault. The implemented algorithm is a slight
extension of that in [5]. For every fault fi and every test
pair tpj , the detection interval (in time domain) D

t(fi, tpj)
is calculated. The detection interval contains all the values
of δ(fi), the size of fault fi, for which the circuit will fail
under test pair tpj , i.e., a transition at one or more outputs
will be delayed beyond the clock cycle time.

Detection intervals are often of shape [δmin,∞] for some
value δmin. Such a delay range may be transformed into
a range of resistances of an open defect [Rmin

op ,∞]. The
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Figure 1: Flow of the method

mapping will be described later. Detection intervals can
also consist of disjoint sub-intervals. If no path from the
fault site to an output is sensitized, this interval becomes
empty. The detection interval for the whole test pair set is
obtained as the union of the individual detection intervals:
Dt(fi) := Dt(fi, tp1) ∪ · · · ∪ Dt(fi, tpm), where m is the
number of test pairs in the set.
In addition, the global detectability interval (in time do-

main) Gt(fi) is defined as the range of all sizes δ(fi) for
which the fault leads to a failure under at least one test pair
(not necessarily contained in the test pair set). Thus, Dt(fi)
is the range of δ(fi) which has been covered by the test set
while Gt(fi) is the range of δ(fi) which would be detected
by the test pair set of maximal quality, e.g., the exhaustive
test pair set. The concept of detection interval and global
detectability interval is similar to the notion of C-ADI and
G-ADI known for resistive bridging faults [10, 11] and to
the term DIS used in [5]. In order to focus on small-delay
faults, we intersect both Dt(fi) and Gt(fi) with interval
[0, TC ] where TC is the duration of the clock cycle. With-
out this restriction of the intervals, the major contribution to
the fault coverage (defined below) would come from delay
faults of size larger than TC which are covered by stuck-at
and transition fault test sets.
After the detection and detectability intervals in timing

domain have been calculated for a fault fi, the ranges of open
defect resistance corresponding to these intervals are com-
puted using electrical analysis. The resulting intervals are
called detection interval in the resistance domain (denoted
Dr(fi)) and global detectability interval in the resistance
domain (denoted Gr(fi)), respectively. For this transforma-
tion, a mapping between the resistanceRop of an open defect
on an interconnect on which fault fi is located and the size δ
of fi is required.
Finally, the realistic fault coverage is defined, for a fault

fi, by

FC(fi) = 100% ·

∫
Dr(fi)

ρ(r)dr/

∫
Gr(fi)

ρ(r)dr. (1)

This metric corresponds to the probability that a detectable
small-delay fault (i.e., fault fi with a size included in Gt(fi)
and consequently the resistance of the corresponding open

defect included in Gr(fi)) has actually been detected by the
test set (i.e., the size of the fault is included in Dt(fi) and
the resistance of the corresponding open defect is included
in Dr(fi)). For more than one fault, average is calculated.
The used definition of fault coverage differs from the met-

ric used in [5] in two important points. First, no transforma-
tion into the resistance domain is done in [5]. In contrast, we
assume a distribution of open defect resistances which can
be determined from manufacturing data. We also account
for the fact that an open defect of a given resistance may
lead to delay fault of different size depending on the elec-
trical parameters of the gates involved. Second, the method
in [5] determines all faults for which the complete detection
interval or 90% of the interval is covered by the test set and
defines coverage as the percentage of faults for which this
is the case. This is done to pinpoint the need for testing the
same fault using multiple vectors. Our coverage definition
reports the probability of detecting an open defect leading to
a small-delay fault.

3 Fault Simulation in Timing Domain

The aim of the fault simulation is to determine the detection
interval in timing domain Dt(fi), which will subsequently
be translated into the resistance domain and used to calculate
the realistic fault coverage. The simulation works as follows.
First, the waveforms in the fault-free circuit are computed.
Then, the circuit with an injected delay fault (of unspecified
size indicated by symbol δ) is simulated using the concept of
signal descriptors, which are a generalization of waveforms
enriched by effects of a delay fault. The detection interval
is yielded from a comparison of the fault-free values and the
signal descriptors on the outputs of the circuit.

For a test pair (p1, p2), we assume that p1 is applied to
the circuit’s inputs at time −∞ and all signals in the circuit
are stable by time 0. p2 is applied (i.e., all inputs change
simultaneously from p1 to p2) at time 0 and no further tran-
sitions occur on the inputs of the circuit until time +∞. For
each signal s, we denote the (stable) value it assumes under
p1 as IV (s) (for ‘initial value’) and the value to which it
stabilizes under p2 as FV (s) (for ‘final value’). The earli-



est arrival time EAT (s) is defined as the first point in time
(larger than 0) at which the value on s may change. The lat-
est stabilization time LST (s) is defined as the last point in
time at which a transition (to FV (s)) is possible. In absence
of faults, the value IV (s) is present at s (at least) during the
time interval [−∞, EAT (s)] and the value FV (s) is present
during the interval [LST (s),∞]. The values assumed be-
tween EAT (s) and LST (s) must be determined by fault-
free simulation.

3.1 Fault-free timing simulation

A waveform for signal s under test pair (v, w) describes
which logical value (0, 1 or X) signal s assumes at which
time. We formally define a waveform as a set of tuples
{(t1, l1), (t2, l2), . . . , (tm, lm)}, where ti’s refer to points
in time and an li indicates which logical value s as-
sumes starting with time point ti. For instance, waveform
{(−∞, 1), (2,X), (5, 1), (7, 0)} means that the signal is ini-
tially set to 1, from time 2 to time 5 the value on the signal is
unknown, at time 5 the signal assumes value 1 and at time 7
it transitions to value 0 which is the stable final value.

To perform fault-free timing simulation, the following
operations are defined for waveforms: 0-intersection, 1-
intersection, inversion and translation. 0-intersecting a num-
ber of waveforms results in a new waveform which assumes
value 0 for all time intervals for which 0 is assumed on at
least one original waveform. For time intervals for which all
original waveforms assume 1, the resulting waveform also
assumes 1. For all other time intervals, the 0-intersection
waveform assumes X.

1-intersection is defined similar to 0-intersection, how-
ever the resulting waveform assumes 1 for time intervals for
which at least one original waveform assumes 1, it assumes
0 for time intervals for which all original waveforms assume
0 and X in other cases. Inversion of a waveform results in
a waveform having value 0 with the original waveform had
value 1 and vice versa. The translation of a waveform is de-
fined with respect to two delay numbers rd (rising delay) and
fd (falling delay). All transitions to 1 are delayed (their ti
is incremented) by rd, and all transitions to 0 are delayed by
fd.
The circuit is simulated in topological order. For an in-

put i, the waveform is given by {(−∞, IV (i)), (0, FV (i))}.
When considering a gate c with rising delay RD(c) and
falling delay FD(c), the following operations are per-
formed: in case of an AND or a NAND gate, the waveforms
of all gate inputs are 0-intersected. In case of an OR or a
NOR gate, they are 1-intersected. If c is an inverting gate,
the resulting waveform is inverted. Finally, the waveform
is translated with rd = RD(c) and fd = FD(c). To ac-
count for gate inertia effects, pulses at gate inputs which are
shorter than the gate’s delay are ‘filtered’, i.e., they are re-
placed by X values during the translation. This is continued
until waveforms have been calculated for all the outputs of
the circuit.

3.2 Timing simulation of faulty circuit

A signal descriptor SD(s, fi) of a signal s in the circuit with
a present small-delay fault fi is a set of description intervals
of the shape val@[l, r]〈δmin,δmax〉, where val is the value (0,
1 or X) which signal s assumes between time points l and r,
provided that the following additional constraint for the size
δ of fi holds: δmin ≤ δ ≤ δmax. (Note that only the lower
boundary δmin is used in [5]). The values l and rmay be con-
stant numbers, e.g., l = 10, or depend on the fault size δ, e.g.
l = 10 + δ. Waveforms introduced in the previous section
can be seen as a special case of signal descriptors with no
dependency of interval boundaries on δ and no constraints.
Signal descriptors on signals not affected by fault fi are

derived from the fault-free waveforms. For such a signal s,
the signal descriptor SD(s, fi) contains only one descrip-
tion interval FV (s)@[LST (s),+∞]. Possible transitions at
s before LST (s) are ignored because they cannot affect the
value on a circuit’s outputs at clock cycle time TC . Sim-
ilarly, if s is the output of a gate with at least one input
s′ which is not affected by fi, s is not the fault site and
the value FV (s′) is controlling, then SD(s, fi) is set to
FV (s′)@[LST (s) + D(FV (s′)),+∞] if the gate is not in-
verting and ¬FV (s′)@[LST (s) + D(FV (s′)),+∞] if the
gate is inverting. Here, D(v) equals the rising delay of the
gate if v = 1 and the falling delay if v = 0. If there is more
than one such input s′, the minimal value of LST is taken.
The signal descriptor at the fault site is obtained from the

fault-free waveform by delaying the rising or falling transi-
tions, i.e., replacing a boundary x of an interval by x + δ.
If only the left bound is delayed, a constraint is generated
to make sure that the left boundary never exceeds the right
boundary of an interval.

A signal descriptor on the output s of a gate cwith a single
input s′ is calculated by applying to each description interval
I in SD(s′, fi) the propagation rules summarized in Table
1 to obtain a description interval J . SD(s, fi) is composed
of all such description intervals J . To account for the gate
inertia effect, rules 1 and 2 can only be applied for inter-
vals (pulses) which are wide enough (‘Existence condition’
in Table 1). Furthermore, the constraints may be tightened
for rules 3 and 5 to prevent too small pulses from propagat-
ing.

If s is the output of a multiple-input gate c, the equiva-
lent input signal descriptor is computed first. For this pur-
pose, cv-intervals are calculated as intervals from the sig-
nal descriptors of gate c’s inputs for which at least one of
the inputs assumes the controlling value of gate c. The
ncv − intervals are computed as intervals [l, r] such that
gate c’s non-controlling value is assumed between l and r
for all inputs of c. The equivalent input signal descriptor is
the collection of the cv-intervals and ncv-intervals with their
corresponding logical value. The constraint of a cv-interval
is simply taken from the description interval to which it cor-
responds. The constraint of an ncv-interval is the intersection
of the constraints of the corresponding description intervals.



Rule Input description interval I Existence condition Output description interval J

1 v@[x, y]〈δmin,δmax〉 x + D(v′) < y v′@[x + D(v′), y + D(¬v′)]〈δmin,δmax〉

2 v@[x + δ, y + δ]〈δmin,δmax〉 x + D(v′) < y v′@[x + D(v′) + δ, y + D(¬v′) + δ]〈δmin,δmax〉

3 v@[x + δ, y]〈δmin,δmax〉 – v′@[x + D(v′) + δ, y + D(¬v′)]〈δmin,min{δmax,y−x−D(v′)}〉

4 v@[x + δ, +∞]〈δmin,δmax〉 – v′@[x + D(v′) + δ, +∞]〈δmin,δmax〉

5 v@[x, y + δ]〈δmin,δmax〉 – v′@[x + D(v′), y + D(¬v′) + δ]〈max{δmin,x+D(¬v′)−y},δmax〉

6 v@[−∞, y + δ]〈δmin,δmax〉 – v′@[−∞, y + D(¬v′) + δ]〈δmin,δmax〉

Table 1: Signal description propagation rules for a gate c. v′ denotes v if c is non-inverting and ¬v if c is inverting.

The signal descriptor SD(s, fi) is computed by applying the
rules from Table 1 to the equivalent input signal descriptor.

Figure 2 shows signal descriptors in a circuit with slow-
to-rise fault on the output of gate 2 under test pair 010/111.
(The constraints 〈−∞,+∞〉 are skipped for clarity and ‘δ ≥
2’ is written instead of 〈2,+∞〉.) The fault-affected lines
are indicated by a circle and the delays of every gate c are
shown as RD(c)/FD(c). Figure 3 gives the waveforms on
the signals of the circuit. For instance, consider the sig-
nal descriptor calculation on gate 6 (inverting, controlling
value 1). There is one cv-interval 1@[3 + δ,+∞]〈−∞,+∞〉

and one ncv-interval 0@[2, 3 + δ]〈−∞,+∞〉 (obtained as in-
tersection of [2,+∞] and [−∞, 3 + δ]). Propagating them
using rules 4 and 5 of Table 1, respectively, results in
0@[8 + δ,+∞]〈−∞,+∞〉 and 1@[5, 8 + δ]〈2,+∞〉. Note the
tightening of the constraint (indicated by δ ≥ 2 in Figure 2),
done to prevent propagation of the pulses smaller than the
rising delay of gate 6, i.e., 3.

3.3 Detection interval

The detection interval in timing domainDt(fi) is calculated
by considering, for all outputs o of the circuit, the descrip-
tion intervals val@[l, r]〈δmin,δmax〉 from the signal descrip-
tors SD(o, fi), where val = ¬FV (o). These description in-
tervals represent time ranges in which output o assumes the
logical value which is opposite to the fault-free value FV (o).
We denote the circuit clock cycle time by TC . We are ulti-
mately interested in conditions under which value ¬FV (o)
is assumed at time TC . For every description interval in
question, we calculate the corresponding detection interval.
Dt(fi) is yielded as the union of these detection intervals.
Given a description interval¬FV (o)@[l, r]〈δmin,δmax〉 , its

time range [l, r] may have one of the following four shapes:
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Figure 2: Example circuit with signal descriptors

[x, y], [x+δ, y], [x, y+δ] and [x+δ, y+δ], where x and y are
constants. In the first two cases, the right side of the interval
is not affected by the fault. Since the clock cycle time TC

is chosen such that (in the fault-free circuit) all transitions
are completed before TC , no violation of TC is possible, and
the corresponding detection interval is empty. In the third
case, value ¬FV (o) is present on the output for all valid
values of δ for which y + δ exceeds TC . (The left bound-
ary x of the interval is less than TC by a reasoning similar
to the first two cases.) Hence, the values of y + δ which
are both valid and impose ¬FV (o) on o at TC are situated
between max{TC , y + δmin} and y + δmax. The detection
interval is obtained by subtracting y from these bounds. It
is [max{TC , y + δmin} − y, δmax]. Note that the interval is
empty if TC > y + δmax.

In the final case, the detection interval [δl, δr] must in-
clude values of δ such that x + δ < TC < y + δ and δ is
valid, i.e., δmin ≤ δ ≤ δmax. The right boundary of the
detection interval, δr, is set to δmax if TC > x + δmax and
to TC − x if x + δmax > TC > δmin. δl is set to δmin if
TC < y + δmin and to TC − y if y + δmin < TC < δmax.
The detection interval is empty if either TC < x + δmin or
TC > y + δmax, because TC is not included in the interval
of times for which ¬FV (o) is assumed on o for any legal
values of δ.

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

t

∞+

δ≥2

δ≥2

δ

δ

δ

δ

�
�
�

�
�
�

∞−

Figure 3: Waveforms in the circuit from Figure 2



3.4 Sequential circuits

The approach is applicable to full-scan (not necessarily
enhanced-scan) circuits. The first pattern of the test pair con-
sists of the primary input values and values to be scanned
into the flip-flops. The second pattern consists of primary
input values only. The values in the flip-flops are obtained
functionally. We assume that the circuit is given sufficient
time to stabilize after the scan-in of the first pattern, such
that a small-delay fault (which, by definition, has a size less
than the clock cycle time) has no effect on the values stored
in the flip-flops before the application of the second pattern.
We reiterate that we assume that gross-delay and other faults
are reliably identified by transition and stuck-at test sets and
we do not have to quantify the coverage of such defects by
our method. The second pattern is applied under the circuit’s
full speed. The faulty values on the circuit’s primary outputs
are detected by the test equipment while such values in the
flip-flops are identified after scan-out.

4 Delay-to-Resistance-Mapping

In this section, we first describe the method to calculate the
nominal delay of a logic gate c in absence of a defect. Then,
we give a method to compute the faulty delay of c in presence
of a resistive open defect at its output.

The delay of gate c in absence of a defect is modeled by

Dnom = Dnocharge + α · CL, (2)

where Dnocharge is the delay value which does not consider
the load capacitance. Dnocharge and the constant factor α are
typically included in a gate library. CL is the lumped load
capacitance, i.e., the sum of input capacitances of all gates
driven by c and the parasitic capacitance of the interconnect.
For example, if gate c drives a NOR and a NAND gate, the
lumped load capacitance is given by

CL = CNOR + CNAND + Cline, (3)

where CNOR and CNAND are load capacitances of the tran-
sistors within NOR and NAND gates driven by gate c and
Cline is the capacitance of the interconnect.

The delay of a gate driving an interconnect with a
resistive-open defect with resistance Rop is

D = Dnocharge + α · CL + β · Rop · CL, (4)

where factor β depends on the electrical parameters of the
driving gate c. β is constant for a given type of gate and
does not depend on Rop and CL. Although β is not included
in the gate library, it is easily determined by a SPICE simu-
lation. This is done as a pre-characterization step. The ob-
tained value β can be used when simulating any circuit which
contains the gate of respective type and does not need to be
re-calculated.

Since the additional delay δ due to the open defect is δ =
β · Rop · CL, the defect resistance corresponding to a fault
size δ is calculated as

Rop = δ/(βCL). (5)

Since the dependence between δ and Rop is monotonic for
a fixed fault location, the intervals Dr(fi) and Gr(fi) in the
resistance domain are obtained by applying this transforma-
tion to the boundaries of the respective intervals in the timing
domain.
A similar approach was suggested in [12] but no exper-

imental results were reported for open defects modeled by
their approach.

5 Experimental Results

We implemented a prototype simulator for the flow outlined
above and applied 100 and 1,000 random patterns to com-
binational ISCAS 85 and sequential ISCAS 89 and ITC 99
circuits. The timing and the process parameters of a 0.18
µm technology with VDD = 1.8V were used. We assumed
clock cycle time TC equal to the critical path delay plus a
safety margin of 20%. For a small-delay fault fi, we used
interval [Dmax, TC ] as an approximation of Gt(fi), where
Dmax is the slack of the longest path through the location of
fi, i.e., the difference between TC and the delay of that path.
Based on data in [2], we assumed a constant distribution ρ of
defect resistance for low-resistance open defects. We did not
use fault dropping.
Table 2 summarizes the results. Columns 2 and 3 con-

tain the clock cycle time TC in nanoseconds and the number
of small-delay faults in the circuit (we considered rising and
falling faults at gate outputs). Column 4 reports the realistic
fault coverage of 100 random patterns according to Eq. (1).
Column 5 quotes the percentage of faults which were de-
tected for any fault size, i.e., faults with non-empty detection
interval Dt. Since this metric is an over-estimation of the
realistic fault coverage, we call it ‘optimistic fault coverage’
or O-FC. Column 6 reports the run time in CPU seconds on a
2.6 GHz AMDOpteron server. Columns 7 through 9 give the
same information for simulation of 1000 random patterns.
The final row quotes the average numbers.
It can be seen that the fault coverage is generally low. One

needs to remember that only a specific defect class, namely
low-resistance interconnect open defects leading to small-
delay faults, are targeted and that the coverage of other defect
classes, e.g., stuck-at faults, may be much higher. Also, there
is a certain degree of pessimism in the model itself since un-
known values (X) in the signal descriptors do not contribute
to detection.
One interesting point is that the difference between the

realistic and the optimistic fault coverage is large and tends
to grow with increasing number of vectors. This suggests
that it is important to consider detailed waveform informa-
tion when calculating the coverage. The run times of the
prototype implementation are not comparable with that of



Table 2: Small-delay fault simulation results

Circuit TC #F 100 patterns 1000 patterns
[ns] FC O-FC T [s] FC O-FC T [s]

c0017 0.17 22 80.43 100.00 0.1 80.43 100.00 0.4
c0095 0.63 64 66.28 100.00 0.2 70.70 100.00 1.5
c0880 2.43 886 29.59 87.58 2.4 41.32 96.39 25.2
c1355 1.86 1174 42.35 82.45 50.4 61.02 93.95 633.7
c1908 3.06 1826 19.55 60.51 7.8 34.91 84.94 115.5
c2670 3.56 2852 22.59 69.78 43.5 32.25 81.38 1137.4
c5315 3.71 4970 32.45 91.07 51.3 42.77 99.38 1371.5

s00027 0.58 34 28.66 91.18 0.1 44.19 100.00 0.7
s00208 0.87 244 21.65 65.57 0.3 32.21 84.43 4.3
s00298 1.09 272 21.76 82.35 0.4 25.93 92.28 7.9
s00344 1.67 368 32.28 89.67 0.6 42.81 97.01 11.1
s00349 1.67 370 32.38 89.46 0.7 42.87 96.76 11.4
s00382 1.86 364 23.22 78.57 0.5 28.34 88.46 10.5
s00386 1.37 344 29.52 58.72 0.6 41.68 80.23 12.2
s00400 1.86 372 19.95 67.47 0.8 28.91 89.52 10.6
s00420 1.21 504 12.89 32.14 0.9 22.58 51.39 12.3
s00444 2.05 410 20.75 79.76 0.9 25.26 86.83 11.6
s00510 1.03 472 36.46 83.69 1.0 44.74 96.61 15.8
s00526 1.09 436 17.17 53.90 0.9 23.83 71.56 10.4
s00641 5.33 866 18.87 81.41 2.2 23.66 92.15 20.9
s00713 5.60 894 18.33 77.96 2.6 22.85 88.37 30.2
s00820 2.16 624 16.49 44.07 1.5 25.83 60.58 23.6
s00832 2.20 620 16.65 44.52 1.4 25.82 60.16 16.8
s00838 1.88 1024 5.56 13.96 1.8 9.37 23.54 18.2
s00953 1.47 880 17.75 48.41 1.6 33.40 81.93 21.1
s01196 2.43 1122 16.29 57.31 2.3 28.48 82.35 26.9
s01238 2.50 1080 16.59 58.33 2.2 28.15 81.57 26.7
s01423 7.86 1496 7.04 62.63 3.5 12.17 87.23 41.1
s01488 2.87 1334 32.45 66.04 3.4 48.93 91.60 35.9
s01494 2.96 1322 32.77 66.19 3.4 49.22 92.06 39.1
s05378 2.68 5986 23.97 64.55 20.0 32.55 80.42 204.4
s09234 4.58 11688 10.35 42.27 55.6 16.32 57.78 563.6
s13207 5.73 17302 7.48 57.95 196.6 10.08 68.80 2165.3
s15850 7.20 20766 9.56 62.22 257.5 12.55 72.13 7118.9
s35932 3.36 35656 43.41 89.72 169.4 48.57 92.01 1852.0
s38417 4.79 47686 20.49 77.33 147.1 25.78 86.87 1868.0
s38584 6.49 41434 14.98 74.01 139.7 18.24 82.96 1733.2

b01c 0.56 94 53.77 100.00 0.2 61.59 100.00 2.3
b02c 0.34 52 62.17 98.08 0.1 65.45 100.00 1.3
b03c 1.11 298 33.09 98.66 0.7 40.56 100.00 7.1
b04c 2.43 1240 12.91 53.79 13.1 31.41 88.47 250.2
b05c 3.14 1076 23.47 80.11 5.9 36.90 92.10 56.1
b06c 0.44 98 53.03 100.00 0.2 56.41 100.00 2.1
b07c 2.29 838 22.29 82.82 2.8 30.58 89.86 40.2
b08c 0.92 334 23.94 74.25 0.7 36.03 95.51 7.8
b09c 0.94 318 28.42 80.50 0.7 32.41 85.22 7.3
b10c 1.20 348 35.85 88.22 0.8 49.79 100.00 7.9
b11c 2.43 1084 23.12 82.56 2.8 32.84 95.85 31.4
b12c 2.01 2000 20.92 72.10 4.7 31.70 89.00 58.2
b13c 0.99 614 23.95 92.02 1.2 34.01 98.21 13.0

Average 26.72 73.12 35.57 86.16

tools optimized for speed, yet the general applicability of the
method to mid-size blocks can be seen. The memory con-
sumption was linear in the size of the circuit and the number
of faults and never exceeded 50 MB.

6 Conclusions

The simulator presented in this paper is the first small-delay
fault simulator which can handle both combinational and se-
quential circuits. The correspondence between physical de-
fects, i.e., resistive opens, and their models on the gate level,
i.e., small-delay faults, is taken into account. A sophisticated

simulation routine based on signal descriptors is employed
in connection with a mapping between the domain of faults,
i.e., timing, and the domain of defects, i.e., resistance.
The experiments suggest that an adequate coverage of

small-delay faults appears to require specific patterns. Our
next steps will be an extension of the electrical model by
considering the parasitic capacitances with neighboring in-
terconnects [13] and test generation for small-delay faults.
Considering coverage under optimized test application meth-
ods [14, 15, 16] is another promising direction for future re-
search.
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