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Abstract

A high-performance resistive bridging fault simulator

SUPERB (Simulator Utilizing Parallel Evaluation of Resis-

tive Bridges) is proposed. It is based on fault sectioning in

combination with parallel-pattern or parallel-fault multiple-

stuck-at simulation. It outperforms a conventional interval-

based resistive bridging fault simulator by 60X to 120X while

delivering identical results. Further competing tools are out-

performed by several orders of magnitude.

Keywords: Resistive bridging faults, bridging fault simu-

lation, PPSFP, SPPFP, fault mapping

1 Introduction

Conventional bridging fault models assume the short de-

fect resistance of zero [1, 2, 3, 4, 5, 6]. Resistive bridg-

ing fault models take other resistance values into account

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. State-of-the-

art resistive bridging fault simulators are able to determine

the detection status for all defect resistances simultaneously

[13, 17]. This is achieved by considering intervals of resis-

tances in which the defect influences the logic function of the

circuit. However, successful acceleration techniques used in

stuck-at simulators, such as utilizing multiple bits of a ma-

chine word, are not applicable to interval-based simulation.

In this paper, we propose the high-performance resistive

bridging fault simulator SUPERB (Simulator Utilizing Par-

allel Evaluation of Resistive Bridges). It uses the sectioning-

based approach [20] in combination with a parallel multiple-

stuck-at fault engine. For a bridging fault between circuit

nodes a and b, a section [R1, R2] denotes a range of bridging

defect resistances for which the logic behavior of the circuit

is identical. In particular, if a bridging defect between nodes

a and b with a resistance Rsh from section [R1, R2] is de-

tected by a test vector, then all bridging defects between a
and b with resistances between R1 and R2 will be detected

by the same vector.

∗Parts of this work are supported by the German Research Foundation

under grant BE 1176/14-1.

Given a section and an input vector, the faulty behavior of

the circuit can be characterized by a multiple-stuck-at fault.

Since the resistive bridging fault model considers pattern-

dependency [16, 17], the faulty behavior of the same circuit

under a different input vector may be described by a different

multiple-stuck-at fault. We store the mapping of resistance

sections to multiple-stuck-at faults considering the pattern

dependency in a hash table which is calculated before ac-

tual simulation begins. It is possible to generate the hash

table using SPICE simulations [13] or electrical equations

[7, 8, 21]. Whenever the simulation arrives at a fault site, the

adequate multiple-stuck-at fault is looked up in the hash ta-

ble and handed to a multiple-stuck-at fault simulation engine

which utilizes the usual speed-ups. We reiterate that there

is no one-to-one mapping between a resistive bridging fault,

even restricted to a section, and a multiple-stuck-at fault, be-

cause of pattern dependency.

Considering surrogate faults, including multiple-stuck-at

faults and multiple single-stuck-at faults, to represent com-

plex resistive bridging defects has been proposed in the past.

Maeda and Kinoshita [22] utilized locally exhaustive test-

ing of the bridge site. n-detection [23, 24] and its exten-

sions [25, 19] demanded application of multiple tests for one

single-stuck-at fault. The Unified Fault Model [26] consid-

ered all possible multiple-stuck-at faults at the nodes suc-

ceeding the bridge site. In contrast to these approaches, we

retain the modeling accuracy of the original resistive bridg-

ing fault model. The fault coverages returned by SUPERB

are not over- or underapproximations, they correspond ex-

actly to the numbers generated by an interval-based resistive

bridging fault simulator.

The remainder of the paper is organized as follows. In

Section 2 we describe the fault sectioning approach and dis-

cuss its differences from the interval-based approach in con-

text of simulation. In Section 3 we explain the simulator

SUPERB which utilizes the sectioning technique to leverage

the accelerations known for stuck-at fault simulation. In Sec-

tion 4, experimental results are reported. Section 5 concludes

the paper.



2 Fault Sectioning
In this section, the fault sectioning technique from [20] is

formalized within our framework and illustrated by an ex-

ample.

A bridging fault is given by two bridged nodes a and b. A

bridging defect is given by two nodes a and b and the defect

resistance Rsh. A bridging fault corresponds to an infinite

number of bridging defects having different resistances.

For a bridging fault or a bridging defect between a and b,

the two gates which drive a and b are called preceding gates

and the gates driven by either a or b (including all their fanout

branches) are called succeeding gates. If an input vector im-

plies opposite logic values on nodes a and b, then a bridging

defect will result in intermediate voltages Va and Vb on the

respective lines, i.e., 0V < Va, Vb < VDD. For every input

of each succeeding gate, a single logic threshold is assumed

such that every voltage below this threshold is interpreted as

logic 0 and every voltage above is interpreted as logic 1.

The resistance of a bridging defect which induces a volt-

age corresponding to a logic threshold of one of the inputs

driven by the node is called critical resistance. An ana-

logue detection interval (ADI) is the range of resistances for

all bridging defects which are detected by a test vector, i.e.,

which produce a wrong logic value on at least one primary

output (or other observable point). An ADI typically has the

shape [0, R] for some value of R but it can also be a union of

disjoint sub-intervals [16]. The boundaries of the ADIs are

always critical resistances. The number of different critical

resistances depends on the fault site. The ADI is calculated

at the bridge site based on an electrical analysis and propa-

gated to the observable points of the circuit.

The interval [R1, R2] is called a section if R1 and R2 are

critical resistances and there is no critical resistance R3 such

that R1 < R3 < R2. The number of sections is given by the

number of different critical resistances. Let R1, R2, . . . , Rm

be all the critical resistances for the bridging fault between

nodes a and b, sorted in ascending order. The detection sta-

tus of a bridging fault can be represented by the detection

statuses of the sections [0, R1], [R1, R2], . . . , [Rm−1, Rm],
[Rm,∞]. The detection status is uniform for every bridge

resistance within a section, i.e., either all bridging defects

with a resistance from a section are detected by a test vector

or none is detected. If the detection status of all the sections

is known, the ADI can be constructed as the union of all de-

tected sections. This approach results in the same ADI as the

technique based on interval propagation.

For illustration, we consider the circuit from Figure 1 [17]

which is a part of a larger circuit shown in Figure 3. Solid

curves in Figure 2 show possible voltage characteristics as a

function of bridge resistance Rsh when logic values 0011 are

applied to gates A and B preceding the bridge and dashed

curves show the characteristics when values 0111 are ap-

plied. Logic thresholds of the succeeding gates are ThC ,
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Figure 1: Example circuit: bridge site

ThD and ThE . The fault is not excited and no detection

is possible if nodes a and b have the same logic value. For

the sake of simplicity, we assume that the only logic value

assignments to the inputs of the preceding gates leading to a

fault excitation are 0011 and 0111. (Assignment 1011 can be

assumed to have effect identical to 0111.) Critical resistances

are RC , RE (for value assignment 0011), R′

C , R′

D and R′

E

(for value assignment 0111). Note that there is no critical

resistance RD. Sections are [0, R′

D], [R′

D, RC ], [RC , R′

E ],
[R′

E , R′

C ], [R′

C , RE ] and [RE ,∞]. Note that the fault-free

value is always assumed in the last section such as [RE ,∞]
in this example and this section does not need to be consid-

ered explicitly.

Figure 3 shows how the fault effect is propagated for input

values 0111 using the interval-based technique. The interval

assigned to a node is shown over the node. For instance, in-

terval [0, R′

C ]0/1 means that the node assumes logic value

0 if the bridge resistance is between 0Ω and R′

C , and logic

value 1 otherwise. Similarly, interval [0, R′

E ]1/0 means that

the node assumes logic value 1 if the bridge resistance is

between 0Ω and R′

E , and logic value 0 otherwise. The in-

tervals are propagated through the circuit taking the types of

the gates and the values on the side inputs into account. For

instance, no interval is propagated through the AND gate D
because its side input has controlling logic value 0. The in-

terval is complemented by inverting gates such as E. If two

intervals reconverge, i.e., arrive at two inputs of a single gate

such as XOR gate G preceding the output, intervals not start-

ing at 0Ω or even having ‘holes’ may be produced. In the ex-

ample, the fault-free logic value is 1, so the fault is detected

by the applied test vector if Rsh is between R′

E and R′

C .
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Figure 2: Rsh-V -diagram



C

D

E E

E

C

E C

a

b

Rsh

1

1

0

B

A
1

0
C

D

0

[0, R’ ] 0/1

[0, R’ ] 0/1

E

1

[0, R’ ] 0/1

[R’ , R’ ] 0/1

[0, R’ ] 1/0 [0, R’ ] 0/1

[0, R’ ] 1/0

v

w

c

d

e

z

f

0
G

F

Figure 3: Example circuit: interval-based propagation

Circuit Fault-free Valued assumed in section

node value [0, R′

D
] [R′

D
, RC ] [RC , R′

E
] [R′

E
, R′

C
] [R′

C
, RE ]

c 1 0 0 0 0 1

d 1 0 1 1 1 1

e 0 1 1 1 0 0

f 1 0 0 0 1 1

v 1 0 0 0 0 1

w 0 1 1 1 0 0

z 1 1 1 1 0 1

Table 1: Section-based propagation in circuit from Figure 3

The logic values assumed by a node for individual sec-

tions are shown in Table 1. For example, the second input

c of gate C is assumes logic value 0 for bridge resistances

between 0Ω and R′

C , i.e., in sections [0, R′

D], [R′

D, RC ],
[RC , R′

E ], [R′

E , R′

C ], and logic value 1 in the remaining sec-

tion [R′

C , RE ] (section [RE ,∞] is not shown as explained

above). The values for individual sections can be propagated

through the circuit based on the logic functions of the gates.

It is obvious that, if the sections are known, five bits repre-

senting the logic values for sections contain exactly the same

information as the interval-based representation. In particu-

lar, the values at the output of the circuit are (1, 1, 1, 0, 1),

i.e., only section [R′

E , R′

C ] assumes logic value 0 and all oth-

ers assume logic value 1) corresponds to ADI [R′

E , R′

C ]0/1
generated by the interval propagation.

Simulating a section under a given input vector (only the

values assigned to the inputs of the preceding gates matter

indeed) can be represented as simulating a multiple-stuck-at

fault. In our example, simulating section [0, R′

D] under input

0111 corresponds to simulating stuck-at faults c stuck-at-0, d
stuck-at-0, and e stuck-at-1 injected simultaneously. Stuck-

at faults corresponding to all sections and inputs are shown

in Table 2.

The union of all ADIs on all outputs for all vectors is

called covered ADI or C-ADI. C-ADI includes all the bridge

resistances for which the fault has been detected by at least

one test vector. C-ADI for the exhaustive test set is called

global ADI or G-ADI, it represents all the resistances for

which the fault could be detected. G-ADI can be calculated

using ATPG techniques [27]. The global fault coverage G-

FC is defined as the probability that a detectable fault f is

detected:

G-FC(f) = 100% ·

(
∫

C-ADI
ρ(r)dr

)

/

(
∫

G-ADI
ρ(r)dr

)

,

where ρ(r) is the probability density function of the short

resistance r which can be derived from manufacturing data.

It is possible to approximate G-ADI by [0, Rm], where Rm

is the largest critical resistance [13]. Rm is much easier to

calculate than G-ADI. The fault coverage which uses this

approximation is called E-FC in [17]:

E-FC(f) = 100% ·

(
∫

C-ADI
ρ(r)dr

)

/

(

∫ Rm

0

ρ(r)dr

)

.

For multiple faults, average G-FC and E-FC are calculated.

Redundant faults, i.e., faults with an empty G-ADI, are ex-

cluded.

3 SUPERB

Simulator SUPERB works in two stages. First, it reads in

the list of resistive bridging faults and gate and process tech-

nology parameters, determines sections, and generates, for

each section, a hash table which contains the information on

equivalent multiple-stuck-at faults depending on logic val-

ues on preceding gates. Second, every section is fault simu-

lated by a multiple-stuck-at engine. A section is mapped to

a multiple-stuck-at fault taking into account the information

stored in the hash table associated with the section. Then, ei-

ther parallel-pattern or parallel-fault multiple-stuck-at simu-

lation is performed. The subsequent sections provide details

on the two stages of the simulation procedure.

3.1 Hash table generation

There is one hash table for every section of every considered

resistive bridging fault. Let the fault f between nodes driven

by gates a and b have a section [RL, RU ]. The hash table

for section [RL, RU ] of fault f contains all the logic value

assignments to the inputs of gates a and b under which a

resistive defect with a resistance between RL and RU has

any faulty effect. Every such input value assignment serves

as a key to look up the equivalent multiple-stuck-at faults. In

the example from Table 2, the hash table for section [0, R′

D]

Input Section Stuck-at faults

0111 [0, R′

D] c s-a-0, d s-a-0, e s-a-1

0111 [R′

D, RC ] c s-a-0, e s-a-1

0111 [RC , R′

E ] c s-a-0, e s-a-1

0111 [R′

E , R′

C ] c s-a-0

0111 [R′

C , RE ] –

0111 [RE ,∞] –

0011 [0, R′

D] c s-a-0, e s-a-1

0011 [R′

D, RC ] c s-a-0, e s-a-1

0011 [RC , R′

E ] e s-a-1

0011 [R′

E , R′

C ] e s-a-1

0011 [R′

C , RE ] e s-a-1

0011 [RE ,∞] –

Table 2: Multiple stuck-at faults corresponding to resistive

bridging faults



would have two entries: (0111 7→ {c s-a-0, d s-a-0, e s-a-1})

and (0011 7→ {c s-a-0, e s-a-1}). The hash table for section

[R′

C , RE ] would have one entry (0011 7→ {e s-a-1}).

The identification of section boundaries (i.e., critical re-

sistances) and the calculation of equivalent multiple stuck-

at faults is done using the electrical equations from [7, 8].

It would also be possible to use SPICE simulations instead

such as done in [13]. The keys, i.e., the input value assign-

ments, are represented as 32-bit unsigned integers. This is

valid because the length of a key cannot exceed 2·Imax where

Imax is the maximal number of inputs of a logic gate in the

library and Imax is not supposed to exceed 16.

The maximal theoretical number of entries in a hash table

is 22·Imax but in practice the hash tables turn out to be quite

small. The number of hash tables is the number of faults in

the fault list multiplied by the number of sections per fault.

The latter is typically a one-digit number, so the memory

overhead for storing the hash tables is limited.

3.2 Fault simulation

SUPERB supports both parallel-pattern single-fault pro-

cessing (PPSFP) and single-pattern parallel-fault process-

ing (SPPFP). In PPSFP simulation, one section is fault-

simulated for 32 test vectors t1, . . . , t32 simultaneously. For

this purpose, every node j is assigned a 32-bit string Bj rep-

resented using a machine word. The ith position of Bj cor-

responds to the logic value of node j under vector ti with

fault injected. If node j is an input of a gate succeeding the

bridged lines, the (multiple-stuck-at) fault injection is done

using two 32-bit masks: AND mask Aj and OR mask Oj .

The ith position of Aj is set to 0 if a stuck-at-0 fault is in-

jected at node j under test vector ti and to 1 otherwise. The

ith position of Oj is set to 1 if a stuck-at-1 fault is injected at

node j under test vector ti and to 0 otherwise.

The circuit is processed in topological order. A logic gate

driving node j is simulated by applying its bit-wise logic

function to the bit-strings of its inputs. In case of gates suc-

ceeding the bridged lines, a bit-wise AND operation with Aj

and a bit-wise OR operation with Oj is performed first. For

example, if a NOR3 gate succeeding the bridge drives node

n and the gate’s input bit-strings are Bk, Bl and Bm, then

Bn is obtained as

Bn =¬ ((Bk∧Ak∨Ok)∨(Bl∧Al∨Ol)∨(Bm∧Am∨Om))

where ¬, ∨ and ∧ represent bit-wise NOT, OR and AND

operations, respectively.

The generation of masks Aj and Oj is done for all inputs

of gates succeeding the bridging fault to which the simulated

section belongs, using the hash table of that section. For a

bit position i, the input value assignments of the preceding

gates are evaluated and the corresponding key of the hash

table is looked up. The ith component of Aj is set to 0 if

the hash table entry contains a stuck-at-0 fault on node j.

The ith component of Oj is set to 1 if the hash table entry

contains a stuck-at-1 fault on node j. Note that, in contrast

to traditional pattern-parallel simulation, the masks do not

always contain identical values. This is because the faults

to be injected depend on the input value assignments of the

preceding gates.

The authors of [13] also call their technique PPSFP simu-

lation. Their approach is interval-based. They maintain a list

of pointers to the intervals, and if an interval to be created

already exists, they store only the pointer, avoiding copying

the interval. In contrast to SUPERB, they do not employ

bit-parallelism for fault effect propagation.

In parallel-fault (SPPFP) simulation, an input vector is

simulated under 32 sections, not necessarily belonging to the

same fault. The AND and OR masks are set at all the suc-

ceeding nodes of the resistive bridging faults to which the

32 sections belong. This is done by looking up the 32 hash

tables for the individual sections using the key correspond-

ing to the input value assignment induced by the simulated

vector. The processing of individual gates is identical to the

parallel-pattern case.

4 Experimental Results

We applied SUPERB to ISCAS 85 and combinational parts

of ISCAS 89 benchmark circuits. The fault set consisted of

10,000 randomly selected non-feedback faults, where avail-

able. We employed the density function ρ derived from one

used in [13]. All measurements were performed on a 2GHz

AMD Opteron Linux machine with 4 GB RAM.

Table 3 contains the numbers of bridging faults, the num-

bers of sections, the fault coverages (FC) and the run times

for 1,000 random vectors, 10,000 random vectors and ATPG

patterns from [27] for SUPERB in PPSFP and SPPFP con-

figurations and the interval-based simulator from [17]. The

number of sections per fault ranges between 1.91 and 5.73,

the average number being 3.09. Hence, approximately three

sections must be simulated on average to obtain the detec-

tion interval for a resistive bridging fault. The maximal

number of sections per fault in a circuit was between 4 and

61. The fault coverage is G-FC for all circuits except c6288

for which G-ADI cannot be calculated and E-FC has to be

used. We reiterate that identical fault coverage is computed

by SUPERB and the interval-based simulator. The ATPG

patterns have fault coverage of 100%.

The last row of Table 3 contains the sums of the run

times over all circuits. Parallel-pattern simulation outper-

forms parallel-fault simulation, which is also typically ob-

served for existing stuck-at simulators. The acceleration

compared with the interval-based approach is around 62X

for 1,000 vectors and 120X for 10,000 vectors (the measure-

ment has been done on the same machine). The construction

of the hash tables (the first stage of the fault simulation algo-

rithm) takes between 0.02 and 0.59 seconds per circuit. The



Circuit Bridges Sections 1,000 random vectors 10,000 random vectors ATPG vectors

FC PPSFP SPPFP Interval FC PPSFP SPPFP Interval Patterns PPSFP SPPFP Interval

c0017 2 8 100.00 0.02 0.03 0.00 100.00 0.02 0.07 0.08 2 0.02 0.02 0.00

c0095 77 441 100.00 0.08 0.42 0.78 100.00 0.53 3.84 8.13 18 0.02 0.03 0.01

c0432 5253 18296 99.78 1.10 5.78 57.46 99.99 3.53 29.80 584.48 732 1.25 8.12 62.16

c0499 8985 16092 99.99 1.01 4.14 108.23 100.00 2.16 15.63 1079.19 54 0.72 0.89 7.47

c0880 10000 36074 98.88 2.55 18.41 108.66 99.54 11.47 116.67 1072.33 745 2.05 13.94 75.67

c1355 10000 32160 99.89 3.38 22.72 217.21 100.00 20.63 187.72 2154.24 178 1.74 4.52 45.94

c1908 10000 30961 99.25 2.63 13.71 281.63 99.98 7.89 64.33 2730.71 267 1.53 3.25 85.44

c2670 10000 28379 95.93 2.56 16.26 174.50 97.68 13.02 110.01 1751.03 366 1.21 4.37 64.19

c3540 10000 28115 99.19 2.55 15.62 231.15 99.91 9.40 81.58 2342.25 489 1.80 7.60 117.38

c5315 10000 28491 99.96 1.53 5.84 209.97 100.00 3.80 26.36 2193.35 384 1.30 4.21 76.16

c6288 10000 33425 91.88 5.66 46.30 634.95 91.89 41.47 446.95 6720.93 n/a n/a n/a n/a

c7552 10000 31592 99.12 2.23 11.16 247.67 99.55 8.97 70.67 2545.09 357 1.42 3.85 94.46

cs00027 2 10 100.00 0.01 0.01 0.02 100.00 0.01 0.02 0.14 2 0.01 0.01 0.00

cs00208 3986 11508 99.56 0.98 7.87 19.26 100.00 5.64 60.38 195.03 124 0.35 1.21 2.52

cs00298 4468 12863 99.98 0.91 5.42 28.10 100.00 4.90 44.63 279.76 125 0.47 1.27 3.60

cs00344 7760 21229 99.97 2.02 15.10 55.42 100.00 14.48 139.52 552.15 206 0.84 3.88 11.40

cs00349 7881 21914 99.97 2.12 16.40 57.86 100.00 15.30 149.83 589.74 197 0.87 3.88 10.94

cs00382 7809 28578 99.96 1.71 10.02 53.26 100.00 7.90 68.08 532.40 255 1.04 3.56 13.69

cs00386 9384 17907 99.82 2.20 17.55 40.92 100.00 10.41 100.96 412.77 77 0.73 1.61 4.49

cs00400 8290 31563 99.96 1.94 11.43 58.62 100.00 9.06 77.34 595.00 245 1.14 3.79 14.27

cs00420 10000 29142 85.20 4.09 39.31 51.48 95.74 24.31 272.00 505.67 317 1.20 7.23 17.43

cs00444 10000 38922 99.98 2.79 19.07 70.42 100.00 14.53 145.12 721.01 312 1.58 7.06 22.15

cs00510 10000 43359 99.98 3.54 27.41 70.74 100.00 23.25 244.55 696.66 320 1.89 10.37 22.88

cs00526 10000 33954 99.44 3.26 23.16 71.90 99.95 14.95 140.48 724.64 372 1.82 8.39 27.70

cs00641 10000 17494 99.61 0.88 4.54 97.33 99.89 2.29 19.98 1001.55 304 0.63 1.84 27.10

cs00713 10000 19871 99.68 1.48 9.79 105.60 99.90 7.85 72.37 1060.36 332 0.89 3.91 32.70

cs00820 10000 39164 96.29 6.00 54.93 65.54 99.61 31.97 357.59 673.51 454 2.87 19.61 30.47

cs00832 10000 40010 96.13 6.28 58.09 65.83 99.28 34.11 372.92 654.15 445 2.85 19.83 30.98

cs00838 10000 29463 69.83 6.34 57.93 57.77 79.84 47.21 476.03 574.19 473 1.62 10.97 30.90

cs00953 10000 44768 97.33 5.63 47.19 85.06 99.75 34.60 348.82 835.06 422 2.71 17.25 37.57

cs01196 10000 33300 96.07 3.65 27.98 71.55 99.46 15.61 149.77 696.53 500 1.87 10.27 37.31

cs01238 10000 34365 96.49 3.90 31.23 72.53 99.58 17.61 168.19 729.29 508 2.03 11.64 39.66

cs01423 10000 28598 99.21 2.42 17.77 86.46 99.77 12.07 114.39 830.52 514 1.50 8.58 57.62

cs01488 10000 19587 99.65 2.02 14.50 62.30 99.97 8.32 73.70 624.18 234 0.98 3.64 16.19

cs01494 10000 19584 99.66 2.13 15.17 63.42 99.95 8.89 78.04 630.46 225 1.04 3.78 15.59

cs05378 10000 28812 98.68 2.20 14.47 156.82 99.80 6.99 60.02 1552.36 824 1.50 8.58 144.12

cs09234 10000 21819 90.92 3.76 29.85 173.96 97.24 16.15 149.64 1730.58 904 1.67 11.21 167.83

cs13207 10000 20354 95.90 2.25 18.43 498.34 98.49 10.82 106.68 4929.44 1228 1.56 12.10 564.55

cs15850 10000 20093 96.76 2.08 17.17 394.83 98.87 8.71 87.27 3956.68 1060 1.54 11.89 428.38

cs35932 10000 27198 100.00 2.79 23.28 519.59 100.00 18.50 189.48 5088.17 516 1.92 14.19 406.20

cs38417 10000 25893 97.73 3.02 27.23 887.68 98.14 17.58 194.05 8957.95 1178 2.65 25.27 1013.94

cs38584 10000 26383 92.42 3.26 28.53 654.05 97.62 15.88 163.38 6853.46 1822 3.84 41.97 1087.09

Σ 110.96 851.22 6968.87 582.79 5778.86 70365.22 58.67 339.59 4948.15

Table 3: Run times (in CPU seconds) in comparison with the interval-based simulator

maximal memory consumption of SUPERB was 33.59 MB

(for cs35932 and 10,000 patterns).

Table 4 compares SUPERB with the sectioning-based

tool from [20] and the interval-based tool PROBE [13]. For

each tool, the number of bridging faults B (not sections), the

number of used test vectors V and the reported run time T
in seconds are given. Note that the original papers [20, 13]

report the run time in minutes. To allow a comparison, we

calculate the normalized run time as run time T divided by

the product of the number of bridges B and the number of

vectors V and report the result (in milliseconds) in columns

T/BV .

The final row contains the sums of all run times and the

average normalized run times. SUPERB is approximately

115 times faster than the tool from [20] and 37,500 times

faster than PROBE [13]. The experiments in [20] were run

on a 850 MHz Pentium III, so if we assume that our com-

puter is three times faster the ‘actual’ speed-up is around

39X. The average number of sections per fault for the cir-

cuits in Table 4 was 3.61 for the tool from [20] and 3.11 for

SUPERB, which may account for some 15% of the accelera-

tion. The measurement in [13] was done on a Sun SPARC 5

with an unspecified clock frequency which should not have

resulted in a slowdown of more than two orders of magni-

tude. The remaining difference must be attributed to the

interval-based simulation (despite the acceleration through

the shared pointers) and the implementation of PROBE in

tcl/tk.



Circuit Shinogi et al. [20] PROBE [13] SUPERB (PPSFP)

B V T (s) T/BV (ms) B V T (s) T/BV (ms) B V T (s) T/BV (ms)

c432 n/a n/a n/a n/a 157 10016 780.00 0.49602 5253 10000 3.53 0.00007

c499 n/a n/a n/a n/a 136 10016 900.00 0.66071 8985 10000 2.16 0.00002

c880 1000 10000 18.00 0.00180 949 10016 6960.00 0.73223 10000 10000 11.47 0.00011

c1355 1000 10000 114.00 0.01140 639 10016 12960.00 2.02493 10000 10000 20.63 0.00021

c1908 2000 10000 78.00 0.00390 1662 10016 37680.00 2.26353 10000 10000 7.89 0.00008

c2670 5000 10000 840.00 0.01680 4294 10016 151020.00 3.51138 10000 10000 13.02 0.00013

c3540 5000 10000 720.00 0.01440 4431 10016 202860.00 4.57089 10000 10000 9.40 0.00009

c5315 8000 10000 540.00 0.00675 7121 10016 418500.00 5.86760 10000 10000 3.80 0.00004

c6288 4000 10000 1800.00 0.04500 3216 10016 603240.00 18.72750 10000 10000 41.47 0.00041

c7552 13000 10000 2700.00 0.02077 12106 10016 1194480.00 9.85108 10000 10000 8.97 0.00009

Σ, ∅ 6810.00 0.01510 2629380.00 4.87059 122.34 0.00013

Table 4: Comparison with existing approaches

5 Conclusions

We presented an approach for fast simulation of resistive

bridging faults. Sections of bridge resistances are mapped

to multiple-stuck-at faults, thus enabling to employ accel-

eration techniques developed for stuck-at fault simulation.

The mapping takes the pattern-dependent circuit behavior

into account. While retaining the accuracy of the interval-

based simulation, speed-ups of several orders of magnitude

are achieved compared to both interval-based and sectioning-

based tools proposed before. Possible extensions are support

of features present in industrial circuits such as Z values and

incorporation of the model for feedback faults from [28].
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