
Abstract 
This paper analyzes the electrical behaviour of 

resistive opens as a function of their unpredictable 
resistance. It is demonstrated that the electrical 
behaviour depends on the value of the open resistance. It 
is also shown that detection of the open by a given vector 
Ti recursively depends on all the vectors that have been 
applied to the circuit before Ti. An electrical analysis of 
this recursive effect is presented and a specific ATPG 
strategy is proposed. 

 
 
1. Introduction 
The advent of integrated circuit technology has 

introduced electronics in many aspects of present-day 
life. As the use of electronic components increases, the 
expectation of lower cost, better accuracy and higher 
reliability increases. Lower cost and better accuracy are 
achieved by putting more transistors per unit of silicon, 
using design automation, increasing device operation 
speed and reducing its power consumption. However, 
these design steps cannot guarantee reliability. In fact, as 
the circuit density increases, the probability of a 
manufacturing defect increases. A higher expectation of 
reliability can only be met by more thorough and 
comprehensive testing.  

Due to the complexity of IC technological process, 
many physical defects occur during the manufacturing of 
any system. The typical defects encountered in today 
technologies and modeled in yield simulators are the so-
called spot defects that may cause shorts and/or opens at 
one or more of the different conductive levels of the 
devices. Test generation for any type of defect is 
obviously not feasible due to the huge amount of CPU 
time and memory size required. Instead, test generation 
relies on fault models that are supposed to both represent 
the defect behavior and allow easy generation of test 
vectors through ATPG and fault simulation.  

Classical fault models (stuck-at, stuck-open, stuck-
on, etc.) have been proved to be efficient in the context of 
ATPG and fault simulation. However, it is well-known 
that these fault models cover only partially the spectrum 

of real failures in today's integrated circuits. The 
increasing demand of low PPM (part per million) defect 
rates requires the derivation of ever more accurate fault 
models. In particular, a special attention must be paid to 
defects that exhibit complex behavior not accurately 
represented by classical fault models and defects with a 
high probability of occurrence [1-5]. In modern 
nanometer process, resistive opens belong to both 
categories since they change the electrical behavior of the 
connection and they are predominant defects in today 
technologies in which copper is used for 
interconnections.  

A number of research works have been conducted in 
the past years dealing with the electrical characterization 
and modeling of this kind of failure [6-9]. Classically, it 
is considered that the connection is fully open, i.e. the 
following gates are completely disconnected and called 
‘floating gates’.  

In this paper, we analyze the case where the 
following gates are still connected but through a degraded 
line exhibiting some resistance [10-17].  It is important to 
note that the value of this resistance is an unpredictable 
parameter of the defect. The electrical behavior of the 
defect obviously depends on this random parameter as 
well as its detection conditions. In order to optimize and 
guarantee the detection of such a defect, its electrical 
behavior has to be analyzed as a function of this random 
parameter and optimal detection conditions must be 
derived.  

The paper will be organized as follows. Section 2 
presents a very detailed analysis of the electrical behavior 
of resistive opens. The detection of the open is analyzed 
considering a sequence of 2 test vectors, then considering 
a sequence of n test vectors. Starting from this analysis, 
section 3 proposes a new and specific ATPG for resistive 
opens. Finally, section 4 gives some concluding remarks. 

 
2. Resistive open behavior and detection 

 In this section, an electrical analysis of the resistive 
open is conducted using a didactic circuit. Figure 1 gives 
an example of an extremely simple circuit where node n4 
is affected by a resistive open. This didactic circuit has 4 
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inputs (I1, I2, I3, I4) and 2 outputs (O1, O2). Note that we 
do not care for the logic function; we just need a simple 
example to conduct our electrical analysis. Obviously, the 
demonstrations given below can be extended to real 
cases.  

 
Figure 1: A resistive open 

 
From a static voltage test point of view (Boolean 

testing), it is well known that a resistive open cannot be 
detected because the faulty node always ends up reaching 
its correct logic value. On the contrary, resistive opens 
modify the timing behavior of the circuit, so they can be 
detected by a dynamic voltage test strategy (delay 
testing).  

 
2.1. Detection with a 2-vector sequence 
 
The open resistance Rop is a random parameter of the 

defect and can not be predicted, but we can simulate 
different cases of resistance value. In Figure 2, a SPICE 
simulation of the defective circuit (Rop = 3KΩ) using a 
180nm technology is first performed. Analysis of the 
dynamic behavior requires to create some signal 
transitions on the circuit inputs and to propagate these 
transitions through the circuit. The initial state is given by 
vector T0 = <I1, I2, I3, I4> = <1010> and the transition is 
created by vector T1 = <1110>. Input I2 switches from 0 
to VDD and the rising edge is propagated to output O1 
through gates 1/2/3/4/5/6. 

In this simple example, we consider that we can use a 
cycle time of about Tcl = 0.4ns. The propagation of this 
rising edge allows to give the following definitions: 

- Tpb (Propagation Before the defect), 
- Tpa (Propagation After the defect), 
- Tsl  (Slack Time of path I2 → O1). 
 
The voltage on node n4 as a function of time is 

depicted by the solid line. The voltage on node O1 is 
depicted by the dashed line. Due to the open, it clearly 
appears that the signal at node n4 is slowed down. An 
additional delay Top = 0.13ns appears. But the size of the 
timing defect is still smaller than the slack time, a correct 
output value is latched in the output register and the 
circuit operates correctly. From Figure 2, it is clear that 
an open with a small resistance (3kΩ) cannot be detected 
while an open with a large resistance can be detected.  

This means that a given resistive open can be 
detected by the 2-vectors sequence {T0, T1} if its 
unpredictable resistance Rop is larger than a critical 
resistance called Rc

{T0,T1}. In our example, SPICE 

simulations show that the critical resistance is equal to 
7.5kΩ. In other words, we associate to the resistive open 
the Detection Interval DI defined below: 

 DI{T0,T1}  = [Rc
{T0,T1} , ∞]  = [7.5kΩ , ∞]   (1) 

 
 Note that the above range is associated to the pair of 
vectors {T0, T1}. But in the general case, another pair of 
vectors may detect even smaller resistances. This could 
be the case if another propagation path is excited with a 
smaller slack time. 

 
Figure 2: Dynamic behavior 

  
 
2.2. Detection with an n-vector sequence  
 
 Now, we consider a more realistic situation where, 
starting from an initial state given by T0, a complete test 
sequence of m vectors is applied to the circuit targeting 
different defects/faults: 
          Test sequence = {T0, T1, …, Tn-1, Tn, …, Tm} (2) 
 
 In this sequence, we assume now that vector Tn has 
been specifically generated to detect the resistive open on 
node n4. Tn is such that the transitions created by the 2 
vectors {Tn-1, Tn} are able to detect the resistive open on 
node n4. In other words, the pair {Tn-1, Tn} creates a 
transition that passes through node n4 and is propagated 
to an observable output.   
 

Table 1: The simulated test sequence 

 
  
 It is important to note that the preceding vectors {T0, 
T1, …, Tn-1} may create some transitions of node n4 but 
these transitions are not propagated to an output, i.e. the 
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open is not detected before vector Tn. For detection of the 
resistive open, we consequently divide the sequence into 
2 phases: 
   - The preparation phase corresponds to the application 
of the n - 1 vectors {T1, …, Tn-1} starting from the initial 
state T0, i.e. when the open cannot be detected but the 
faulty node may switch. 
   - The detection phase corresponds to the application of 
vector Tn, i.e. when the faulty node switches and it is 
observable on the outputs. 
As an example, for the resistive open of Figure 1, we 
consider the preparation phase made of the initial state 
{T0} and a sequence of 5 vectors {T1, T2, T3, T4, T5}, and 
the detection phase made of vector {T6}, i.e. the case 
where n = 6. These vectors are given in Table 1.   
 In this simple and didactic example, node n4 is 
observable on output O1 only during the 6th cycle when 
I1 = 1. Vector T6 has obviously been generated on 
purpose, i.e. to detect a fault on node n4 and so it makes 
node n4 observable. The previous vectors (T1, …, T5) 
have been generated targeting some other faults. 
 
a) Preparation phase 
 We first analyze the preparation phase. As 
commented above, during the first 5 cycles node n4 is not 
observable, but it may switch from 0 to 1 or from 1 to 0 
according to the activity of the circuit induced by the 
input vectors. In other words, the successive input vectors 
may create successive transitions of node n4. In the fault-
free circuit node n4 switches from Gnd to VDD and vice-
versa, but in the faulty circuit the signal is degraded by 
the resistive open. If the resistance of the open is large 
enough, the signal is slowed down and it is not always 
able to reach the VDD and Gnd values as illustrated in 
Figure 3 with Rop = 7.5kΩ. 
 Let us explain in detail the example of Figure 3. 
Input I2 is initially equal to 0 (initial state T0) and 
switches to 1 (T1) at time t0. At time t0 + Tpb, the rising 
transition reaches the output of gate 4 and so the voltage 
V(t) of node n4 starts switching from V0 = Gnd to VDD. 
 Due to the resistance Rop of the defect, the time 
required by V(t) to reach VDD is much higher than the 
cycle time Tcl. At the end of the 1st cycle, i.e. at time (t0 + 
Tcl), input I2 switches from 1 to 0 (T2) and this new 
transition reaches node n4 at time (t0 + Tcl + Tpb). This 
new transition interrupts the previous one even if node n4 
has not yet been able to reach VDD. Consequently, we 
observe that, during the first cycle, node n4 rises from V0 
= V(t0 + Tpb) = 0V to V1 = V(t0 + Tcl + Tpb) = 1.26V. 
 Obviously, we can make the same demonstration for 
the second cycle where a new transition on node n4 
interrupts the previous one and the voltage on node n4 
falls from V1 = V(t0 + Tcl + Tpb) to V2 = V(t0 + 2Tcl + Tpb). 
In a similar way, the voltage rises from V2 = V(t0 + 2Tcl + 
Tpb) to V3 = V(t0 + 3Tcl + Tpb) during the third cycle, etc.  

 So, we globally observe that the voltage on node n4 
does not simply switch between Gnd and VDD. Instead, it 
rises and falls according to the input vectors and goes 
through a set of successive intermediate voltages V0, V1, 
V2, V3, V4, V5. 
   Important is the fact that these successive voltages 
are more or less following the clock of the circuit. Indeed, 
they appear at a period of time Tpb after the clock pulse. 
In Figure 3, we observe that they appear every Tcl. But, 
this is an oversimplified example where the transition 
propagates from the input I2 to the defect using the same 
path whatever the input vector. So, the different points V1, 
V2... appear always after the same period of time Tpb after 
the clock pulse. In the general case, the period may vary 
from vector to vector but the transitions are always 
initiated by the circuit inputs that follow the circuit clock. 
And so the global period will correspond to the circuit 
clock frequency Tcl. For the above reasons, we will say 
that the successive intermediate voltages exhibit a 
pseudo-period equals to the circuit clock Tcl. 
 

 
Figure 3: Behavior through a sequence 

 
 Very important is also the fact that, for each vector 
Tj, the corresponding intermediate voltage Vj on node ni 
depends on the polarity of the transition, the node 
electrical parameters Rni, Cni, the strength of the driving 
gate Wn

i, Ln
i, Wp

i, Lp
i, the defect parameter Rop, the 

pseudo-period Tcl, and the previous intermediate voltage 
Vj-1. 
 In other words, for a given vector Tj, the voltage Vj 
depends on the resistance of the open and on the previous 
voltage which recursively depends on the resistance of 
the open and on the previous voltage which in turn 
depends on the same parameters. Consequently, at the 
end of the preparation phase, just before the detection 
phase (vector Tn), the faulty node ni presents a voltage Vn-

1 which recursively depends on all the previous 
intermediate voltages, and so it depends on all the 
previous vectors that have been applied to the circuit. 

0.4 T (ns)0 0.8 1.2 1.6 2.0
T0 > T1 > T4> T2

n4

O1

V1

V2

V3

V4

V5Tcl
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8 V (V)

> T3 > T5 > T6

Tpb1 Tpb2 Tpb3 Tpb4 Tpb5

Tcl

Tcl Tcl Tcl Tcl Tcl Tcl
Pseudo
Period

0.4 T (ns)0 0.8 1.2 1.6 2.00.4 T (ns)0 0.8 1.2 1.6 2.0
T0 > T1 > T4> T2

n4

O1

V1

V2

V3

V4

V5Tcl
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8 V (V)

> T3 > T5 > T6

Tpb1 Tpb2 Tpb3 Tpb4 Tpb5

Tcl

Tcl Tcl Tcl Tcl Tcl TclTcl Tcl Tcl Tcl Tcl Tcl
Pseudo
Period

15th Asian Test Symposium (ATS'06)
0-7695-2628-4/06 $20.00  © 2006

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 09,2010 at 09:33:35 UTC from IEEE Xplore.  Restrictions apply. 



b) Detection phase 
 We now analyze the detection phase using again our 
small example. When vector T6 is applied to the circuit, a 
transition is propagated from input I2 to node n4, the 
transition is delayed by the resistive open, and finally the 
delayed transition propagates to output O1.  
 This situation is quite similar to the one described for 
the 2-vector sequence in the previous section. An input 
transition is initiated by 2 vectors: the last vector of the 
preparation phase T5 and the vector of the detection phase 
T6. So, we come to a similar conclusion: an open with a 
small resistance can not be detected while an open with a 
large resistance can be detected.  
 And so, the resistive open can be detected by the n-
vectors sequence {T0, T1, T2, T3, T4, T5, T6} if its 
unpredictable resistance Rop is larger than a critical 
resistance called Rc

{T0,T1,T2,T3,T4,T5,T6}. Here again, we 
associate to the resistive open the Detection Interval DI 
defined below: 
      DI{T0,T1,T2,T3,T4,T5,T6} = [Rc

{T0,T1,T2,T3,T4,T5,T6} , ∞]   (3) 
 

 But there is a fundamental difference between the 2-
vector sequence and the n-vector one. In the 2-vector 
sequence, the additional delay is a function of the initial 
voltage V0 = 0. While, in the n-vector sequence, the 
additional delay Top is a function of the previous 
intermediate voltage Vn-1. SPICE simulations show that 
the critical resistance is equal to Rc

{T0,T1,T2,T3,T4,T5,T6} = 
28kΩ. Note that the above range is completely different 
from the one obtained in the previous section with the 2-
vector sequence {T0, T1}. This clearly demonstrates the 
significant impact of the preparation phase on the 
detection of the resistive open. 
 

3. A specific ATPG approach 
 In this section, the objective is to use the analysis 
performed in the previous section to derive some 
guidelines for the development of a specific ATPG tool 
for resistive opens. Targeting realistic defects, i.e. defects 
with random parameters, it is clear that the objective of 
an optimized ATPG should be not only to guarantee 
defect excitation and propagation, but also to guarantee 
detection of the defect for the largest possible range of the 
random parameter, i.e. the smallest possible resistance in 
our case. 
 
3.1. Specific ATPG strategy  
 
 Considering a resistive open on a given node, it has 
been demonstrated that a given test sequence is able to 
detect the open for a range of resistance defined by the 
critical resistance as represented by eq. 12: 
                  DI{sequence} = [Rc

{sequence} , ∞]    (4) 
 

 The critical resistance is a function of the node 
electrical parameters (Rni, Cni, Wn

i, Ln
i, Wp

i, Lp
i) and on  

the slack time Tsl during the detection phase. The longer 
the activated path is, the shorter the slack time is, the 
smaller the detectable resistance is and the larger the 
Detection Interval is. This point is quite simple but it has 
to be considered when a test vector is generated [18]. 
 
Principle 1: Considering a given node with a resistive 
open, the generated test vector should propagate a rising 
or falling transition through the longest possible path 
including the faulty node. 
 
 Finally, it has also been demonstrated that the critical 
resistance depends on the final voltage of the preparation 
phase: V5. It is clear that the smaller the final voltage is, 
the smaller the critical resistance is. This means that a 
minimum critical resistance Rc

min could be obtained if the 
applied test sequence is such that the final voltage of the 
preparation phase is equal to Vn-1 = 0V.    
 
 

 
 
 
 
 

Figure 4: Detection of the minimum resistance  
 
 Let us consider Figure 4 giving the SPICE simulation 
of the circuit of Figure 1 with a new sequence of 7 
vectors {T1, T2, T3, T4, T5, T6, T7} where input I2 
successively switches from 0 to 1,1,1,0,0,0 and 1. In this 
simulation, the resistance of the open is 7.5kΩ. Note that 
the resistive open in Figure 4 may be considered as 
detected because the output O1 switches right after the top 
of the clock. In fact, it is clear that this resistance is the 
minimum critical resistance Rc

min. In Figure 4, the final 
voltage V6 is equal to 0V, which is the best condition to 
detect the defect with minimum critical resistance. So, 
Figure 4 illustrates the best case where the detection 
interval is limited by the minimum detectable resistance. 
 It is interesting to analyze now how to obtain a final 
voltage equal to 0V. In Figure 4, the intermediate voltage 
on node n4 decreases from VDD to 0V when vectors T4, T5 
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and T6 are applied. In fact, these 3 vectors do not create 
any new transition on node n4 and so the node has 
‘enough time’ to decrease down to 0V.  
 From this observation, we conclude that the targeted 
node ni can be set to 0V (resp. to VDD) if, before the 
detection phase, the node remains stable for a given 
number of consecutive clock cycles.  Let us call Nni the 
required number of consecutive stable cycles (details on 
how to compute Nni are given in the next section).   
 So, the basic idea of the proposed ATPG strategy 
would be to guarantee that, when the detection vector is 
generated, the targeted node ni with the resistive open Rop 
has been stable for a given number Nni of consecutive 
cycles before the switch due to the detection vector. 
Obviously, a brute force solution consisting in 
systematically adding Nni vectors before each detection 
vector is not viable due to the unacceptable increase of 
the test sequence. Instead, a more efficient solution would 
be the following: 
 
Principle 2: When ATPG for resistive opens is performed,  
nodes that have been stable for the required number of 
consecutive cycles are dynamically targeted.  
  
 In other words, the ATPG process could be described 
through the following points: 
 - For each node ni, an activity variable Ani is 
dynamically computed. This variable indicates the 
number of consecutive cycles for which the logical value 
of the node has been equal to its last value.  
       - A set of candidate nodes is dynamically computed. 
The candidates are nodes such that Ani > Nni . 
       - A vector Ti is generated for one of the nodes in the 
set of candidates. 
 
 The proposed strategy could be optimal because it 
does not increase the size of the test sequence and 
guarantees the coverage of the largest DI for each node. 
Note that the targeted node must not switch for Nni 
consecutive cycles, not only due to the logic but also due 
to hazards [19].  
  
3.2. Specific ATPG pre-processing phase  
 In the above described specific ATPG strategy, a 
simple solution could be to use the same N (Nni ∀ ni) for 
every circuit node. In this case a very large 
overestimation of N would be sufficient to guarantee the 
final voltage of the nodes. During the ATPG process, 
when nodes are dynamically targeted, it is also clear that 
an overestimated N means less candidates. It is not 
important when ATPG starts with many nodes but it may 
be a problem at the end of the generation when the whole 
set of nodes become small. It may be necessary to add 
vectors to the sequence. 
 A better solution is to dynamically compute the Nni 
variable for each defect in the circuit. Indeed, the variable 

is not fixed and has to be computed for each node, and for 
each vector. Note that the computation does not need to 
be extremely accurate, a simple approximation of Nni  
would be sufficient as long as Nni < N. 
 Figure 5 illustrates the property used to compute Nni. 
A simple RC model for the node is first assumed where 
Rc

min is the minimum critical resistance and Cni the 
capacitance of the node.  The falling part of the curve 
corresponds to the preparation phase and the rising part to 
the detection phase: 
   - In the rising part, the signal Vni rises from Vn-1 = 0V to 
VDD/2 in a period of time equal to Tsl. This rising part can 
be written                      0.5 . Vdd = Vdd  ⋅ (1-e-Tsl/τ)  (5) 
where τ= Rc

min ⋅ Cni  
 
   - In the falling part, Tr is the time required for the same 
node Vni to fall from VDD to 1% VDD. Note that we 
consider the worst case where Vn-2 is equal to VDD. This 
falling part can be written   0.01 ⋅ Vdd = Vdd  ⋅ e-Tr/τ  (6) 
 
 From these 2 equations, we deduce that the required 
time is just proportional to the slack time: 
             Tr  = Tsl  ⋅  (Ln100/Ln2)    (7) 
=>        Nni =  int [Tr / Tcl ]     (8) 
 
 The above equation illustrates a very important 
property: Tr does not depend on Rc

min neither on Cni. It 
only depends on the slack time during the detection 
phase! The above analysis has been performed 
assuming a simple RC model and ideal voltage sources. 
In the realistic case, gates are driving the RC model. So, 
the relation between the slack time and the required time 
depends on the driving gate. So, the parameter Nni can be 
obtained from SPICE simulations for each logic gate. 

 
Figure 5: Determination of Tr 
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it is necessary to avoid as much as possible SPICE 
simulations during the ATPG process. We consequently 
propose the following strategy based on a pre-processing 
phase of the gate library. 
 Assuming that the gate library is available, we 
perform for each gate a simulation similar to the one 
illustrated in Figure 5 for an arbitrary capacitance Cni. For 
different values of the slack time Tsl we note the 
corresponding required time Tr.  
 For a multi-input NOR or NAND gate, note that the 
simulations are performed in the worst case conditions, 
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i.e. for the most resistive conducting path (only 1 
transistor ON for parallel networks).  
 Such characteristics are illustrated in Figure 6 for an 
inverter and for a NAND gate. We can observe in Figure 
6 that the relation between Tr and Tsl is linear and 
independent of the node capacitance: Tr = α ⋅ Tsl + β  
 

 
Figure 6: Pre-characterization of Tr  vs Tsl 

  
 Note that the curve obtained in Figure 6 is exact and 
does not include any approximation to obtain the required 
time. However, it is possible to add some security margin 
around Tr by increasing Nni by 1 or 2 clock cycles. 
Finally, we can now give the proposed ATPG pseudo-
algorithm: 
    - For each remaining node ni 
   - Dynamically compute the activity variable Ani  
   - Determine the longest propagation path for ni 
   - Determine the corresponding Tsl 
   - Determine Tr = α ⋅ Tsl + β (with gate driving ni) 
         - Determine Nni = Tr / Tcl  (option: Nni = Nni +2) 
         - Determine the candidate nodes such that Ani > Nni  
         - Generate a vector Tn for one of the candidates 
 

4. Conclusion 
 This paper analyzes the electrical behavior of a 

resistive open as a function of its unpredictable 
resistance.  It is demonstrated that the detection of the 
resistive open not only depends on the unpredictable 
resistance but also on the successive intermediate values 
of the faulty node, i.e. recursively depends on all the 
vectors that have been applied to the circuit. An electrical 
analysis of this recursive effect is presented and a specific 
ATPG strategy is proposed. The proposed strategy is 
based on a pre-processing of the gate library. A simple 
SPICE simulation of each gate in the library with an 
arbitrary capacitance allow to pre-characterize the gate. 
The ATPG process does not add additional vectors to the 
sequence. Instead it dynamically target stable nodes.  
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